inst_queue_impl.hh revision 2820
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 */ 30 31#include <limits> 32#include <vector> 33 34#include "sim/root.hh" 35 36#include "cpu/o3/fu_pool.hh" 37#include "cpu/o3/inst_queue.hh" 38 39using namespace std; 40 41template <class Impl> 42InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 43 int fu_idx, 44 InstructionQueue<Impl> *iq_ptr) 45 : Event(&mainEventQueue, Stat_Event_Pri), 46 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false) 47{ 48 this->setFlags(Event::AutoDelete); 49} 50 51template <class Impl> 52void 53InstructionQueue<Impl>::FUCompletion::process() 54{ 55 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1); 56 inst = NULL; 57} 58 59 60template <class Impl> 61const char * 62InstructionQueue<Impl>::FUCompletion::description() 63{ 64 return "Functional unit completion event"; 65} 66 67template <class Impl> 68InstructionQueue<Impl>::InstructionQueue(Params *params) 69 : fuPool(params->fuPool), 70 numEntries(params->numIQEntries), 71 totalWidth(params->issueWidth), 72 numPhysIntRegs(params->numPhysIntRegs), 73 numPhysFloatRegs(params->numPhysFloatRegs), 74 commitToIEWDelay(params->commitToIEWDelay) 75{ 76 assert(fuPool); 77 78 switchedOut = false; 79 80 numThreads = params->numberOfThreads; 81 82 // Set the number of physical registers as the number of int + float 83 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 84 85 DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 86 87 //Create an entry for each physical register within the 88 //dependency graph. 89 dependGraph.resize(numPhysRegs); 90 91 // Resize the register scoreboard. 92 regScoreboard.resize(numPhysRegs); 93 94 //Initialize Mem Dependence Units 95 for (int i = 0; i < numThreads; i++) { 96 memDepUnit[i].init(params,i); 97 memDepUnit[i].setIQ(this); 98 } 99 100 resetState(); 101 102 string policy = params->smtIQPolicy; 103 104 //Convert string to lowercase 105 std::transform(policy.begin(), policy.end(), policy.begin(), 106 (int(*)(int)) tolower); 107 108 //Figure out resource sharing policy 109 if (policy == "dynamic") { 110 iqPolicy = Dynamic; 111 112 //Set Max Entries to Total ROB Capacity 113 for (int i = 0; i < numThreads; i++) { 114 maxEntries[i] = numEntries; 115 } 116 117 } else if (policy == "partitioned") { 118 iqPolicy = Partitioned; 119 120 //@todo:make work if part_amt doesnt divide evenly. 121 int part_amt = numEntries / numThreads; 122 123 //Divide ROB up evenly 124 for (int i = 0; i < numThreads; i++) { 125 maxEntries[i] = part_amt; 126 } 127 128 DPRINTF(Fetch, "IQ sharing policy set to Partitioned:" 129 "%i entries per thread.\n",part_amt); 130 131 } else if (policy == "threshold") { 132 iqPolicy = Threshold; 133 134 double threshold = (double)params->smtIQThreshold / 100; 135 136 int thresholdIQ = (int)((double)threshold * numEntries); 137 138 //Divide up by threshold amount 139 for (int i = 0; i < numThreads; i++) { 140 maxEntries[i] = thresholdIQ; 141 } 142 143 DPRINTF(Fetch, "IQ sharing policy set to Threshold:" 144 "%i entries per thread.\n",thresholdIQ); 145 } else { 146 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 147 "Partitioned, Threshold}"); 148 } 149} 150 151template <class Impl> 152InstructionQueue<Impl>::~InstructionQueue() 153{ 154 dependGraph.reset(); 155#ifdef DEBUG 156 cprintf("Nodes traversed: %i, removed: %i\n", 157 dependGraph.nodesTraversed, dependGraph.nodesRemoved); 158#endif 159} 160 161template <class Impl> 162std::string 163InstructionQueue<Impl>::name() const 164{ 165 return cpu->name() + ".iq"; 166} 167 168template <class Impl> 169void 170InstructionQueue<Impl>::regStats() 171{ 172 using namespace Stats; 173 iqInstsAdded 174 .name(name() + ".iqInstsAdded") 175 .desc("Number of instructions added to the IQ (excludes non-spec)") 176 .prereq(iqInstsAdded); 177 178 iqNonSpecInstsAdded 179 .name(name() + ".iqNonSpecInstsAdded") 180 .desc("Number of non-speculative instructions added to the IQ") 181 .prereq(iqNonSpecInstsAdded); 182 183 iqInstsIssued 184 .name(name() + ".iqInstsIssued") 185 .desc("Number of instructions issued") 186 .prereq(iqInstsIssued); 187 188 iqIntInstsIssued 189 .name(name() + ".iqIntInstsIssued") 190 .desc("Number of integer instructions issued") 191 .prereq(iqIntInstsIssued); 192 193 iqFloatInstsIssued 194 .name(name() + ".iqFloatInstsIssued") 195 .desc("Number of float instructions issued") 196 .prereq(iqFloatInstsIssued); 197 198 iqBranchInstsIssued 199 .name(name() + ".iqBranchInstsIssued") 200 .desc("Number of branch instructions issued") 201 .prereq(iqBranchInstsIssued); 202 203 iqMemInstsIssued 204 .name(name() + ".iqMemInstsIssued") 