inst_queue_impl.hh revision 2367
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#include <limits> 30#include <vector> 31 32#include "sim/root.hh" 33 34#include "cpu/o3/fu_pool.hh" 35#include "cpu/o3/inst_queue.hh" 36 37using namespace std; 38 39template <class Impl> 40InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 41 int fu_idx, 42 InstructionQueue<Impl> *iq_ptr) 43 : Event(&mainEventQueue, Stat_Event_Pri), 44 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false) 45{ 46 this->setFlags(Event::AutoDelete); 47} 48 49template <class Impl> 50void 51InstructionQueue<Impl>::FUCompletion::process() 52{ 53 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1); 54 inst = NULL; 55} 56 57 58template <class Impl> 59const char * 60InstructionQueue<Impl>::FUCompletion::description() 61{ 62 return "Functional unit completion event"; 63} 64 65template <class Impl> 66InstructionQueue<Impl>::InstructionQueue(Params *params) 67 : dcacheInterface(params->dcacheInterface), 68 fuPool(params->fuPool), 69 numEntries(params->numIQEntries), 70 totalWidth(params->issueWidth), 71 numPhysIntRegs(params->numPhysIntRegs), 72 numPhysFloatRegs(params->numPhysFloatRegs), 73 commitToIEWDelay(params->commitToIEWDelay) 74{ 75 assert(fuPool); 76 77 switchedOut = false; 78 79 numThreads = params->numberOfThreads; 80 81 // Set the number of physical registers as the number of int + float 82 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 83 84 DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 85 86 //Create an entry for each physical register within the 87 //dependency graph. 88 dependGraph.resize(numPhysRegs); 89 90 // Resize the register scoreboard. 91 regScoreboard.resize(numPhysRegs); 92 93 //Initialize Mem Dependence Units 94 for (int i = 0; i < numThreads; i++) { 95 memDepUnit[i].init(params,i); 96 memDepUnit[i].setIQ(this); 97 } 98 99 resetState(); 100 101 string policy = params->smtIQPolicy; 102 103 //Convert string to lowercase 104 std::transform(policy.begin(), policy.end(), policy.begin(), 105 (int(*)(int)) tolower); 106 107 //Figure out resource sharing policy 108 if (policy == "dynamic") { 109 iqPolicy = Dynamic; 110 111 //Set Max Entries to Total ROB Capacity 112 for (int i = 0; i < numThreads; i++) { 113 maxEntries[i] = numEntries; 114 } 115 116 } else if (policy == "partitioned") { 117 iqPolicy = Partitioned; 118 119 //@todo:make work if part_amt doesnt divide evenly. 120 int part_amt = numEntries / numThreads; 121 122 //Divide ROB up evenly 123 for (int i = 0; i < numThreads; i++) { 124 maxEntries[i] = part_amt; 125 } 126 127 DPRINTF(Fetch, "IQ sharing policy set to Partitioned:" 128 "%i entries per thread.\n",part_amt); 129 130 } else if (policy == "threshold") { 131 iqPolicy = Threshold; 132 133 double threshold = (double)params->smtIQThreshold / 100; 134 135 int thresholdIQ = (int)((double)threshold * numEntries); 136 137 //Divide up by threshold amount 138 for (int i = 0; i < numThreads; i++) { 139 maxEntries[i] = thresholdIQ; 140 } 141 142 DPRINTF(Fetch, "IQ sharing policy set to Threshold:" 143 "%i entries per thread.\n",thresholdIQ); 144 } else { 145 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 146 "Partitioned, Threshold}"); 147 } 148} 149 150template <class Impl> 151InstructionQueue<Impl>::~InstructionQueue() 152{ 153 dependGraph.reset(); 154#ifdef DEBUG 155 cprintf("Nodes traversed: %i, removed: %i\n", 156 dependGraph.nodesTraversed, dependGraph.nodesRemoved); 157#endif 158} 159 160template <class Impl> 161std::string 162InstructionQueue<Impl>::name() const 163{ 164 return cpu->name() + ".iq"; 165} 166 167template <class Impl> 168void 169InstructionQueue<Impl>::regStats() 170{ 171 using namespace Stats; 172 iqInstsAdded 173 .name(name() + ".iqInstsAdded") 174 .desc("Number of instructions added to the IQ (excludes non-spec)") 175 .prereq(iqInstsAdded); 176 177 iqNonSpecInstsAdded 178 .name(name() + ".iqNonSpecInstsAdded") 179 .desc("Number of non-speculative instructions added to the IQ") 180 .prereq(iqNonSpecInstsAdded); 181 182 iqInstsIssued 183 .name(name() + ".iqInstsIssued") 184 .desc("Number of instructions issued") 185 .prereq(iqInstsIssued); 186 187 iqIntInstsIssued 188 .name(name() + ".iqIntInstsIssued") 189 .desc("Number of integer instructions issued") 190 .prereq(iqIntInstsIssued); 191 192 iqFloatInstsIssued 193 .name(name() + ".iqFloatInstsIssued") 194 .desc("Number of float instructions issued") 195 .prereq(iqFloatInstsIssued); 196 197 iqBranchInstsIssued 198 .name(name() + ".iqBranchInstsIssued") 199 .desc("Number of branch instructions issued") 200 .prereq(iqBranchInstsIssued); 201 202 iqMemInstsIssued 203 .name(name() + ".iqMemInstsIssued") 204 .desc("Number of memory instructions issued") 205 .prereq(iqMemInstsIssued); 206 207 iqMiscInstsIssued 208 .name(name() + ".iqMiscInstsIssued") 209 .desc("Number of miscellaneous instructions issued") 210 .prereq(iqMiscInstsIssued); 211 212 iqSquashedInstsIssued 213 .name(name() + ".iqSquashedInstsIssued") 214 .desc("Number of squashed instructions issued") 215 .prereq(iqSquashedInstsIssued); 216 217 iqSquashedInstsExamined 218 .name(name() + ".iqSquashedInstsExamined") 219 .desc("Number of squashed instructions iterated over during squash;" 220 " mainly for profiling") 221 .prereq(iqSquashedInstsExamined); 222 223 iqSquashedOperandsExamined 224 .name(name() + ".iqSquashedOperandsExamined") 225 .desc("Number of squashed operands that are examined and possibly " 226 "removed from graph") 227 .prereq(iqSquashedOperandsExamined); 228 229 iqSquashedNonSpecRemoved 230 .name(name() + ".iqSquashedNonSpecRemoved") 231 .desc("Number of squashed non-spec instructions that were removed") 232 .prereq(iqSquashedNonSpecRemoved); 233/* 234 queueResDist 235 .init(Num_OpClasses, 0, 99, 2) 236 .name(name() + ".IQ:residence:") 237 .desc("cycles from dispatch to issue") 238 .flags(total | pdf | cdf ) 239 ; 240 for (int i = 0; i < Num_OpClasses; ++i) { 241 queueResDist.subname(i, opClassStrings[i]); 242 } 243*/ 244 numIssuedDist 245 .init(0,totalWidth,1) 246 .name(name() + ".ISSUE:issued_per_cycle") 247 .desc("Number of insts issued each cycle") 248 .flags(pdf) 249 ; 250/* 251 dist_unissued 252 .init(Num_OpClasses+2) 253 .name(name() + ".ISSUE:unissued_cause") 254 .desc("Reason ready instruction not issued") 255 .flags(pdf | dist) 256 ; 257 for (int i=0; i < (Num_OpClasses + 2); ++i) { 258 dist_unissued.subname(i, unissued_names[i]); 259 } 260*/ 261 statIssuedInstType 262 .init(numThreads,Num_OpClasses) 263 .name(name() + ".ISSUE:FU_type") 264 .desc("Type of FU issued") 265 .flags(total | pdf | dist) 266 ; 267 statIssuedInstType.ysubnames(opClassStrings); 268 269 // 270 // How long did instructions for a particular FU type wait prior to issue 271 // 272/* 273 issueDelayDist 274 .init(Num_OpClasses,0,99,2) 275 .name(name() + ".ISSUE:") 276 .desc("cycles from operands ready to issue") 277 .flags(pdf | cdf) 278 ; 279 280 for (int i=0; i<Num_OpClasses; ++i) { 281 stringstream subname; 282 subname << opClassStrings[i] << "_delay"; 283 issueDelayDist.subname(i, subname.str()); 284 } 285*/ 286 issueRate 287 .name(name() + ".ISSUE:rate") 288 .desc("Inst issue rate") 289 .flags(total) 290 ; 291 issueRate = iqInstsIssued / cpu->numCycles; 292 293 statFuBusy 294 .init(Num_OpClasses) 295 .name(name() + ".ISSUE:fu_full") 296 .desc("attempts to use FU when none available") 297 .flags(pdf | dist) 298 ; 299 for (int i=0; i < Num_OpClasses; ++i) { 300 statFuBusy.subname(i, opClassStrings[i]); 301 } 302 303 fuBusy 304 .init(numThreads) 305 .name(name() + ".ISSUE:fu_busy_cnt") 306 .desc("FU busy when requested") 307 .flags(total) 308 ; 309 310 fuBusyRate 311 .name(name() + ".ISSUE:fu_busy_rate") 312 .desc("FU busy rate (busy events/executed inst)") 313 .flags(total) 314 ; 315 fuBusyRate = fuBusy / iqInstsIssued; 316 317 for ( int i=0; i < numThreads; i++) { 318 // Tell mem dependence unit to reg stats as well. 319 memDepUnit[i].regStats(); 320 } 321} 322 323template <class Impl> 324void 325InstructionQueue<Impl>::resetState() 326{ 327 //Initialize thread IQ counts 328 for (int i = 0; i <numThreads; i++) { 329 count[i] = 0; 330 instList[i].clear(); 331 } 332 333 // Initialize the number of free IQ entries. 334 freeEntries = numEntries; 335 336 // Note that in actuality, the registers corresponding to the logical 337 // registers start off as ready. However this doesn't matter for the 338 // IQ as the instruction should have been correctly told if those 339 // registers are ready in rename. Thus it can all be initialized as 340 // unready. 341 for (int i = 0; i < numPhysRegs; ++i) { 342 regScoreboard[i] = false; 343 } 344 345 for (int i = 0; i < numThreads; ++i) { 346 squashedSeqNum[i] = 0; 347 } 348 349 for (int i = 0; i < Num_OpClasses; ++i) { 350 while (!readyInsts[i].empty()) 351 readyInsts[i].pop(); 352 queueOnList[i] = false; 353 readyIt[i] = listOrder.end(); 354 } 355 nonSpecInsts.clear(); 356 listOrder.clear(); 357} 358 359template <class Impl> 360void 361InstructionQueue<Impl>::setActiveThreads(list<unsigned> *at_ptr) 362{ 363 DPRINTF(IQ, "Setting active threads list pointer.\n"); 364 activeThreads = at_ptr; 365} 366 367template <class Impl> 368void 369InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 370{ 371 DPRINTF(IQ, "Set the issue to execute queue.