inst_queue_impl.hh revision 2831
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 * Korey Sewell 30 */ 31 32#include <limits> 33#include <vector> 34 35#include "sim/root.hh" 36 37#include "cpu/o3/fu_pool.hh" 38#include "cpu/o3/inst_queue.hh" 39 40using namespace std; 41 42template <class Impl> 43InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 44 int fu_idx, 45 InstructionQueue<Impl> *iq_ptr) 46 : Event(&mainEventQueue, Stat_Event_Pri), 47 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false) 48{ 49 this->setFlags(Event::AutoDelete); 50} 51 52template <class Impl> 53void 54InstructionQueue<Impl>::FUCompletion::process() 55{ 56 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1); 57 inst = NULL; 58} 59 60 61template <class Impl> 62const char * 63InstructionQueue<Impl>::FUCompletion::description() 64{ 65 return "Functional unit completion event"; 66} 67 68template <class Impl> 69InstructionQueue<Impl>::InstructionQueue(Params *params) 70 : fuPool(params->fuPool), 71 numEntries(params->numIQEntries), 72 totalWidth(params->issueWidth), 73 numPhysIntRegs(params->numPhysIntRegs), 74 numPhysFloatRegs(params->numPhysFloatRegs), 75 commitToIEWDelay(params->commitToIEWDelay) 76{ 77 assert(fuPool); 78 79 switchedOut = false; 80 81 numThreads = params->numberOfThreads; 82 83 // Set the number of physical registers as the number of int + float 84 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 85 86 DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 87 88 //Create an entry for each physical register within the 89 //dependency graph. 90 dependGraph.resize(numPhysRegs); 91 92 // Resize the register scoreboard. 93 regScoreboard.resize(numPhysRegs); 94 95 //Initialize Mem Dependence Units 96 for (int i = 0; i < numThreads; i++) { 97 memDepUnit[i].init(params,i); 98 memDepUnit[i].setIQ(this); 99 } 100 101 resetState(); 102 103 string policy = params->smtIQPolicy; 104 105 //Convert string to lowercase 106 std::transform(policy.begin(), policy.end(), policy.begin(), 107 (int(*)(int)) tolower); 108 109 //Figure out resource sharing policy 110 if (policy == "dynamic") { 111 iqPolicy = Dynamic; 112 113 //Set Max Entries to Total ROB Capacity 114 for (int i = 0; i < numThreads; i++) { 115 maxEntries[i] = numEntries; 116 } 117 118 } else if (policy == "partitioned") { 119 iqPolicy = Partitioned; 120 121 //@todo:make work if part_amt doesnt divide evenly. 122 int part_amt = numEntries / numThreads; 123 124 //Divide ROB up evenly 125 for (int i = 0; i < numThreads; i++) { 126 maxEntries[i] = part_amt; 127 } 128 129 DPRINTF(IQ, "IQ sharing policy set to Partitioned:" 130 "%i entries per thread.\n",part_amt); 131 132 } else if (policy == "threshold") { 133 iqPolicy = Threshold; 134 135 double threshold = (double)params->smtIQThreshold / 100; 136 137 int thresholdIQ = (int)((double)threshold * numEntries); 138 139 //Divide up by threshold amount 140 for (int i = 0; i < numThreads; i++) { 141 maxEntries[i] = thresholdIQ; 142 } 143 144 DPRINTF(IQ, "IQ sharing policy set to Threshold:" 145 "%i entries per thread.\n",thresholdIQ); 146 } else { 147 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 148 "Partitioned, Threshold}"); 149 } 150} 151 152template <class Impl> 153InstructionQueue<Impl>::~InstructionQueue() 154{ 155 dependGraph.reset(); 156#ifdef DEBUG 157 cprintf("Nodes traversed: %i, removed: %i\n", 158 dependGraph.nodesTraversed, dependGraph.nodesRemoved); 159#endif 160} 161 162template <class Impl> 163std::string 164InstructionQueue<Impl>::name() const 165{ 166 return cpu->name() + ".iq"; 167} 168 169template <class Impl> 170void 171InstructionQueue<Impl>::regStats() 172{ 173 using namespace Stats; 174 iqInstsAdded 175 .name(name() + ".iqInstsAdded") 176 .desc("Number of instructions added to the IQ (excludes non-spec)") 177 .prereq(iqInstsAdded); 178 179 iqNonSpecInstsAdded 180 .name(name() + ".iqNonSpecInstsAdded") 181 .desc("Number of non-speculative instructions added to the IQ") 182 .prereq(iqNonSpecInstsAdded); 183 184 iqInstsIssued 185 .name(name() + ".iqInstsIssued") 186 .desc("Number of instructions issued") 187 .prereq(iqInstsIssued); 188 189 iqIntInstsIssued 190 .name(name() + ".iqIntInstsIssued") 191 .desc("Number of integer instructions issued") 192 .prereq(iqIntInstsIssued); 193 194 iqFloatInstsIssued 195 .name(name() + ".iqFloatInstsIssued") 196 .desc("Number of float instructions issued") 197 .prereq(iqFloatInstsIssued); 198 199 iqBranchInstsIssued 200 .name(name() + ".iqBranchInstsIssued") 201 .desc("Number of branch instructions issued") 202 .prereq(iqBranchInstsIssued); 203 204 iqMemInstsIssued 205 .name(name() + ".iqMemInstsIssued") 206 .desc("Number of memory instructions issued") 207 .prereq(iqMemInstsIssued); 208 209 iqMiscInstsIssued 210 .name(name() + ".iqMiscInstsIssued") 211 .desc("Number of miscellaneous instructions issued") 212 .prereq(iqMiscInstsIssued); 213 214 iqSquashedInstsIssued 215 .name(name() + ".iqSquashedInstsIssued") 216 .desc("Number of squashed instructions issued") 217 .prereq(iqSquashedInstsIssued); 218 219 iqSquashedInstsExamined 220 .name(name() + ".iqSquashedInstsExamined") 221 .desc("Number of squashed instructions iterated over during squash;" 222 " mainly for profiling") 223 .prereq(iqSquashedInstsExamined); 224 225 iqSquashedOperandsExamined 226 .name(name() + ".iqSquashedOperandsExamined") 227 .desc("Number of squashed operands that are examined and possibly " 228 "removed from graph") 229 .prereq(iqSquashedOperandsExamined); 230 231 iqSquashedNonSpecRemoved 232 .name(name() + ".iqSquashedNonSpecRemoved") 233 .desc("Number of squashed non-spec instructions that were removed") 234 .prereq(iqSquashedNonSpecRemoved); 235 236 queueResDist 237 .init(Num_OpClasses, 0, 99, 2) 238 .name(name() + ".IQ:residence:") 239 .desc("cycles from dispatch to issue") 240 .flags(total | pdf | cdf ) 241 ; 242 for (int i = 0; i < Num_OpClasses; ++i) { 243 queueResDist.subname(i, opClassStrings[i]); 244 } 245 numIssuedDist 246 .init(0,totalWidth,1) 247 .name(name() + ".ISSUE:issued_per_cycle") 248 .desc("Number of insts issued each cycle") 249 .flags(pdf) 250 ; 251/* 252 dist_unissued 253 .init(Num_OpClasses+2) 254 .name(name() + ".ISSUE:unissued_cause") 255 .desc("Reason ready instruction not issued") 256 .flags(pdf | dist) 257 ; 258 for (int i=0; i < (Num_OpClasses + 2); ++i) { 259 dist_unissued.subname(i, unissued_names[i]); 260 } 261*/ 262 statIssuedInstType 263 .init(numThreads,Num_OpClasses) 264 .name(name() + ".ISSUE:FU_type") 265 .desc("Type of FU issued") 266 .flags(total | pdf | dist) 267 ; 268 statIssuedInstType.ysubnames(opClassStrings); 269 270 // 271 // How long did instructions for a particular FU type wait prior to issue 272 // 273 274 issueDelayDist 275 .init(Num_OpClasses,0,99,2) 276 .name(name() + ".ISSUE:") 277 .desc("cycles from operands ready to issue") 278 .flags(pdf | cdf) 279 ; 280 281 for (int i=0; i<Num_OpClasses; ++i) { 282 stringstream subname; 283 subname << opClassStrings[i] << "_delay"; 284 issueDelayDist.subname(i, subname.str()); 285 } 286 287 issueRate 288 .name(name() + ".ISSUE:rate") 289 .desc("Inst issue rate") 290 .flags(total) 291 ; 292 issueRate = iqInstsIssued / cpu->numCycles; 293 294 statFuBusy 295 .init(Num_OpClasses) 296 .name(name() + ".ISSUE:fu_full") 297 .desc("attempts to use FU when none available") 298 .flags(pdf | dist) 299 ; 300 for (int i=0; i < Num_OpClasses; ++i) { 301 statFuBusy.subname(i, opClassStrings[i]); 302 } 303 304 fuBusy 305 .init(numThreads) 306 .name(name() + ".ISSUE:fu_busy_cnt") 307 .desc("FU busy when requested") 308 .flags(total) 309 ; 310 311 fuBusyRate 312 .name(name() + ".ISSUE:fu_busy_rate") 313 .desc("FU busy rate (busy events/executed inst)") 314 .flags(total) 315 ; 316 fuBusyRate = fuBusy / iqInstsIssued; 317 318 for ( int i=0; i < numThreads; i++) { 319 // Tell mem dependence unit to reg stats as well. 320 memDepUnit[i].regStats(); 321 } 322} 323 324template <class Impl> 325void 326InstructionQueue<Impl>::resetState() 327{ 328 //Initialize thread IQ counts 329 for (int i = 0; i <numThreads; i++) { 330 count[i] = 0; 331 instList[i].clear(); 332 } 333 334 // Initialize the number of free IQ entries. 335 freeEntries = numEntries; 336 337 // Note that in actuality, the registers corresponding to the logical 338 // registers start off as ready. However this doesn't matter for the 339 // IQ as the instruction should have been correctly told if those 340 // registers are ready in rename. Thus it can all be initialized as 341 // unready. 342 for (int i = 0; i < numPhysRegs; ++i) { 343 regScoreboard[i] = false; 344 } 345 346 for (int i = 0; i < numThreads; ++i) { 347 squashedSeqNum[i] = 0; 348 } 349 350 for (int i = 0; i < Num_OpClasses; ++i) { 351 while (!readyInsts[i].empty()) 352 readyInsts[i].pop(); 353 queueOnList[i] = false; 354 readyIt[i] = listOrder.end(); 355 } 356 nonSpecInsts.clear(); 357 listOrder.clear(); 358} 359 360template <class Impl> 361void 362InstructionQueue<Impl>::setActiveThreads(list<unsigned> *at_ptr) 363{ 364 DPRINTF(IQ, "Setting active threads list pointer.\n"); 365 activeThreads = at_ptr; 366} 367 368template <class Impl> 369void 370InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 371{ 372 DPRINTF(IQ, "Set the issue to execute queue.