205 .desc("Number of memory instructions issued") 206 .prereq(iqMemInstsIssued); 207 208 iqMiscInstsIssued 209 .name(name() + ".iqMiscInstsIssued") 210 .desc("Number of miscellaneous instructions issued") 211 .prereq(iqMiscInstsIssued); 212 213 iqSquashedInstsIssued 214 .name(name() + ".iqSquashedInstsIssued") 215 .desc("Number of squashed instructions issued") 216 .prereq(iqSquashedInstsIssued); 217 218 iqSquashedInstsExamined 219 .name(name() + ".iqSquashedInstsExamined") 220 .desc("Number of squashed instructions iterated over during squash;" 221 " mainly for profiling") 222 .prereq(iqSquashedInstsExamined); 223 224 iqSquashedOperandsExamined 225 .name(name() + ".iqSquashedOperandsExamined") 226 .desc("Number of squashed operands that are examined and possibly " 227 "removed from graph") 228 .prereq(iqSquashedOperandsExamined); 229 230 iqSquashedNonSpecRemoved 231 .name(name() + ".iqSquashedNonSpecRemoved") 232 .desc("Number of squashed non-spec instructions that were removed") 233 .prereq(iqSquashedNonSpecRemoved); 234 235 queueResDist 236 .init(Num_OpClasses, 0, 99, 2) 237 .name(name() + ".IQ:residence:") 238 .desc("cycles from dispatch to issue") 239 .flags(total | pdf | cdf ) 240 ; 241 for (int i = 0; i < Num_OpClasses; ++i) { 242 queueResDist.subname(i, opClassStrings[i]); 243 } 244 numIssuedDist 245 .init(0,totalWidth,1) 246 .name(name() + ".ISSUE:issued_per_cycle") 247 .desc("Number of insts issued each cycle") 248 .flags(pdf) 249 ; 250/* 251 dist_unissued 252 .init(Num_OpClasses+2) 253 .name(name() + ".ISSUE:unissued_cause") 254 .desc("Reason ready instruction not issued") 255 .flags(pdf | dist) 256 ; 257 for (int i=0; i < (Num_OpClasses + 2); ++i) { 258 dist_unissued.subname(i, unissued_names[i]); 259 } 260*/ 261 statIssuedInstType 262 .init(numThreads,Num_OpClasses) 263 .name(name() + ".ISSUE:FU_type") 264 .desc("Type of FU issued") 265 .flags(total | pdf | dist) 266 ; 267 statIssuedInstType.ysubnames(opClassStrings); 268 269 // 270 // How long did instructions for a particular FU type wait prior to issue 271 // 272 273 issueDelayDist 274 .init(Num_OpClasses,0,99,2) 275 .name(name() + ".ISSUE:") 276 .desc("cycles from operands ready to issue") 277 .flags(pdf | cdf) 278 ; 279 280 for (int i=0; i<Num_OpClasses; ++i) { 281 stringstream subname; 282 subname << opClassStrings[i] << "_delay"; 283 issueDelayDist.subname(i, subname.str()); 284 } 285 286 issueRate 287 .name(name() + ".ISSUE:rate") 288 .desc("Inst issue rate") 289 .flags(total) 290 ; 291 issueRate = iqInstsIssued / cpu->numCycles; 292 293 statFuBusy 294 .init(Num_OpClasses) 295 .name(name() + ".ISSUE:fu_full") 296 .desc("attempts to use FU when none available") 297 .flags(pdf | dist) 298 ; 299 for (int i=0; i < Num_OpClasses; ++i) { 300 statFuBusy.subname(i, opClassStrings[i]); 301 } 302 303 fuBusy 304 .init(numThreads) 305 .name(name() + ".ISSUE:fu_busy_cnt") 306 .desc("FU busy when requested") 307 .flags(total) 308 ; 309 310 fuBusyRate 311 .name(name() + ".ISSUE:fu_busy_rate") 312 .desc("FU busy rate (busy events/executed inst)") 313 .flags(total) 314 ; 315 fuBusyRate = fuBusy / iqInstsIssued; 316 317 for ( int i=0; i < numThreads; i++) { 318 // Tell mem dependence unit to reg stats as well. 319 memDepUnit[i].regStats(); 320 } 321} 322 323template <class Impl> 324void 325InstructionQueue<Impl>::resetState() 326{ 327 //Initialize thread IQ counts 328 for (int i = 0; i <numThreads; i++) { 329 count[i] = 0; 330 instList[i].clear(); 331 } 332 333 // Initialize the number of free IQ entries. 334 freeEntries = numEntries; 335 336 // Note that in actuality, the registers corresponding to the logical 337 // registers start off as ready. However this doesn't matter for the 338 // IQ as the instruction should have been correctly told if those 339 // registers are ready in rename. Thus it can all be initialized as 340 // unready. 341 for (int i = 0; i < numPhysRegs; ++i) { 342 regScoreboard[i] = false; 343 } 344 345 for (int i = 0; i < numThreads; ++i) { 346 squashedSeqNum[i] = 0; 347 } 348 349 for (int i = 0; i < Num_OpClasses; ++i) { 350 while (!readyInsts[i].empty()) 351 readyInsts[i].pop(); 352 queueOnList[i] = false; 353 readyIt[i] = listOrder.end(); 354 } 355 nonSpecInsts.clear(); 356 listOrder.clear(); 357} 358 359template <class Impl> 360void 361InstructionQueue<Impl>::setActiveThreads(list<unsigned> *at_ptr) 362{ 363 DPRINTF(IQ, "Setting active threads list pointer.\n"); 364 activeThreads = at_ptr; 365} 366 367template <class Impl> 368void 369InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 370{ 371 DPRINTF(IQ, "Set the issue to execute queue.