\n"); 372 issueToExecuteQueue = i2e_ptr; 373} 374 375template <class Impl> 376void 377InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 378{ 379 DPRINTF(IQ, "Set the time buffer.\n"); 380 timeBuffer = tb_ptr; 381 382 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 383} 384 385template <class Impl> 386void 387InstructionQueue<Impl>::switchOut() 388{ 389/* 390 if (!instList[0].empty() || (numEntries != freeEntries) || 391 !readyInsts[0].empty() || !nonSpecInsts.empty() || !listOrder.empty()) { 392 dumpInsts(); 393// assert(0); 394 } 395*/ 396 resetState(); 397 dependGraph.reset(); 398 instsToExecute.clear(); 399 switchedOut = true; 400 for (int i = 0; i < numThreads; ++i) { 401 memDepUnit[i].switchOut(); 402 } 403} 404 405template <class Impl> 406void 407InstructionQueue<Impl>::takeOverFrom() 408{ 409 switchedOut = false; 410} 411 412template <class Impl> 413int 414InstructionQueue<Impl>::entryAmount(int num_threads) 415{ 416 if (iqPolicy == Partitioned) { 417 return numEntries / num_threads; 418 } else { 419 return 0; 420 } 421} 422 423 424template <class Impl> 425void 426InstructionQueue<Impl>::resetEntries() 427{ 428 if (iqPolicy != Dynamic || numThreads > 1) { 429 int active_threads = (*activeThreads).size(); 430 431 list<unsigned>::iterator threads = (*activeThreads).begin(); 432 list<unsigned>::iterator list_end = (*activeThreads).end(); 433 434 while (threads != list_end) { 435 if (iqPolicy == Partitioned) { 436 maxEntries[*threads++] = numEntries / active_threads; 437 } else if(iqPolicy == Threshold && active_threads == 1) { 438 maxEntries[*threads++] = numEntries; 439 } 440 } 441 } 442} 443 444template <class Impl> 445unsigned 446InstructionQueue<Impl>::numFreeEntries() 447{ 448 return freeEntries; 449} 450 451template <class Impl> 452unsigned 453InstructionQueue<Impl>::numFreeEntries(unsigned tid) 454{ 455 return maxEntries[tid] - count[tid]; 456} 457 458// Might want to do something more complex if it knows how many instructions 459// will be issued this cycle. 460template <class Impl> 461bool 462InstructionQueue<Impl>::isFull() 463{ 464 if (freeEntries == 0) { 465 return(true); 466 } else { 467 return(false); 468 } 469} 470 471template <class Impl> 472bool 473InstructionQueue<Impl>::isFull(unsigned tid) 474{ 475 if (numFreeEntries(tid) == 0) { 476 return(true); 477 } else { 478 return(false); 479 } 480} 481 482template <class Impl> 483bool 484InstructionQueue<Impl>::hasReadyInsts() 485{ 486 if (!listOrder.empty()) { 487 return true; 488 } 489 490 for (int i = 0; i < Num_OpClasses; ++i) { 491 if (!readyInsts[i].empty()) { 492 return true; 493 } 494 } 495 496 return false; 497} 498 499template <class Impl> 500void 501InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 502{ 503 // Make sure the instruction is valid 504 assert(new_inst); 505 506 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %#x to the IQ.\n", 507 new_inst->seqNum, new_inst->readPC()); 508 509 assert(freeEntries != 0); 510 511 instList[new_inst->threadNumber].push_back(new_inst); 512 513 --freeEntries; 514 515 new_inst->setInIQ(); 516 517 // Look through its source registers (physical regs), and mark any 518 // dependencies. 519 addToDependents(new_inst); 520 521 // Have this instruction set itself as the producer of its destination 522 // register(s). 523 addToProducers(new_inst); 524 525 if (new_inst->isMemRef()) { 526 memDepUnit[new_inst->threadNumber].insert(new_inst); 527 } else { 528 addIfReady(new_inst); 529 } 530 531 ++iqInstsAdded; 532 533 count[new_inst->threadNumber]++; 534 535 assert(freeEntries == (numEntries - countInsts())); 536} 537 538template <class Impl> 539void 540InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 541{ 542 // @todo: Clean up this code; can do it by setting inst as unable 543 // to issue, then calling normal insert on the inst. 544 545 assert(new_inst); 546 547 nonSpecInsts[new_inst->seqNum] = new_inst; 548 549 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %#x " 550 "to the IQ.\n", 551 new_inst->seqNum, new_inst->readPC()); 552 553 assert(freeEntries != 0); 554 555 instList[new_inst->threadNumber].push_back(new_inst); 556 557 --freeEntries; 558 559 new_inst->setInIQ(); 560 561 // Have this instruction set itself as the producer of its destination 562 // register(s). 