\n"); 373 issueToExecuteQueue = i2e_ptr; 374} 375 376template <class Impl> 377void 378InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 379{ 380 DPRINTF(IQ, "Set the time buffer.\n"); 381 timeBuffer = tb_ptr; 382 383 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 384} 385 386template <class Impl> 387void 388InstructionQueue<Impl>::switchOut() 389{ 390 resetState(); 391 dependGraph.reset(); 392 switchedOut = true; 393 for (int i = 0; i < numThreads; ++i) { 394 memDepUnit[i].switchOut(); 395 } 396} 397 398template <class Impl> 399void 400InstructionQueue<Impl>::takeOverFrom() 401{ 402 switchedOut = false; 403} 404 405template <class Impl> 406int 407InstructionQueue<Impl>::entryAmount(int num_threads) 408{ 409 if (iqPolicy == Partitioned) { 410 return numEntries / num_threads; 411 } else { 412 return 0; 413 } 414} 415 416 417template <class Impl> 418void 419InstructionQueue<Impl>::resetEntries() 420{ 421 if (iqPolicy != Dynamic || numThreads > 1) { 422 int active_threads = (*activeThreads).size(); 423 424 list<unsigned>::iterator threads = (*activeThreads).begin(); 425 list<unsigned>::iterator list_end = (*activeThreads).end(); 426 427 while (threads != list_end) { 428 if (iqPolicy == Partitioned) { 429 maxEntries[*threads++] = numEntries / active_threads; 430 } else if(iqPolicy == Threshold && active_threads == 1) { 431 maxEntries[*threads++] = numEntries; 432 } 433 } 434 } 435} 436 437template <class Impl> 438unsigned 439InstructionQueue<Impl>::numFreeEntries() 440{ 441 return freeEntries; 442} 443 444template <class Impl> 445unsigned 446InstructionQueue<Impl>::numFreeEntries(unsigned tid) 447{ 448 return maxEntries[tid] - count[tid]; 449} 450 451// Might want to do something more complex if it knows how many instructions 452// will be issued this cycle. 453template <class Impl> 454bool 455InstructionQueue<Impl>::isFull() 456{ 457 if (freeEntries == 0) { 458 return(true); 459 } else { 460 return(false); 461 } 462} 463 464template <class Impl> 465bool 466InstructionQueue<Impl>::isFull(unsigned tid) 467{ 468 if (numFreeEntries(tid) == 0) { 469 return(true); 470 } else { 471 return(false); 472 } 473} 474 475template <class Impl> 476bool 477InstructionQueue<Impl>::hasReadyInsts() 478{ 479 if (!listOrder.empty()) { 480 return true; 481 } 482 483 for (int i = 0; i < Num_OpClasses; ++i) { 484 if (!readyInsts[i].empty()) { 485 return true; 486 } 487 } 488 489 return false; 490} 491 492template <class Impl> 493void 494InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 495{ 496 // Make sure the instruction is valid 497 assert(new_inst); 498 499 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %#x to the IQ.\n", 500 new_inst->seqNum, new_inst->readPC()); 501 502 assert(freeEntries != 0); 503 504 instList[new_inst->threadNumber].push_back(new_inst); 505 506 --freeEntries; 507 508 new_inst->setInIQ(); 509 510 // Look through its source registers (physical regs), and mark any 511 // dependencies. 512 addToDependents(new_inst); 513 514 // Have this instruction set itself as the producer of its destination 515 // register(s). 516 addToProducers(new_inst); 517 518 if (new_inst->isMemRef()) { 519 memDepUnit[new_inst->threadNumber].insert(new_inst); 520 } else { 521 addIfReady(new_inst); 522 } 523 524 ++iqInstsAdded; 525 526 count[new_inst->threadNumber]++; 527 528 assert(freeEntries == (numEntries - countInsts())); 529} 530 531template <class Impl> 532void 533InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 534{ 535 // @todo: Clean up this code; can do it by setting inst as unable 536 // to issue, then calling normal insert on the inst. 537 538 assert(new_inst); 539 540 nonSpecInsts[new_inst->seqNum] = new_inst; 541 542 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %#x " 543 "to the IQ.\n", 544 new_inst->seqNum, new_inst->readPC()); 545 546 assert(freeEntries != 0); 547 548 instList[new_inst->threadNumber].push_back(new_inst); 549 550 --freeEntries; 551 552 new_inst->setInIQ(); 553 554 // Have this instruction set itself as the producer of its destination 555 // register(s). 