\n"); 372 issueToExecuteQueue = i2e_ptr; 373} 374 375template <class Impl> 376void 377InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 378{ 379 DPRINTF(IQ, "Set the time buffer.\n"); 380 timeBuffer = tb_ptr; 381 382 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 383} 384 385template <class Impl> 386void 387InstructionQueue<Impl>::switchOut() 388{ 389 resetState(); 390 dependGraph.reset(); 391 switchedOut = true; 392 for (int i = 0; i < numThreads; ++i) { 393 memDepUnit[i].switchOut(); 394 } 395} 396 397template <class Impl> 398void 399InstructionQueue<Impl>::takeOverFrom() 400{ 401 switchedOut = false; 402} 403 404template <class Impl> 405int 406InstructionQueue<Impl>::entryAmount(int num_threads) 407{ 408 if (iqPolicy == Partitioned) { 409 return numEntries / num_threads; 410 } else { 411 return 0; 412 } 413} 414 415 416template <class Impl> 417void 418InstructionQueue<Impl>::resetEntries() 419{ 420 if (iqPolicy != Dynamic || numThreads > 1) { 421 int active_threads = (*activeThreads).size(); 422 423 list<unsigned>::iterator threads = (*activeThreads).begin(); 424 list<unsigned>::iterator list_end = (*activeThreads).end(); 425 426 while (threads != list_end) { 427 if (iqPolicy == Partitioned) { 428 maxEntries[*threads++] = numEntries / active_threads; 429 } else if(iqPolicy == Threshold && active_threads == 1) { 430 maxEntries[*threads++] = numEntries; 431 } 432 } 433 } 434} 435 436template <class Impl> 437unsigned 438InstructionQueue<Impl>::numFreeEntries() 439{ 440 return freeEntries; 441} 442 443template <class Impl> 444unsigned 445InstructionQueue<Impl>::numFreeEntries(unsigned tid) 446{ 447 return maxEntries[tid] - count[tid]; 448} 449 450// Might want to do something more complex if it knows how many instructions 451// will be issued this cycle. 452template <class Impl> 453bool 454InstructionQueue<Impl>::isFull() 455{ 456 if (freeEntries == 0) { 457 return(true); 458 } else { 459 return(false); 460 } 461} 462 463template <class Impl> 464bool 465InstructionQueue<Impl>::isFull(unsigned tid) 466{ 467 if (numFreeEntries(tid) == 0) { 468 return(true); 469 } else { 470 return(false); 471 } 472} 473 474template <class Impl> 475bool 476InstructionQueue<Impl>::hasReadyInsts() 477{ 478 if (!listOrder.empty()) { 479 return true; 480 } 481 482 for (int i = 0; i < Num_OpClasses; ++i) { 483 if (!readyInsts[i].empty()) { 484 return true; 485 } 486 } 487 488 return false; 489} 490 491template <class Impl> 492void 493InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 494{ 495 // Make sure the instruction is valid 496 assert(new_inst); 497 498 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %#x to the IQ.\n", 499 new_inst->seqNum, new_inst->readPC()); 500 501 assert(freeEntries != 0); 502 503 instList[new_inst->threadNumber].push_back(new_inst); 504 505 --freeEntries; 506 507 new_inst->setInIQ(); 508 509 // Look through its source registers (physical regs), and mark any 510 // dependencies. 511 addToDependents(new_inst); 512 513 // Have this instruction set itself as the producer of its destination 514 // register(s). 515 addToProducers(new_inst); 516 517 if (new_inst->isMemRef()) { 518 memDepUnit[new_inst->threadNumber].insert(new_inst); 519 } else { 520 addIfReady(new_inst); 521 } 522 523 ++iqInstsAdded; 524 525 count[new_inst->threadNumber]++; 526 527 assert(freeEntries == (numEntries - countInsts())); 528} 529 530template <class Impl> 531void 532InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 533{ 534 // @todo: Clean up this code; can do it by setting inst as unable 535 // to issue, then calling normal insert on the inst. 536 537 assert(new_inst); 538 539 nonSpecInsts[new_inst->seqNum] = new_inst; 540 541 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %#x " 542 "to the IQ.\n", 543 new_inst->seqNum, new_inst->readPC()); 544 545 assert(freeEntries != 0); 546 547 instList[new_inst->threadNumber].push_back(new_inst); 548 549 --freeEntries; 550 551 new_inst->setInIQ(); 552 553 // Have this instruction set itself as the producer of its destination 554 // register(s). 