563 addToProducers(new_inst); 564 565 // If it's a memory instruction, add it to the memory dependency 566 // unit. 567 if (new_inst->isMemRef()) { 568 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 569 } 570 571 ++iqNonSpecInstsAdded; 572 573 count[new_inst->threadNumber]++; 574 575 assert(freeEntries == (numEntries - countInsts())); 576} 577 578template <class Impl> 579void 580InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 581{ 582 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 583 584 insertNonSpec(barr_inst); 585} 586 587template <class Impl> 588typename Impl::DynInstPtr 589InstructionQueue<Impl>::getInstToExecute() 590{ 591 assert(!instsToExecute.empty()); 592 DynInstPtr inst = instsToExecute.front(); 593 instsToExecute.pop_front(); 594 return inst; 595} 596 597template <class Impl> 598void 599InstructionQueue<Impl>::addToOrderList(OpClass op_class) 600{ 601 assert(!readyInsts[op_class].empty()); 602 603 ListOrderEntry queue_entry; 604 605 queue_entry.queueType = op_class; 606 607 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 608 609 ListOrderIt list_it = listOrder.begin(); 610 ListOrderIt list_end_it = listOrder.end(); 611 612 while (list_it != list_end_it) { 613 if ((*list_it).oldestInst > queue_entry.oldestInst) { 614 break; 615 } 616 617 list_it++; 618 } 619 620 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 621 queueOnList[op_class] = true; 622} 623 624template <class Impl> 625void 626InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 627{ 628 // Get iterator of next item on the list 629 // Delete the original iterator 630 // Determine if the next item is either the end of the list or younger 631 // than the new instruction. If so, then add in a new iterator right here. 632 // If not, then move along. 633 ListOrderEntry queue_entry; 634 OpClass op_class = (*list_order_it).queueType; 635 ListOrderIt next_it = list_order_it; 636 637 ++next_it; 638 639 queue_entry.queueType = op_class; 640 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 641 642 while (next_it != listOrder.end() && 643 (*next_it).oldestInst < queue_entry.oldestInst) { 644 ++next_it; 645 } 646 647 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 648} 649 650template <class Impl> 651void 652InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 653{ 654 DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum); 655 // The CPU could have been sleeping until this op completed (*extremely* 656 // long latency op). Wake it if it was. This may be overkill. 657 if (isSwitchedOut()) { 658 DPRINTF(IQ, "FU completion not processed, IQ is switched out [sn:%lli]\n", 659 inst->seqNum); 660 return; 661 } 662 663 iewStage->wakeCPU(); 664 665 if (fu_idx > -1) 666 fuPool->freeUnitNextCycle(fu_idx); 667 668 // @todo: Ensure that these FU Completions happen at the beginning 669 // of a cycle, otherwise they could add too many instructions to 670 // the queue. 671 issueToExecuteQueue->access(0)->size++; 672 instsToExecute.push_back(inst); 673} 674 675// @todo: Figure out a better way to remove the squashed items from the 676// lists. Checking the top item of each list to see if it's squashed 677// wastes time and forces jumps. 678template <class Impl> 679void 680InstructionQueue<Impl>::scheduleReadyInsts() 681{ 682 DPRINTF(IQ, "Attempting to schedule ready instructions from " 683 "the IQ.\n"); 684 685 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 686 687 // Have iterator to head of the list 688 // While I haven't exceeded bandwidth or reached the end of the list, 689 // Try to get a FU that can do what this op needs. 690 // If successful, change the oldestInst to the new top of the list, put 691 // the queue in the proper place in the list. 692 // Increment the iterator. 693 // This will avoid trying to schedule a certain op class if there are no 694 // FUs that handle it. 695 ListOrderIt order_it = listOrder.begin(); 696 ListOrderIt order_end_it = listOrder.end(); 697 int total_issued = 0; 698 699 while (total_issued < totalWidth && 700 iewStage->canIssue() && 701 order_it != order_end_it) { 702 OpClass op_class = (*order_it).queueType; 703 704 assert(!readyInsts[op_class].empty()); 705 706 DynInstPtr issuing_inst = readyInsts[op_class].top(); 707 708 assert(issuing_inst->seqNum == (*order_it).oldestInst); 709 710 if (issuing_inst->isSquashed()) { 711 readyInsts[op_class].pop(); 712 713 if (!readyInsts[op_class].empty()) { 714 moveToYoungerInst(order_it); 715 } else { 716 readyIt[op_class] = listOrder.end(); 717 queueOnList[op_class] = false; 718 } 719 720 listOrder.erase(order_it++); 721 722 ++iqSquashedInstsIssued; 723 724 continue; 725 } 726 727 int idx = -2; 728 int op_latency = 1; 729 int tid = issuing_inst->threadNumber; 730 731 if (op_class != No_OpClass) { 732 idx = fuPool->getUnit(op_class); 733 734 if (idx > -1) { 735 op_latency = fuPool->getOpLatency(op_class); 736 } 737 } 738 739 // If we have an instruction that doesn't require a FU, or a 740 // valid FU, then schedule for execution. 