556 addToProducers(new_inst); 557 558 // If it's a memory instruction, add it to the memory dependency 559 // unit. 560 if (new_inst->isMemRef()) { 561 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 562 } 563 564 ++iqNonSpecInstsAdded; 565 566 count[new_inst->threadNumber]++; 567 568 assert(freeEntries == (numEntries - countInsts())); 569} 570 571template <class Impl> 572void 573InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 574{ 575 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 576 577 insertNonSpec(barr_inst); 578} 579 580template <class Impl> 581typename Impl::DynInstPtr 582InstructionQueue<Impl>::getInstToExecute() 583{ 584 assert(!instsToExecute.empty()); 585 DynInstPtr inst = instsToExecute.front(); 586 instsToExecute.pop_front(); 587 return inst; 588} 589 590template <class Impl> 591void 592InstructionQueue<Impl>::addToOrderList(OpClass op_class) 593{ 594 assert(!readyInsts[op_class].empty()); 595 596 ListOrderEntry queue_entry; 597 598 queue_entry.queueType = op_class; 599 600 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 601 602 ListOrderIt list_it = listOrder.begin(); 603 ListOrderIt list_end_it = listOrder.end(); 604 605 while (list_it != list_end_it) { 606 if ((*list_it).oldestInst > queue_entry.oldestInst) { 607 break; 608 } 609 610 list_it++; 611 } 612 613 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 614 queueOnList[op_class] = true; 615} 616 617template <class Impl> 618void 619InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 620{ 621 // Get iterator of next item on the list 622 // Delete the original iterator 623 // Determine if the next item is either the end of the list or younger 624 // than the new instruction. If so, then add in a new iterator right here. 625 // If not, then move along. 626 ListOrderEntry queue_entry; 627 OpClass op_class = (*list_order_it).queueType; 628 ListOrderIt next_it = list_order_it; 629 630 ++next_it; 631 632 queue_entry.queueType = op_class; 633 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 634 635 while (next_it != listOrder.end() && 636 (*next_it).oldestInst < queue_entry.oldestInst) { 637 ++next_it; 638 } 639 640 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 641} 642 643template <class Impl> 644void 645InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 646{ 647 // The CPU could have been sleeping until this op completed (*extremely* 648 // long latency op). Wake it if it was. This may be overkill. 649 if (isSwitchedOut()) { 650 return; 651 } 652 653 iewStage->wakeCPU(); 654 655 if (fu_idx > -1) 656 fuPool->freeUnitNextCycle(fu_idx); 657 658 // @todo: Ensure that these FU Completions happen at the beginning 659 // of a cycle, otherwise they could add too many instructions to 660 // the queue. 661 issueToExecuteQueue->access(0)->size++; 662 instsToExecute.push_back(inst); 663} 664 665// @todo: Figure out a better way to remove the squashed items from the 666// lists. Checking the top item of each list to see if it's squashed 667// wastes time and forces jumps. 668template <class Impl> 669void 670InstructionQueue<Impl>::scheduleReadyInsts() 671{ 672 DPRINTF(IQ, "Attempting to schedule ready instructions from " 673 "the IQ.\n"); 674 675 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 676 677 // Have iterator to head of the list 678 // While I haven't exceeded bandwidth or reached the end of the list, 679 // Try to get a FU that can do what this op needs. 680 // If successful, change the oldestInst to the new top of the list, put 681 // the queue in the proper place in the list. 682 // Increment the iterator. 683 // This will avoid trying to schedule a certain op class if there are no 684 // FUs that handle it. 685 ListOrderIt order_it = listOrder.begin(); 686 ListOrderIt order_end_it = listOrder.end(); 687 int total_issued = 0; 688 689 while (total_issued < totalWidth && 690 order_it != order_end_it) { 691 OpClass op_class = (*order_it).queueType; 692 693 assert(!readyInsts[op_class].empty()); 694 695 DynInstPtr issuing_inst = readyInsts[op_class].top(); 696 697 assert(issuing_inst->seqNum == (*order_it).oldestInst); 698 699 if (issuing_inst->isSquashed()) { 700 readyInsts[op_class].pop(); 701 702 if (!readyInsts[op_class].empty()) { 703 moveToYoungerInst(order_it); 704 } else { 705 readyIt[op_class] = listOrder.end(); 706 queueOnList[op_class] = false; 707 } 708 709 listOrder.erase(order_it++); 710 711 ++iqSquashedInstsIssued; 712 713 continue; 714 } 715 716 int idx = -2; 717 int op_latency = 1; 718 int tid = issuing_inst->threadNumber; 719 720 if (op_class != No_OpClass) { 721 idx = fuPool->getUnit(op_class); 722 723 if (idx > -1) { 724 op_latency = fuPool->getOpLatency(op_class); 725 } 726 } 727 728 // If we have an instruction that doesn't require a FU, or a 729 // valid FU, then schedule for execution. 