555 addToProducers(new_inst); 556 557 // If it's a memory instruction, add it to the memory dependency 558 // unit. 559 if (new_inst->isMemRef()) { 560 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 561 } 562 563 ++iqNonSpecInstsAdded; 564 565 count[new_inst->threadNumber]++; 566 567 assert(freeEntries == (numEntries - countInsts())); 568} 569 570template <class Impl> 571void 572InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 573{ 574 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 575 576 insertNonSpec(barr_inst); 577} 578 579template <class Impl> 580typename Impl::DynInstPtr 581InstructionQueue<Impl>::getInstToExecute() 582{ 583 assert(!instsToExecute.empty()); 584 DynInstPtr inst = instsToExecute.front(); 585 instsToExecute.pop_front(); 586 return inst; 587} 588 589template <class Impl> 590void 591InstructionQueue<Impl>::addToOrderList(OpClass op_class) 592{ 593 assert(!readyInsts[op_class].empty()); 594 595 ListOrderEntry queue_entry; 596 597 queue_entry.queueType = op_class; 598 599 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 600 601 ListOrderIt list_it = listOrder.begin(); 602 ListOrderIt list_end_it = listOrder.end(); 603 604 while (list_it != list_end_it) { 605 if ((*list_it).oldestInst > queue_entry.oldestInst) { 606 break; 607 } 608 609 list_it++; 610 } 611 612 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 613 queueOnList[op_class] = true; 614} 615 616template <class Impl> 617void 618InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 619{ 620 // Get iterator of next item on the list 621 // Delete the original iterator 622 // Determine if the next item is either the end of the list or younger 623 // than the new instruction. If so, then add in a new iterator right here. 624 // If not, then move along. 625 ListOrderEntry queue_entry; 626 OpClass op_class = (*list_order_it).queueType; 627 ListOrderIt next_it = list_order_it; 628 629 ++next_it; 630 631 queue_entry.queueType = op_class; 632 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 633 634 while (next_it != listOrder.end() && 635 (*next_it).oldestInst < queue_entry.oldestInst) { 636 ++next_it; 637 } 638 639 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 640} 641 642template <class Impl> 643void 644InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 645{ 646 // The CPU could have been sleeping until this op completed (*extremely* 647 // long latency op). Wake it if it was. This may be overkill. 648 if (isSwitchedOut()) { 649 return; 650 } 651 652 iewStage->wakeCPU(); 653 654 if (fu_idx > -1) 655 fuPool->freeUnitNextCycle(fu_idx); 656 657 // @todo: Ensure that these FU Completions happen at the beginning 658 // of a cycle, otherwise they could add too many instructions to 659 // the queue. 660 issueToExecuteQueue->access(0)->size++; 661 instsToExecute.push_back(inst); 662} 663 664// @todo: Figure out a better way to remove the squashed items from the 665// lists. Checking the top item of each list to see if it's squashed 666// wastes time and forces jumps. 667template <class Impl> 668void 669InstructionQueue<Impl>::scheduleReadyInsts() 670{ 671 DPRINTF(IQ, "Attempting to schedule ready instructions from " 672 "the IQ.\n"); 673 674 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 675 676 // Have iterator to head of the list 677 // While I haven't exceeded bandwidth or reached the end of the list, 678 // Try to get a FU that can do what this op needs. 679 // If successful, change the oldestInst to the new top of the list, put 680 // the queue in the proper place in the list. 681 // Increment the iterator. 682 // This will avoid trying to schedule a certain op class if there are no 683 // FUs that handle it. 684 ListOrderIt order_it = listOrder.begin(); 685 ListOrderIt order_end_it = listOrder.end(); 686 int total_issued = 0; 687 688 while (total_issued < totalWidth && 689 iewStage->canIssue() && 690 order_it != order_end_it) { 691 OpClass op_class = (*order_it).queueType; 692 693 assert(!readyInsts[op_class].empty()); 694 695 DynInstPtr issuing_inst = readyInsts[op_class].top(); 696 697 assert(issuing_inst->seqNum == (*order_it).oldestInst); 698 699 if (issuing_inst->isSquashed()) { 700 readyInsts[op_class].pop(); 701 702 if (!readyInsts[op_class].empty()) { 703 moveToYoungerInst(order_it); 704 } else { 705 readyIt[op_class] = listOrder.end(); 706 queueOnList[op_class] = false; 707 } 708 709 listOrder.erase(order_it++); 710 711 ++iqSquashedInstsIssued; 712 713 continue; 714 } 715 716 int idx = -2; 717 int op_latency = 1; 718 int tid = issuing_inst->threadNumber; 719 720 if (op_class != No_OpClass) { 721 idx = fuPool->getUnit(op_class); 722 723 if (idx > -1) { 724 op_latency = fuPool->getOpLatency(op_class); 725 } 726 } 727 728 // If we have an instruction that doesn't require a FU, or a 729 // valid FU, then schedule for execution. 