741 if (idx == -2 || idx != -1) { 742 if (op_latency == 1) { 743 i2e_info->size++; 744 instsToExecute.push_back(issuing_inst); 745 746 // Add the FU onto the list of FU's to be freed next 747 // cycle if we used one. 748 if (idx >= 0) 749 fuPool->freeUnitNextCycle(idx); 750 } else { 751 int issue_latency = fuPool->getIssueLatency(op_class); 752 // Generate completion event for the FU 753 FUCompletion *execution = new FUCompletion(issuing_inst, 754 idx, this); 755 756 execution->schedule(curTick + cpu->cycles(issue_latency - 1)); 757 758 // @todo: Enforce that issue_latency == 1 or op_latency 759 if (issue_latency > 1) { 760 // If FU isn't pipelined, then it must be freed 761 // upon the execution completing. 762 execution->setFreeFU(); 763 } else { 764 // Add the FU onto the list of FU's to be freed next cycle. 765 fuPool->freeUnitNextCycle(idx); 766 } 767 } 768 769 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 770 "[sn:%lli]\n", 771 tid, issuing_inst->readPC(), 772 issuing_inst->seqNum); 773 774 readyInsts[op_class].pop(); 775 776 if (!readyInsts[op_class].empty()) { 777 moveToYoungerInst(order_it); 778 } else { 779 readyIt[op_class] = listOrder.end(); 780 queueOnList[op_class] = false; 781 } 782 783 issuing_inst->setIssued(); 784 ++total_issued; 785 786 if (!issuing_inst->isMemRef()) { 787 // Memory instructions can not be freed from the IQ until they 788 // complete. 789 ++freeEntries; 790 count[tid]--; 791 issuing_inst->clearInIQ(); 792 } else { 793 memDepUnit[tid].issue(issuing_inst); 794 } 795 796 listOrder.erase(order_it++); 797 statIssuedInstType[tid][op_class]++; 798 iewStage->incrWb(issuing_inst->seqNum); 799 } else { 800 statFuBusy[op_class]++; 801 fuBusy[tid]++; 802 ++order_it; 803 } 804 } 805 806 numIssuedDist.sample(total_issued); 807 iqInstsIssued+= total_issued; 808 809 // If we issued any instructions, tell the CPU we had activity. 810 if (total_issued) { 811 cpu->activityThisCycle(); 812 } else { 813 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 814 } 815} 816 817template <class Impl> 818void 819InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 820{ 821 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 822 "to execute.\n", inst); 823 824 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 825 826 assert(inst_it != nonSpecInsts.end()); 827 828 unsigned tid = (*inst_it).second->threadNumber; 829 830 (*inst_it).second->setCanIssue(); 831 832 if (!(*inst_it).second->isMemRef()) { 833 addIfReady((*inst_it).second); 834 } else { 835 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 836 } 837 838 (*inst_it).second = NULL; 839 840 nonSpecInsts.erase(inst_it); 841} 842 843template <class Impl> 844void 845InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 846{ 847 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 848 tid,inst); 849 850 ListIt iq_it = instList[tid].begin(); 851 852 while (iq_it != instList[tid].end() && 853 (*iq_it)->seqNum <= inst) { 854 ++iq_it; 855 instList[tid].pop_front(); 856 } 857 858 assert(freeEntries == (numEntries - countInsts())); 859} 860 861template <class Impl> 862int 863InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 864{ 865 int dependents = 0; 866 867 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 868 869 assert(!completed_inst->isSquashed()); 870 871 // Tell the memory dependence unit to wake any dependents on this 872 // instruction if it is a memory instruction. Also complete the memory 873 // instruction at this point since we know it executed without issues. 874 // @todo: Might want to rename "completeMemInst" to something that 875 // indicates that it won't need to be replayed, and call this 876 // earlier. Might not be a big deal. 877 if (completed_inst->isMemRef()) { 878 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 879 completeMemInst(completed_inst); 880 } else if (completed_inst->isMemBarrier() || 881 completed_inst->isWriteBarrier()) { 882 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 883 } 884 885 for (int dest_reg_idx = 0; 886 dest_reg_idx < completed_inst->numDestRegs(); 887 dest_reg_idx++) 888 { 889 PhysRegIndex dest_reg = 890 completed_inst->renamedDestRegIdx(dest_reg_idx); 891 892 // Special case of uniq or control registers. They are not 893 // handled by the IQ and thus have no dependency graph entry. 894 // @todo Figure out a cleaner way to handle this. 895 if (dest_reg >= numPhysRegs) { 896 continue; 897 } 898 899 DPRINTF(IQ, "Waking any dependents on register %i.\n", 900 (int) dest_reg); 901 902 //Go through the dependency chain, marking the registers as 903 //ready within the waiting instructions. 