730 if (idx == -2 || idx != -1) { 731 if (op_latency == 1) { 732 i2e_info->size++; 733 instsToExecute.push_back(issuing_inst); 734 735 // Add the FU onto the list of FU's to be freed next 736 // cycle if we used one. 737 if (idx >= 0) 738 fuPool->freeUnitNextCycle(idx); 739 } else { 740 int issue_latency = fuPool->getIssueLatency(op_class); 741 // Generate completion event for the FU 742 FUCompletion *execution = new FUCompletion(issuing_inst, 743 idx, this); 744 745 execution->schedule(curTick + cpu->cycles(issue_latency - 1)); 746 747 // @todo: Enforce that issue_latency == 1 or op_latency 748 if (issue_latency > 1) { 749 // If FU isn't pipelined, then it must be freed 750 // upon the execution completing. 751 execution->setFreeFU(); 752 } else { 753 // Add the FU onto the list of FU's to be freed next cycle. 754 fuPool->freeUnitNextCycle(idx); 755 } 756 } 757 758 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 759 "[sn:%lli]\n", 760 tid, issuing_inst->readPC(), 761 issuing_inst->seqNum); 762 763 readyInsts[op_class].pop(); 764 765 if (!readyInsts[op_class].empty()) { 766 moveToYoungerInst(order_it); 767 } else { 768 readyIt[op_class] = listOrder.end(); 769 queueOnList[op_class] = false; 770 } 771 772 issuing_inst->setIssued(); 773 ++total_issued; 774 775 if (!issuing_inst->isMemRef()) { 776 // Memory instructions can not be freed from the IQ until they 777 // complete. 778 ++freeEntries; 779 count[tid]--; 780 issuing_inst->clearInIQ(); 781 } else { 782 memDepUnit[tid].issue(issuing_inst); 783 } 784 785 listOrder.erase(order_it++); 786 statIssuedInstType[tid][op_class]++; 787 } else { 788 statFuBusy[op_class]++; 789 fuBusy[tid]++; 790 ++order_it; 791 } 792 } 793 794 numIssuedDist.sample(total_issued); 795 iqInstsIssued+= total_issued; 796 797 // If we issued any instructions, tell the CPU we had activity. 798 if (total_issued) { 799 cpu->activityThisCycle(); 800 } else { 801 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 802 } 803} 804 805template <class Impl> 806void 807InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 808{ 809 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 810 "to execute.\n", inst); 811 812 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 813 814 assert(inst_it != nonSpecInsts.end()); 815 816 unsigned tid = (*inst_it).second->threadNumber; 817 818 (*inst_it).second->setCanIssue(); 819 820 if (!(*inst_it).second->isMemRef()) { 821 addIfReady((*inst_it).second); 822 } else { 823 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 824 } 825 826 (*inst_it).second = NULL; 827 828 nonSpecInsts.erase(inst_it); 829} 830 831template <class Impl> 832void 833InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 834{ 835 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 836 tid,inst); 837 838 ListIt iq_it = instList[tid].begin(); 839 840 while (iq_it != instList[tid].end() && 841 (*iq_it)->seqNum <= inst) { 842 ++iq_it; 843 instList[tid].pop_front(); 844 } 845 846 assert(freeEntries == (numEntries - countInsts())); 847} 848 849template <class Impl> 850int 851InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 852{ 853 int dependents = 0; 854 855 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 856 857 assert(!completed_inst->isSquashed()); 858 859 // Tell the memory dependence unit to wake any dependents on this 860 // instruction if it is a memory instruction. Also complete the memory 861 // instruction at this point since we know it executed without issues. 862 // @todo: Might want to rename "completeMemInst" to something that 863 // indicates that it won't need to be replayed, and call this 864 // earlier. Might not be a big deal. 865 if (completed_inst->isMemRef()) { 866 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 867 completeMemInst(completed_inst); 868 } else if (completed_inst->isMemBarrier() || 869 completed_inst->isWriteBarrier()) { 870 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 871 } 872 873 for (int dest_reg_idx = 0; 874 dest_reg_idx < completed_inst->numDestRegs(); 875 dest_reg_idx++) 876 { 877 PhysRegIndex dest_reg = 878 completed_inst->renamedDestRegIdx(dest_reg_idx); 879 880 // Special case of uniq or control registers. They are not 881 // handled by the IQ and thus have no dependency graph entry. 882 // @todo Figure out a cleaner way to handle this. 883 if (dest_reg >= numPhysRegs) { 884 continue; 885 } 886 887 DPRINTF(IQ, "Waking any dependents on register %i.\n", 888 (int) dest_reg); 889 890 //Go through the dependency chain, marking the registers as 891 //ready within the waiting instructions. 