730 if (idx == -2 || idx != -1) { 731 if (op_latency == 1) { 732 i2e_info->size++; 733 instsToExecute.push_back(issuing_inst); 734 735 // Add the FU onto the list of FU's to be freed next 736 // cycle if we used one. 737 if (idx >= 0) 738 fuPool->freeUnitNextCycle(idx); 739 } else { 740 int issue_latency = fuPool->getIssueLatency(op_class); 741 // Generate completion event for the FU 742 FUCompletion *execution = new FUCompletion(issuing_inst, 743 idx, this); 744 745 execution->schedule(curTick + cpu->cycles(issue_latency - 1)); 746 747 // @todo: Enforce that issue_latency == 1 or op_latency 748 if (issue_latency > 1) { 749 // If FU isn't pipelined, then it must be freed 750 // upon the execution completing. 751 execution->setFreeFU(); 752 } else { 753 // Add the FU onto the list of FU's to be freed next cycle. 754 fuPool->freeUnitNextCycle(idx); 755 } 756 } 757 758 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 759 "[sn:%lli]\n", 760 tid, issuing_inst->readPC(), 761 issuing_inst->seqNum); 762 763 readyInsts[op_class].pop(); 764 765 if (!readyInsts[op_class].empty()) { 766 moveToYoungerInst(order_it); 767 } else { 768 readyIt[op_class] = listOrder.end(); 769 queueOnList[op_class] = false; 770 } 771 772 issuing_inst->setIssued(); 773 ++total_issued; 774 775 if (!issuing_inst->isMemRef()) { 776 // Memory instructions can not be freed from the IQ until they 777 // complete. 778 ++freeEntries; 779 count[tid]--; 780 issuing_inst->clearInIQ(); 781 } else { 782 memDepUnit[tid].issue(issuing_inst); 783 } 784 785 listOrder.erase(order_it++); 786 statIssuedInstType[tid][op_class]++; 787 iewStage->incrWb(issuing_inst->seqNum); 788 } else { 789 statFuBusy[op_class]++; 790 fuBusy[tid]++; 791 ++order_it; 792 } 793 } 794 795 numIssuedDist.sample(total_issued); 796 iqInstsIssued+= total_issued; 797 798 // If we issued any instructions, tell the CPU we had activity. 799 if (total_issued) { 800 cpu->activityThisCycle(); 801 } else { 802 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 803 } 804} 805 806template <class Impl> 807void 808InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 809{ 810 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 811 "to execute.\n", inst); 812 813 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 814 815 assert(inst_it != nonSpecInsts.end()); 816 817 unsigned tid = (*inst_it).second->threadNumber; 818 819 (*inst_it).second->setCanIssue(); 820 821 if (!(*inst_it).second->isMemRef()) { 822 addIfReady((*inst_it).second); 823 } else { 824 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 825 } 826 827 (*inst_it).second = NULL; 828 829 nonSpecInsts.erase(inst_it); 830} 831 832template <class Impl> 833void 834InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 835{ 836 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 837 tid,inst); 838 839 ListIt iq_it = instList[tid].begin(); 840 841 while (iq_it != instList[tid].end() && 842 (*iq_it)->seqNum <= inst) { 843 ++iq_it; 844 instList[tid].pop_front(); 845 } 846 847 assert(freeEntries == (numEntries - countInsts())); 848} 849 850template <class Impl> 851int 852InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 853{ 854 int dependents = 0; 855 856 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 857 858 assert(!completed_inst->isSquashed()); 859 860 // Tell the memory dependence unit to wake any dependents on this 861 // instruction if it is a memory instruction. Also complete the memory 862 // instruction at this point since we know it executed without issues. 863 // @todo: Might want to rename "completeMemInst" to something that 864 // indicates that it won't need to be replayed, and call this 865 // earlier. Might not be a big deal. 866 if (completed_inst->isMemRef()) { 867 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 868 completeMemInst(completed_inst); 869 } else if (completed_inst->isMemBarrier() || 870 completed_inst->isWriteBarrier()) { 871 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 872 } 873 874 for (int dest_reg_idx = 0; 875 dest_reg_idx < completed_inst->numDestRegs(); 876 dest_reg_idx++) 877 { 878 PhysRegIndex dest_reg = 879 completed_inst->renamedDestRegIdx(dest_reg_idx); 880 881 // Special case of uniq or control registers. They are not 882 // handled by the IQ and thus have no dependency graph entry. 883 // @todo Figure out a cleaner way to handle this. 884 if (dest_reg >= numPhysRegs) { 885 continue; 886 } 887 888 DPRINTF(IQ, "Waking any dependents on register %i.\n", 889 (int) dest_reg); 890 891 //Go through the dependency chain, marking the registers as 892 //ready within the waiting instructions. 