904 DynInstPtr dep_inst = dependGraph.pop(dest_reg); 905 906 while (dep_inst) { 907 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 908 dep_inst->readPC()); 909 910 // Might want to give more information to the instruction 911 // so that it knows which of its source registers is 912 // ready. However that would mean that the dependency 913 // graph entries would need to hold the src_reg_idx. 914 dep_inst->markSrcRegReady(); 915 916 addIfReady(dep_inst); 917 918 dep_inst = dependGraph.pop(dest_reg); 919 920 ++dependents; 921 } 922 923 // Reset the head node now that all of its dependents have 924 // been woken up. 925 assert(dependGraph.empty(dest_reg)); 926 dependGraph.clearInst(dest_reg); 927 928 // Mark the scoreboard as having that register ready. 929 regScoreboard[dest_reg] = true; 930 } 931 return dependents; 932} 933 934template <class Impl> 935void 936InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 937{ 938 OpClass op_class = ready_inst->opClass(); 939 940 readyInsts[op_class].push(ready_inst); 941 942 // Will need to reorder the list if either a queue is not on the list, 943 // or it has an older instruction than last time. 944 if (!queueOnList[op_class]) { 945 addToOrderList(op_class); 946 } else if (readyInsts[op_class].top()->seqNum < 947 (*readyIt[op_class]).oldestInst) { 948 listOrder.erase(readyIt[op_class]); 949 addToOrderList(op_class); 950 } 951 952 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 953 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 954 ready_inst->readPC(), op_class, ready_inst->seqNum); 955} 956 957template <class Impl> 958void 959InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 960{ 961 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 962} 963 964template <class Impl> 965void 966InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 967{ 968 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 969} 970 971template <class Impl> 972void 973InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 974{ 975 int tid = completed_inst->threadNumber; 976 977 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 978 completed_inst->readPC(), completed_inst->seqNum); 979 980 ++freeEntries; 981 982 completed_inst->memOpDone = true; 983 984 memDepUnit[tid].completed(completed_inst); 985 986 count[tid]--; 987} 988 989template <class Impl> 990void 991InstructionQueue<Impl>::violation(DynInstPtr &store, 992 DynInstPtr &faulting_load) 993{ 994 memDepUnit[store->threadNumber].violation(store, faulting_load); 995} 996 997template <class Impl> 998void 999InstructionQueue<Impl>::squash(unsigned tid) 1000{ 1001 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 1002 "the IQ.\n", tid); 1003 1004 // Read instruction sequence number of last instruction out of the 1005 // time buffer. 1006 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 1007 1008 // Call doSquash if there are insts in the IQ 1009 if (count[tid] > 0) { 1010 doSquash(tid); 1011 } 1012 1013 // Also tell the memory dependence unit to squash. 1014 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1015} 1016 1017template <class Impl> 1018void 1019InstructionQueue<Impl>::doSquash(unsigned tid) 1020{ 1021 // Start at the tail. 1022 ListIt squash_it = instList[tid].end(); 1023 --squash_it; 1024 1025 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1026 tid, squashedSeqNum[tid]); 1027 1028 // Squash any instructions younger than the squashed sequence number 1029 // given. 1030 while (squash_it != instList[tid].end() && 1031 (*squash_it)->seqNum > squashedSeqNum[tid]) { 1032 1033 DynInstPtr squashed_inst = (*squash_it); 1034 1035 // Only handle the instruction if it actually is in the IQ and 1036 // hasn't already been squashed in the IQ. 1037 if (squashed_inst->threadNumber != tid || 1038 squashed_inst->isSquashedInIQ()) { 1039 --squash_it; 1040 continue; 1041 } 1042 1043 if (!squashed_inst->isIssued() || 1044 (squashed_inst->isMemRef() && 1045 !squashed_inst->memOpDone)) { 1046 1047 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1048 "squashed.\n", 1049 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1050 1051 // Remove the instruction from the dependency list. 1052 if (!squashed_inst->isNonSpeculative() && 1053 !squashed_inst->isStoreConditional() && 1054 !squashed_inst->isMemBarrier() && 1055 !squashed_inst->isWriteBarrier()) { 1056 1057 for (int src_reg_idx = 0; 1058 src_reg_idx < squashed_inst->numSrcRegs(); 1059 src_reg_idx++) 1060 { 1061 PhysRegIndex src_reg = 1062 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1063 1064 // Only remove it from the dependency graph if it 1065 // was placed there in the first place. 1066 1067 // Instead of doing a linked list traversal, we 1068 // can just remove these squashed instructions 1069 // either at issue time, or when the register is 1070 // overwritten. The only downside to this is it 1071 // leaves more room for error. 