892 DynInstPtr dep_inst = dependGraph.pop(dest_reg); 893 894 while (dep_inst) { 895 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 896 dep_inst->readPC()); 897 898 // Might want to give more information to the instruction 899 // so that it knows which of its source registers is 900 // ready. However that would mean that the dependency 901 // graph entries would need to hold the src_reg_idx. 902 dep_inst->markSrcRegReady(); 903 904 addIfReady(dep_inst); 905 906 dep_inst = dependGraph.pop(dest_reg); 907 908 ++dependents; 909 } 910 911 // Reset the head node now that all of its dependents have 912 // been woken up. 913 assert(dependGraph.empty(dest_reg)); 914 dependGraph.clearInst(dest_reg); 915 916 // Mark the scoreboard as having that register ready. 917 regScoreboard[dest_reg] = true; 918 } 919 return dependents; 920} 921 922template <class Impl> 923void 924InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 925{ 926 OpClass op_class = ready_inst->opClass(); 927 928 readyInsts[op_class].push(ready_inst); 929 930 // Will need to reorder the list if either a queue is not on the list, 931 // or it has an older instruction than last time. 932 if (!queueOnList[op_class]) { 933 addToOrderList(op_class); 934 } else if (readyInsts[op_class].top()->seqNum < 935 (*readyIt[op_class]).oldestInst) { 936 listOrder.erase(readyIt[op_class]); 937 addToOrderList(op_class); 938 } 939 940 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 941 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 942 ready_inst->readPC(), op_class, ready_inst->seqNum); 943} 944 945template <class Impl> 946void 947InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 948{ 949 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 950} 951 952template <class Impl> 953void 954InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 955{ 956 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 957} 958 959template <class Impl> 960void 961InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 962{ 963 int tid = completed_inst->threadNumber; 964 965 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 966 completed_inst->readPC(), completed_inst->seqNum); 967 968 ++freeEntries; 969 970 completed_inst->memOpDone = true; 971 972 memDepUnit[tid].completed(completed_inst); 973 974 count[tid]--; 975} 976 977template <class Impl> 978void 979InstructionQueue<Impl>::violation(DynInstPtr &store, 980 DynInstPtr &faulting_load) 981{ 982 memDepUnit[store->threadNumber].violation(store, faulting_load); 983} 984 985template <class Impl> 986void 987InstructionQueue<Impl>::squash(unsigned tid) 988{ 989 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 990 "the IQ.\n", tid); 991 992 // Read instruction sequence number of last instruction out of the 993 // time buffer. 994 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 995 996 // Call doSquash if there are insts in the IQ 997 if (count[tid] > 0) { 998 doSquash(tid); 999 } 1000 1001 // Also tell the memory dependence unit to squash. 1002 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1003} 1004 1005template <class Impl> 1006void 1007InstructionQueue<Impl>::doSquash(unsigned tid) 1008{ 1009 // Start at the tail. 1010 ListIt squash_it = instList[tid].end(); 1011 --squash_it; 1012 1013 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1014 tid, squashedSeqNum[tid]); 1015 1016 // Squash any instructions younger than the squashed sequence number 1017 // given. 1018 while (squash_it != instList[tid].end() && 1019 (*squash_it)->seqNum > squashedSeqNum[tid]) { 1020 1021 DynInstPtr squashed_inst = (*squash_it); 1022 1023 // Only handle the instruction if it actually is in the IQ and 1024 // hasn't already been squashed in the IQ. 1025 if (squashed_inst->threadNumber != tid || 1026 squashed_inst->isSquashedInIQ()) { 1027 --squash_it; 1028 continue; 1029 } 1030 1031 if (!squashed_inst->isIssued() || 1032 (squashed_inst->isMemRef() && 1033 !squashed_inst->memOpDone)) { 1034 1035 // Remove the instruction from the dependency list. 1036 if (!squashed_inst->isNonSpeculative() && 1037 !squashed_inst->isStoreConditional() && 1038 !squashed_inst->isMemBarrier() && 1039 !squashed_inst->isWriteBarrier()) { 1040 1041 for (int src_reg_idx = 0; 1042 src_reg_idx < squashed_inst->numSrcRegs(); 1043 src_reg_idx++) 1044 { 1045 PhysRegIndex src_reg = 1046 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1047 1048 // Only remove it from the dependency graph if it 1049 // was placed there in the first place. 1050 1051 // Instead of doing a linked list traversal, we 1052 // can just remove these squashed instructions 1053 // either at issue time, or when the register is 1054 // overwritten. The only downside to this is it 1055 // leaves more room for error. 