893 DynInstPtr dep_inst = dependGraph.pop(dest_reg); 894 895 while (dep_inst) { 896 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 897 dep_inst->readPC()); 898 899 // Might want to give more information to the instruction 900 // so that it knows which of its source registers is 901 // ready. However that would mean that the dependency 902 // graph entries would need to hold the src_reg_idx. 903 dep_inst->markSrcRegReady(); 904 905 addIfReady(dep_inst); 906 907 dep_inst = dependGraph.pop(dest_reg); 908 909 ++dependents; 910 } 911 912 // Reset the head node now that all of its dependents have 913 // been woken up. 914 assert(dependGraph.empty(dest_reg)); 915 dependGraph.clearInst(dest_reg); 916 917 // Mark the scoreboard as having that register ready. 918 regScoreboard[dest_reg] = true; 919 } 920 return dependents; 921} 922 923template <class Impl> 924void 925InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 926{ 927 OpClass op_class = ready_inst->opClass(); 928 929 readyInsts[op_class].push(ready_inst); 930 931 // Will need to reorder the list if either a queue is not on the list, 932 // or it has an older instruction than last time. 933 if (!queueOnList[op_class]) { 934 addToOrderList(op_class); 935 } else if (readyInsts[op_class].top()->seqNum < 936 (*readyIt[op_class]).oldestInst) { 937 listOrder.erase(readyIt[op_class]); 938 addToOrderList(op_class); 939 } 940 941 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 942 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 943 ready_inst->readPC(), op_class, ready_inst->seqNum); 944} 945 946template <class Impl> 947void 948InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 949{ 950 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 951} 952 953template <class Impl> 954void 955InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 956{ 957 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 958} 959 960template <class Impl> 961void 962InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 963{ 964 int tid = completed_inst->threadNumber; 965 966 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 967 completed_inst->readPC(), completed_inst->seqNum); 968 969 ++freeEntries; 970 971 completed_inst->memOpDone = true; 972 973 memDepUnit[tid].completed(completed_inst); 974 975 count[tid]--; 976} 977 978template <class Impl> 979void 980InstructionQueue<Impl>::violation(DynInstPtr &store, 981 DynInstPtr &faulting_load) 982{ 983 memDepUnit[store->threadNumber].violation(store, faulting_load); 984} 985 986template <class Impl> 987void 988InstructionQueue<Impl>::squash(unsigned tid) 989{ 990 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 991 "the IQ.\n", tid); 992 993 // Read instruction sequence number of last instruction out of the 994 // time buffer. 995 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 996 997 // Call doSquash if there are insts in the IQ 998 if (count[tid] > 0) { 999 doSquash(tid); 1000 } 1001 1002 // Also tell the memory dependence unit to squash. 1003 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1004} 1005 1006template <class Impl> 1007void 1008InstructionQueue<Impl>::doSquash(unsigned tid) 1009{ 1010 // Start at the tail. 1011 ListIt squash_it = instList[tid].end(); 1012 --squash_it; 1013 1014 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1015 tid, squashedSeqNum[tid]); 1016 1017 // Squash any instructions younger than the squashed sequence number 1018 // given. 1019 while (squash_it != instList[tid].end() && 1020 (*squash_it)->seqNum > squashedSeqNum[tid]) { 1021 1022 DynInstPtr squashed_inst = (*squash_it); 1023 1024 // Only handle the instruction if it actually is in the IQ and 1025 // hasn't already been squashed in the IQ. 1026 if (squashed_inst->threadNumber != tid || 1027 squashed_inst->isSquashedInIQ()) { 1028 --squash_it; 1029 continue; 1030 } 1031 1032 if (!squashed_inst->isIssued() || 1033 (squashed_inst->isMemRef() && 1034 !squashed_inst->memOpDone)) { 1035 1036 // Remove the instruction from the dependency list. 1037 if (!squashed_inst->isNonSpeculative() && 1038 !squashed_inst->isStoreConditional() && 1039 !squashed_inst->isMemBarrier() && 1040 !squashed_inst->isWriteBarrier()) { 1041 1042 for (int src_reg_idx = 0; 1043 src_reg_idx < squashed_inst->numSrcRegs(); 1044 src_reg_idx++) 1045 { 1046 PhysRegIndex src_reg = 1047 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1048 1049 // Only remove it from the dependency graph if it 1050 // was placed there in the first place. 1051 1052 // Instead of doing a linked list traversal, we 1053 // can just remove these squashed instructions 1054 // either at issue time, or when the register is 1055 // overwritten. The only downside to this is it 1056 // leaves more room for error. 