1072 1073 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1074 src_reg < numPhysRegs) { 1075 dependGraph.remove(src_reg, squashed_inst); 1076 } 1077 1078 1079 ++iqSquashedOperandsExamined; 1080 } 1081 } else if (!squashed_inst->isStoreConditional() || !squashed_inst->isCompleted()) { 1082 NonSpecMapIt ns_inst_it = 1083 nonSpecInsts.find(squashed_inst->seqNum); 1084 assert(ns_inst_it != nonSpecInsts.end()); 1085 1086 (*ns_inst_it).second = NULL; 1087 1088 nonSpecInsts.erase(ns_inst_it); 1089 1090 ++iqSquashedNonSpecRemoved; 1091 } 1092 1093 // Might want to also clear out the head of the dependency graph. 1094 1095 // Mark it as squashed within the IQ. 1096 squashed_inst->setSquashedInIQ(); 1097 1098 // @todo: Remove this hack where several statuses are set so the 1099 // inst will flow through the rest of the pipeline. 1100 squashed_inst->setIssued(); 1101 squashed_inst->setCanCommit(); 1102 squashed_inst->clearInIQ(); 1103 1104 //Update Thread IQ Count 1105 count[squashed_inst->threadNumber]--; 1106 1107 ++freeEntries; 1108 } 1109 1110 instList[tid].erase(squash_it--); 1111 ++iqSquashedInstsExamined; 1112 } 1113} 1114 1115template <class Impl> 1116bool 1117InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1118{ 1119 // Loop through the instruction's source registers, adding 1120 // them to the dependency list if they are not ready. 1121 int8_t total_src_regs = new_inst->numSrcRegs(); 1122 bool return_val = false; 1123 1124 for (int src_reg_idx = 0; 1125 src_reg_idx < total_src_regs; 1126 src_reg_idx++) 1127 { 1128 // Only add it to the dependency graph if it's not ready. 1129 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1130 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1131 1132 // Check the IQ's scoreboard to make sure the register 1133 // hasn't become ready while the instruction was in flight 1134 // between stages. Only if it really isn't ready should 1135 // it be added to the dependency graph. 1136 if (src_reg >= numPhysRegs) { 1137 continue; 1138 } else if (regScoreboard[src_reg] == false) { 1139 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1140 "is being added to the dependency chain.\n", 1141 new_inst->readPC(), src_reg); 1142 1143 dependGraph.insert(src_reg, new_inst); 1144 1145 // Change the return value to indicate that something 1146 // was added to the dependency graph. 1147 return_val = true; 1148 } else { 1149 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1150 "became ready before it reached the IQ.\n", 1151 new_inst->readPC(), src_reg); 1152 // Mark a register ready within the instruction. 1153 new_inst->markSrcRegReady(src_reg_idx); 1154 } 1155 } 1156 } 1157 1158 return return_val; 1159} 1160 1161template <class Impl> 1162void 1163InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst) 1164{ 1165 // Nothing really needs to be marked when an instruction becomes 1166 // the producer of a register's value, but for convenience a ptr 1167 // to the producing instruction will be placed in the head node of 1168 // the dependency links. 1169 int8_t total_dest_regs = new_inst->numDestRegs(); 1170 1171 for (int dest_reg_idx = 0; 1172 dest_reg_idx < total_dest_regs; 1173 dest_reg_idx++) 1174 { 1175 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1176 1177 // Instructions that use the misc regs will have a reg number 1178 // higher than the normal physical registers. In this case these 1179 // registers are not renamed, and there is no need to track 1180 // dependencies as these instructions must be executed at commit. 1181 if (dest_reg >= numPhysRegs) { 1182 continue; 1183 } 1184 1185 if (!dependGraph.empty(dest_reg)) { 1186 dependGraph.dump(); 1187 panic("Dependency graph %i not empty!", dest_reg); 1188 } 1189 1190 dependGraph.setInst(dest_reg, new_inst); 1191 1192 // Mark the scoreboard to say it's not yet ready. 1193 regScoreboard[dest_reg] = false; 1194 } 1195} 1196 1197template <class Impl> 1198void 1199InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1200{ 1201 // If the instruction now has all of its source registers 1202 // available, then add it to the list of ready instructions. 1203 if (inst->readyToIssue()) { 1204 1205 //Add the instruction to the proper ready list. 1206 if (inst->isMemRef()) { 1207 1208 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1209 1210 // Message to the mem dependence unit that this instruction has 1211 // its registers ready. 