1056 1057 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1058 src_reg < numPhysRegs) { 1059 dependGraph.remove(src_reg, squashed_inst); 1060 } 1061 1062 1063 ++iqSquashedOperandsExamined; 1064 } 1065 } else { 1066 NonSpecMapIt ns_inst_it = 1067 nonSpecInsts.find(squashed_inst->seqNum); 1068 assert(ns_inst_it != nonSpecInsts.end()); 1069 1070 (*ns_inst_it).second = NULL; 1071 1072 nonSpecInsts.erase(ns_inst_it); 1073 1074 ++iqSquashedNonSpecRemoved; 1075 } 1076 1077 // Might want to also clear out the head of the dependency graph. 1078 1079 // Mark it as squashed within the IQ. 1080 squashed_inst->setSquashedInIQ(); 1081 1082 // @todo: Remove this hack where several statuses are set so the 1083 // inst will flow through the rest of the pipeline. 1084 squashed_inst->setIssued(); 1085 squashed_inst->setCanCommit(); 1086 squashed_inst->clearInIQ(); 1087 1088 //Update Thread IQ Count 1089 count[squashed_inst->threadNumber]--; 1090 1091 ++freeEntries; 1092 1093 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1094 "squashed.\n", 1095 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1096 } 1097 1098 instList[tid].erase(squash_it--); 1099 ++iqSquashedInstsExamined; 1100 } 1101} 1102 1103template <class Impl> 1104bool 1105InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1106{ 1107 // Loop through the instruction's source registers, adding 1108 // them to the dependency list if they are not ready. 1109 int8_t total_src_regs = new_inst->numSrcRegs(); 1110 bool return_val = false; 1111 1112 for (int src_reg_idx = 0; 1113 src_reg_idx < total_src_regs; 1114 src_reg_idx++) 1115 { 1116 // Only add it to the dependency graph if it's not ready. 1117 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1118 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1119 1120 // Check the IQ's scoreboard to make sure the register 1121 // hasn't become ready while the instruction was in flight 1122 // between stages. Only if it really isn't ready should 1123 // it be added to the dependency graph. 1124 if (src_reg >= numPhysRegs) { 1125 continue; 1126 } else if (regScoreboard[src_reg] == false) { 1127 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1128 "is being added to the dependency chain.\n", 1129 new_inst->readPC(), src_reg); 1130 1131 dependGraph.insert(src_reg, new_inst); 1132 1133 // Change the return value to indicate that something 1134 // was added to the dependency graph. 1135 return_val = true; 1136 } else { 1137 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1138 "became ready before it reached the IQ.\n", 1139 new_inst->readPC(), src_reg); 1140 // Mark a register ready within the instruction. 1141 new_inst->markSrcRegReady(src_reg_idx); 1142 } 1143 } 1144 } 1145 1146 return return_val; 1147} 1148 1149template <class Impl> 1150void 1151InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst) 1152{ 1153 // Nothing really needs to be marked when an instruction becomes 1154 // the producer of a register's value, but for convenience a ptr 1155 // to the producing instruction will be placed in the head node of 1156 // the dependency links. 1157 int8_t total_dest_regs = new_inst->numDestRegs(); 1158 1159 for (int dest_reg_idx = 0; 1160 dest_reg_idx < total_dest_regs; 1161 dest_reg_idx++) 1162 { 1163 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1164 1165 // Instructions that use the misc regs will have a reg number 1166 // higher than the normal physical registers. In this case these 1167 // registers are not renamed, and there is no need to track 1168 // dependencies as these instructions must be executed at commit. 1169 if (dest_reg >= numPhysRegs) { 1170 continue; 1171 } 1172 1173 if (!dependGraph.empty(dest_reg)) { 1174 dependGraph.dump(); 1175 panic("Dependency graph %i not empty!", dest_reg); 1176 } 1177 1178 dependGraph.setInst(dest_reg, new_inst); 1179 1180 // Mark the scoreboard to say it's not yet ready. 1181 regScoreboard[dest_reg] = false; 1182 } 1183} 1184 1185template <class Impl> 1186void 1187InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1188{ 1189 // If the instruction now has all of its source registers 1190 // available, then add it to the list of ready instructions. 1191 if (inst->readyToIssue()) { 1192 1193 //Add the instruction to the proper ready list. 1194 if (inst->isMemRef()) { 1195 1196 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1197 1198 // Message to the mem dependence unit that this instruction has 1199 // its registers ready. 