1057 1058 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1059 src_reg < numPhysRegs) { 1060 dependGraph.remove(src_reg, squashed_inst); 1061 } 1062 1063 1064 ++iqSquashedOperandsExamined; 1065 } 1066 } else { 1067 NonSpecMapIt ns_inst_it = 1068 nonSpecInsts.find(squashed_inst->seqNum); 1069 assert(ns_inst_it != nonSpecInsts.end()); 1070 1071 (*ns_inst_it).second = NULL; 1072 1073 nonSpecInsts.erase(ns_inst_it); 1074 1075 ++iqSquashedNonSpecRemoved; 1076 } 1077 1078 // Might want to also clear out the head of the dependency graph. 1079 1080 // Mark it as squashed within the IQ. 1081 squashed_inst->setSquashedInIQ(); 1082 1083 // @todo: Remove this hack where several statuses are set so the 1084 // inst will flow through the rest of the pipeline. 1085 squashed_inst->setIssued(); 1086 squashed_inst->setCanCommit(); 1087 squashed_inst->clearInIQ(); 1088 1089 //Update Thread IQ Count 1090 count[squashed_inst->threadNumber]--; 1091 1092 ++freeEntries; 1093 1094 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1095 "squashed.\n", 1096 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1097 } 1098 1099 instList[tid].erase(squash_it--); 1100 ++iqSquashedInstsExamined; 1101 } 1102} 1103 1104template <class Impl> 1105bool 1106InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1107{ 1108 // Loop through the instruction's source registers, adding 1109 // them to the dependency list if they are not ready. 1110 int8_t total_src_regs = new_inst->numSrcRegs(); 1111 bool return_val = false; 1112 1113 for (int src_reg_idx = 0; 1114 src_reg_idx < total_src_regs; 1115 src_reg_idx++) 1116 { 1117 // Only add it to the dependency graph if it's not ready. 1118 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1119 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1120 1121 // Check the IQ's scoreboard to make sure the register 1122 // hasn't become ready while the instruction was in flight 1123 // between stages. Only if it really isn't ready should 1124 // it be added to the dependency graph. 1125 if (src_reg >= numPhysRegs) { 1126 continue; 1127 } else if (regScoreboard[src_reg] == false) { 1128 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1129 "is being added to the dependency chain.\n", 1130 new_inst->readPC(), src_reg); 1131 1132 dependGraph.insert(src_reg, new_inst); 1133 1134 // Change the return value to indicate that something 1135 // was added to the dependency graph. 1136 return_val = true; 1137 } else { 1138 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1139 "became ready before it reached the IQ.\n", 1140 new_inst->readPC(), src_reg); 1141 // Mark a register ready within the instruction. 1142 new_inst->markSrcRegReady(src_reg_idx); 1143 } 1144 } 1145 } 1146 1147 return return_val; 1148} 1149 1150template <class Impl> 1151void 1152InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst) 1153{ 1154 // Nothing really needs to be marked when an instruction becomes 1155 // the producer of a register's value, but for convenience a ptr 1156 // to the producing instruction will be placed in the head node of 1157 // the dependency links. 1158 int8_t total_dest_regs = new_inst->numDestRegs(); 1159 1160 for (int dest_reg_idx = 0; 1161 dest_reg_idx < total_dest_regs; 1162 dest_reg_idx++) 1163 { 1164 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1165 1166 // Instructions that use the misc regs will have a reg number 1167 // higher than the normal physical registers. In this case these 1168 // registers are not renamed, and there is no need to track 1169 // dependencies as these instructions must be executed at commit. 1170 if (dest_reg >= numPhysRegs) { 1171 continue; 1172 } 1173 1174 if (!dependGraph.empty(dest_reg)) { 1175 dependGraph.dump(); 1176 panic("Dependency graph %i not empty!", dest_reg); 1177 } 1178 1179 dependGraph.setInst(dest_reg, new_inst); 1180 1181 // Mark the scoreboard to say it's not yet ready. 1182 regScoreboard[dest_reg] = false; 1183 } 1184} 1185 1186template <class Impl> 1187void 1188InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1189{ 1190 // If the instruction now has all of its source registers 1191 // available, then add it to the list of ready instructions. 1192 if (inst->readyToIssue()) { 1193 1194 //Add the instruction to the proper ready list. 1195 if (inst->isMemRef()) { 1196 1197 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1198 1199 // Message to the mem dependence unit that this instruction has 1200 // its registers ready. 