1212 memDepUnit[inst->threadNumber].regsReady(inst); 1213 1214 return; 1215 } 1216 1217 OpClass op_class = inst->opClass(); 1218 1219 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1220 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1221 inst->readPC(), op_class, inst->seqNum); 1222 1223 readyInsts[op_class].push(inst); 1224 1225 // Will need to reorder the list if either a queue is not on the list, 1226 // or it has an older instruction than last time. 1227 if (!queueOnList[op_class]) { 1228 addToOrderList(op_class); 1229 } else if (readyInsts[op_class].top()->seqNum < 1230 (*readyIt[op_class]).oldestInst) { 1231 listOrder.erase(readyIt[op_class]); 1232 addToOrderList(op_class); 1233 } 1234 } 1235} 1236 1237template <class Impl> 1238int 1239InstructionQueue<Impl>::countInsts() 1240{ 1241 //ksewell:This works but definitely could use a cleaner write 1242 //with a more intuitive way of counting. Right now it's 1243 //just brute force .... 1244 1245#if 0 1246 int total_insts = 0; 1247 1248 for (int i = 0; i < numThreads; ++i) { 1249 ListIt count_it = instList[i].begin(); 1250 1251 while (count_it != instList[i].end()) { 1252 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1253 if (!(*count_it)->isIssued()) { 1254 ++total_insts; 1255 } else if ((*count_it)->isMemRef() && 1256 !(*count_it)->memOpDone) { 1257 // Loads that have not been marked as executed still count 1258 // towards the total instructions. 1259 ++total_insts; 1260 } 1261 } 1262 1263 ++count_it; 1264 } 1265 } 1266 1267 return total_insts; 1268#else 1269 return numEntries - freeEntries; 1270#endif 1271} 1272 1273template <class Impl> 1274void 1275InstructionQueue<Impl>::dumpLists() 1276{ 1277 for (int i = 0; i < Num_OpClasses; ++i) { 1278 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1279 1280 cprintf("\n"); 1281 } 1282 1283 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1284 1285 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1286 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1287 1288 cprintf("Non speculative list: "); 1289 1290 while (non_spec_it != non_spec_end_it) { 1291 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1292 (*non_spec_it).second->seqNum); 1293 ++non_spec_it; 1294 } 1295 1296 cprintf("\n"); 1297 1298 ListOrderIt list_order_it = listOrder.begin(); 1299 ListOrderIt list_order_end_it = listOrder.end(); 1300 int i = 1; 1301 1302 cprintf("List order: "); 1303 1304 while (list_order_it != list_order_end_it) { 1305 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1306 (*list_order_it).oldestInst); 1307 1308 ++list_order_it; 1309 ++i; 1310 } 1311 1312 cprintf("\n"); 1313} 1314 1315 1316template <class Impl> 1317void 1318InstructionQueue<Impl>::dumpInsts() 1319{ 1320 for (int i = 0; i < numThreads; ++i) { 1321 int num = 0; 1322 int valid_num = 0; 1323 ListIt inst_list_it = instList[i].begin(); 1324 1325 while (inst_list_it != instList[i].end()) 1326 { 1327 cprintf("Instruction:%i\n", 1328 num); 1329 if (!(*inst_list_it)->isSquashed()) { 1330 if (!(*inst_list_it)->isIssued()) { 1331 ++valid_num; 1332 cprintf("Count:%i\n", valid_num); 1333 } else if ((*inst_list_it)->isMemRef() && 1334 !(*inst_list_it)->memOpDone) { 1335 // Loads that have not been marked as executed 1336 // still count towards the total instructions. 1337 ++valid_num; 1338 cprintf("Count:%i\n", valid_num); 1339 } 1340 } 1341 1342 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1343 "Issued:%i\nSquashed:%i\n", 1344 (*inst_list_it)->readPC(), 1345 (*inst_list_it)->seqNum, 1346 (*inst_list_it)->threadNumber, 1347 (*inst_list_it)->isIssued(), 1348 (*inst_list_it)->isSquashed()); 1349 1350 if ((*inst_list_it)->isMemRef()) { 1351 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1352 } 1353 1354 cprintf("\n"); 1355 1356 inst_list_it++; 1357 ++num; 1358 } 1359 } 1360 1361 cprintf("Insts to Execute list:\n"); 1362 1363 int num = 0; 1364 int valid_num = 0; 1365 ListIt inst_list_it = instsToExecute.begin(); 1366 1367 while (inst_list_it != instsToExecute.end()) 1368 { 1369 cprintf("Instruction:%i\n", 1370 num); 1371 if (!(*inst_list_it)->isSquashed()) { 1372 if (!(*inst_list_it)->isIssued()) { 1373 ++valid_num; 1374 cprintf("Count:%i\n", valid_num); 1375 } else if ((*inst_list_it)->isMemRef() && 1376 !(*inst_list_it)->memOpDone) { 1377 // Loads that have not been marked as executed 1378 // still count towards the total instructions. 1379 ++valid_num; 1380 cprintf("Count:%i\n", valid_num); 1381 } 1382 } 1383 1384 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1385 "Issued:%i\nSquashed:%i\n", 1386 (*inst_list_it)->readPC(), 1387 (*inst_list_it)->seqNum, 1388 (*inst_list_it)->threadNumber, 1389 (*inst_list_it)->isIssued(), 1390 (*inst_list_it)->isSquashed()); 1391 1392 if ((*inst_list_it)->isMemRef()) { 1393 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1394 } 1395 1396 cprintf("\n"); 1397 1398 inst_list_it++; 1399 ++num; 1400 } 1401} 1402