1200 memDepUnit[inst->threadNumber].regsReady(inst); 1201 1202 return; 1203 } 1204 1205 OpClass op_class = inst->opClass(); 1206 1207 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1208 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1209 inst->readPC(), op_class, inst->seqNum); 1210 1211 readyInsts[op_class].push(inst); 1212 1213 // Will need to reorder the list if either a queue is not on the list, 1214 // or it has an older instruction than last time. 1215 if (!queueOnList[op_class]) { 1216 addToOrderList(op_class); 1217 } else if (readyInsts[op_class].top()->seqNum < 1218 (*readyIt[op_class]).oldestInst) { 1219 listOrder.erase(readyIt[op_class]); 1220 addToOrderList(op_class); 1221 } 1222 } 1223} 1224 1225template <class Impl> 1226int 1227InstructionQueue<Impl>::countInsts() 1228{ 1229#if 0 1230 //ksewell:This works but definitely could use a cleaner write 1231 //with a more intuitive way of counting. Right now it's 1232 //just brute force .... 1233 // Change the #if if you want to use this method. 1234 int total_insts = 0; 1235 1236 for (int i = 0; i < numThreads; ++i) { 1237 ListIt count_it = instList[i].begin(); 1238 1239 while (count_it != instList[i].end()) { 1240 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1241 if (!(*count_it)->isIssued()) { 1242 ++total_insts; 1243 } else if ((*count_it)->isMemRef() && 1244 !(*count_it)->memOpDone) { 1245 // Loads that have not been marked as executed still count 1246 // towards the total instructions. 1247 ++total_insts; 1248 } 1249 } 1250 1251 ++count_it; 1252 } 1253 } 1254 1255 return total_insts; 1256#else 1257 return numEntries - freeEntries; 1258#endif 1259} 1260 1261template <class Impl> 1262void 1263InstructionQueue<Impl>::dumpLists() 1264{ 1265 for (int i = 0; i < Num_OpClasses; ++i) { 1266 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1267 1268 cprintf("\n"); 1269 } 1270 1271 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1272 1273 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1274 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1275 1276 cprintf("Non speculative list: "); 1277 1278 while (non_spec_it != non_spec_end_it) { 1279 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1280 (*non_spec_it).second->seqNum); 1281 ++non_spec_it; 1282 } 1283 1284 cprintf("\n"); 1285 1286 ListOrderIt list_order_it = listOrder.begin(); 1287 ListOrderIt list_order_end_it = listOrder.end(); 1288 int i = 1; 1289 1290 cprintf("List order: "); 1291 1292 while (list_order_it != list_order_end_it) { 1293 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1294 (*list_order_it).oldestInst); 1295 1296 ++list_order_it; 1297 ++i; 1298 } 1299 1300 cprintf("\n"); 1301} 1302 1303 1304template <class Impl> 1305void 1306InstructionQueue<Impl>::dumpInsts() 1307{ 1308 for (int i = 0; i < numThreads; ++i) { 1309 int num = 0; 1310 int valid_num = 0; 1311 ListIt inst_list_it = instList[i].begin(); 1312 1313 while (inst_list_it != instList[i].end()) 1314 { 1315 cprintf("Instruction:%i\n", 1316 num); 1317 if (!(*inst_list_it)->isSquashed()) { 1318 if (!(*inst_list_it)->isIssued()) { 1319 ++valid_num; 1320 cprintf("Count:%i\n", valid_num); 1321 } else if ((*inst_list_it)->isMemRef() && 1322 !(*inst_list_it)->memOpDone) { 1323 // Loads that have not been marked as executed 1324 // still count towards the total instructions. 1325 ++valid_num; 1326 cprintf("Count:%i\n", valid_num); 1327 } 1328 } 1329 1330 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1331 "Issued:%i\nSquashed:%i\n", 1332 (*inst_list_it)->readPC(), 1333 (*inst_list_it)->seqNum, 1334 (*inst_list_it)->threadNumber, 1335 (*inst_list_it)->isIssued(), 1336 (*inst_list_it)->isSquashed()); 1337 1338 if ((*inst_list_it)->isMemRef()) { 1339 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1340 } 1341 1342 cprintf("\n"); 1343 1344 inst_list_it++; 1345 ++num; 1346 } 1347 } 1348 1349 cprintf("Insts to Execute list:\n"); 1350 1351 int num = 0; 1352 int valid_num = 0; 1353 ListIt inst_list_it = instsToExecute.begin(); 1354 1355 while (inst_list_it != instsToExecute.end()) 1356 { 1357 cprintf("Instruction:%i\n", 1358 num); 1359 if (!(*inst_list_it)->isSquashed()) { 1360 if (!(*inst_list_it)->isIssued()) { 1361 ++valid_num; 1362 cprintf("Count:%i\n", valid_num); 1363 } else if ((*inst_list_it)->isMemRef() && 1364 !(*inst_list_it)->memOpDone) { 1365 // Loads that have not been marked as executed 1366 // still count towards the total instructions. 1367 ++valid_num; 1368 cprintf("Count:%i\n", valid_num); 1369 } 1370 } 1371 1372 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1373 "Issued:%i\nSquashed:%i\n", 1374 (*inst_list_it)->readPC(), 1375 (*inst_list_it)->seqNum, 1376 (*inst_list_it)->threadNumber, 1377 (*inst_list_it)->isIssued(), 1378 (*inst_list_it)->isSquashed()); 1379 1380 if ((*inst_list_it)->isMemRef()) { 1381 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1382 } 1383 1384 cprintf("\n"); 1385 1386 inst_list_it++; 1387 ++num; 1388 } 1389} 1390