1201 memDepUnit[inst->threadNumber].regsReady(inst); 1202 1203 return; 1204 } 1205 1206 OpClass op_class = inst->opClass(); 1207 1208 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1209 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1210 inst->readPC(), op_class, inst->seqNum); 1211 1212 readyInsts[op_class].push(inst); 1213 1214 // Will need to reorder the list if either a queue is not on the list, 1215 // or it has an older instruction than last time. 1216 if (!queueOnList[op_class]) { 1217 addToOrderList(op_class); 1218 } else if (readyInsts[op_class].top()->seqNum < 1219 (*readyIt[op_class]).oldestInst) { 1220 listOrder.erase(readyIt[op_class]); 1221 addToOrderList(op_class); 1222 } 1223 } 1224} 1225 1226template <class Impl> 1227int 1228InstructionQueue<Impl>::countInsts() 1229{ 1230#if 0 1231 //ksewell:This works but definitely could use a cleaner write 1232 //with a more intuitive way of counting. Right now it's 1233 //just brute force .... 1234 // Change the #if if you want to use this method. 1235 int total_insts = 0; 1236 1237 for (int i = 0; i < numThreads; ++i) { 1238 ListIt count_it = instList[i].begin(); 1239 1240 while (count_it != instList[i].end()) { 1241 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1242 if (!(*count_it)->isIssued()) { 1243 ++total_insts; 1244 } else if ((*count_it)->isMemRef() && 1245 !(*count_it)->memOpDone) { 1246 // Loads that have not been marked as executed still count 1247 // towards the total instructions. 1248 ++total_insts; 1249 } 1250 } 1251 1252 ++count_it; 1253 } 1254 } 1255 1256 return total_insts; 1257#else 1258 return numEntries - freeEntries; 1259#endif 1260} 1261 1262template <class Impl> 1263void 1264InstructionQueue<Impl>::dumpLists() 1265{ 1266 for (int i = 0; i < Num_OpClasses; ++i) { 1267 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1268 1269 cprintf("\n"); 1270 } 1271 1272 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1273 1274 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1275 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1276 1277 cprintf("Non speculative list: "); 1278 1279 while (non_spec_it != non_spec_end_it) { 1280 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1281 (*non_spec_it).second->seqNum); 1282 ++non_spec_it; 1283 } 1284 1285 cprintf("\n"); 1286 1287 ListOrderIt list_order_it = listOrder.begin(); 1288 ListOrderIt list_order_end_it = listOrder.end(); 1289 int i = 1; 1290 1291 cprintf("List order: "); 1292 1293 while (list_order_it != list_order_end_it) { 1294 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1295 (*list_order_it).oldestInst); 1296 1297 ++list_order_it; 1298 ++i; 1299 } 1300 1301 cprintf("\n"); 1302} 1303 1304 1305template <class Impl> 1306void 1307InstructionQueue<Impl>::dumpInsts() 1308{ 1309 for (int i = 0; i < numThreads; ++i) { 1310 int num = 0; 1311 int valid_num = 0; 1312 ListIt inst_list_it = instList[i].begin(); 1313 1314 while (inst_list_it != instList[i].end()) 1315 { 1316 cprintf("Instruction:%i\n", 1317 num); 1318 if (!(*inst_list_it)->isSquashed()) { 1319 if (!(*inst_list_it)->isIssued()) { 1320 ++valid_num; 1321 cprintf("Count:%i\n", valid_num); 1322 } else if ((*inst_list_it)->isMemRef() && 1323 !(*inst_list_it)->memOpDone) { 1324 // Loads that have not been marked as executed 1325 // still count towards the total instructions. 1326 ++valid_num; 1327 cprintf("Count:%i\n", valid_num); 1328 } 1329 } 1330 1331 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1332 "Issued:%i\nSquashed:%i\n", 1333 (*inst_list_it)->readPC(), 1334 (*inst_list_it)->seqNum, 1335 (*inst_list_it)->threadNumber, 1336 (*inst_list_it)->isIssued(), 1337 (*inst_list_it)->isSquashed()); 1338 1339 if ((*inst_list_it)->isMemRef()) { 1340 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1341 } 1342 1343 cprintf("\n"); 1344 1345 inst_list_it++; 1346 ++num; 1347 } 1348 } 1349 1350 cprintf("Insts to Execute list:\n"); 1351 1352 int num = 0; 1353 int valid_num = 0; 1354 ListIt inst_list_it = instsToExecute.begin(); 1355 1356 while (inst_list_it != instsToExecute.end()) 1357 { 1358 cprintf("Instruction:%i\n", 1359 num); 1360 if (!(*inst_list_it)->isSquashed()) { 1361 if (!(*inst_list_it)->isIssued()) { 1362 ++valid_num; 1363 cprintf("Count:%i\n", valid_num); 1364 } else if ((*inst_list_it)->isMemRef() && 1365 !(*inst_list_it)->memOpDone) { 1366 // Loads that have not been marked as executed 1367 // still count towards the total instructions. 1368 ++valid_num; 1369 cprintf("Count:%i\n", valid_num); 1370 } 1371 } 1372 1373 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1374 "Issued:%i\nSquashed:%i\n", 1375 (*inst_list_it)->readPC(), 1376 (*inst_list_it)->seqNum, 1377 (*inst_list_it)->threadNumber, 1378 (*inst_list_it)->isIssued(), 1379 (*inst_list_it)->isSquashed()); 1380 1381 if ((*inst_list_it)->isMemRef()) { 1382 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1383 } 1384 1385 cprintf("\n"); 1386 1387 inst_list_it++; 1388 ++num; 1389 } 1390} 1391