inst_queue_impl.hh revision 2307
1/* 2 * Copyright (c) 2004-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29// Todo: 30// Current ordering allows for 0 cycle added-to-scheduled. Could maybe fake 31// it; either do in reverse order, or have added instructions put into a 32// different ready queue that, in scheduleRreadyInsts(), gets put onto the 33// normal ready queue. This would however give only a one cycle delay, 34// but probably is more flexible to actually add in a delay parameter than 35// just running it backwards. 36 37#include <limits> 38#include <vector> 39 40#include "sim/root.hh" 41 42#include "cpu/o3/fu_pool.hh" 43#include "cpu/o3/inst_queue.hh" 44 45using namespace std; 46 47template <class Impl> 48InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 49 int fu_idx, 50 InstructionQueue<Impl> *iq_ptr) 51 : Event(&mainEventQueue, Stat_Event_Pri), 52 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr) 53{ 54 this->setFlags(Event::AutoDelete); 55} 56 57template <class Impl> 58void 59InstructionQueue<Impl>::FUCompletion::process() 60{ 61 iqPtr->processFUCompletion(inst, fuIdx); 62 inst = NULL; 63} 64 65 66template <class Impl> 67const char * 68InstructionQueue<Impl>::FUCompletion::description() 69{ 70 return "Functional unit completion event"; 71} 72 73template <class Impl> 74InstructionQueue<Impl>::InstructionQueue(Params *params) 75 : dcacheInterface(params->dcacheInterface), 76 fuPool(params->fuPool), 77 numEntries(params->numIQEntries), 78 totalWidth(params->issueWidth), 79 numPhysIntRegs(params->numPhysIntRegs), 80 numPhysFloatRegs(params->numPhysFloatRegs), 81 commitToIEWDelay(params->commitToIEWDelay) 82{ 83 assert(fuPool); 84 85 switchedOut = false; 86 87 numThreads = params->numberOfThreads; 88 89 // Set the number of physical registers as the number of int + float 90 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 91 92 DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 93 94 //Create an entry for each physical register within the 95 //dependency graph. 96 dependGraph = new DependencyEntry[numPhysRegs]; 97 98 // Initialize all the head pointers to point to NULL, and all the 99 // entries as unready. 100 for (int i = 0; i < numPhysRegs; ++i) { 101 dependGraph[i].next = NULL; 102 dependGraph[i].inst = NULL; 103 } 104 105 // Resize the register scoreboard. 106 regScoreboard.resize(numPhysRegs); 107 108 //Initialize Mem Dependence Units 109 for (int i = 0; i < numThreads; i++) { 110 memDepUnit[i].init(params,i); 111 memDepUnit[i].setIQ(this); 112 } 113 114 resetState(); 115 116 string policy = params->smtIQPolicy; 117 118 //Convert string to lowercase 119 std::transform(policy.begin(), policy.end(), policy.begin(), 120 (int(*)(int)) tolower); 121 122 //Figure out resource sharing policy 123 if (policy == "dynamic") { 124 iqPolicy = Dynamic; 125 126 //Set Max Entries to Total ROB Capacity 127 for (int i = 0; i < numThreads; i++) { 128 maxEntries[i] = numEntries; 129 } 130 131 } else if (policy == "partitioned") { 132 iqPolicy = Partitioned; 133 134 //@todo:make work if part_amt doesnt divide evenly. 135 int part_amt = numEntries / numThreads; 136 137 //Divide ROB up evenly 138 for (int i = 0; i < numThreads; i++) { 139 maxEntries[i] = part_amt; 140 } 141 142 DPRINTF(Fetch, "IQ sharing policy set to Partitioned:" 143 "%i entries per thread.\n",part_amt); 144 145 } else if (policy == "threshold") { 146 iqPolicy = Threshold; 147 148 double threshold = (double)params->smtIQThreshold / 100; 149 150 int thresholdIQ = (int)((double)threshold * numEntries); 151 152 //Divide up by threshold amount 153 for (int i = 0; i < numThreads; i++) { 154 maxEntries[i] = thresholdIQ; 155 } 156 157 DPRINTF(Fetch, "IQ sharing policy set to Threshold:" 158 "%i entries per thread.\n",thresholdIQ); 159 } else { 160 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 161 "Partitioned, Threshold}"); 162 } 163} 164 165template <class Impl> 166InstructionQueue<Impl>::~InstructionQueue() 167{ 168 resetDependencyGraph(); 169 assert(DependencyEntry::mem_alloc_counter == 0); 170 171 delete [] dependGraph; 172} 173 174template <class Impl> 175std::string 176InstructionQueue<Impl>::name() const 177{ 178 return cpu->name() + ".iq"; 179} 180 181template <class Impl> 182void 183InstructionQueue<Impl>::regStats() 184{ 185 using namespace Stats; 186 iqInstsAdded 187 .name(name() + ".iqInstsAdded") 188 .desc("Number of instructions added to the IQ (excludes non-spec)") 189 .prereq(iqInstsAdded); 190 191 iqNonSpecInstsAdded 192 .name(name() + ".iqNonSpecInstsAdded") 193 .desc("Number of non-speculative instructions added to the IQ") 194 .prereq(iqNonSpecInstsAdded); 195 196// iqIntInstsAdded; 197 198 iqInstsIssued 199 .name(name() + ".iqInstsIssued") 200 .desc("Number of instructions issued") 201 .prereq(iqInstsIssued); 202 203 iqIntInstsIssued 204 .name(name() + ".iqIntInstsIssued") 205 .desc("Number of integer instructions issued") 206 .prereq(iqIntInstsIssued); 207 208// iqFloatInstsAdded; 209 210 iqFloatInstsIssued 211 .name(name() + ".iqFloatInstsIssued") 212 .desc("Number of float instructions issued") 213 .prereq(iqFloatInstsIssued); 214 215// iqBranchInstsAdded; 216 217 iqBranchInstsIssued 218 .name(name() + ".iqBranchInstsIssued") 219 .desc("Number of branch instructions issued") 220 .prereq(iqBranchInstsIssued); 221 222// iqMemInstsAdded; 223 224 iqMemInstsIssued 225 .name(name() + ".iqMemInstsIssued") 226 .desc("Number of memory instructions issued") 227 .prereq(iqMemInstsIssued); 228 229// iqMiscInstsAdded; 230 231 iqMiscInstsIssued 232 .name(name() + ".iqMiscInstsIssued") 233 .desc("Number of miscellaneous instructions issued") 234 .prereq(iqMiscInstsIssued); 235 236 iqSquashedInstsIssued 237 .name(name() + ".iqSquashedInstsIssued") 238 .desc("Number of squashed instructions issued") 239 .prereq(iqSquashedInstsIssued); 240 241 iqSquashedInstsExamined 242 .name(name() + ".iqSquashedInstsExamined") 243 .desc("Number of squashed instructions iterated over during squash;" 244 " mainly for profiling") 245 .prereq(iqSquashedInstsExamined); 246 247 iqSquashedOperandsExamined 248 .name(name() + ".iqSquashedOperandsExamined") 249 .desc("Number of squashed operands that are examined and possibly " 250 "removed from graph") 251 .prereq(iqSquashedOperandsExamined); 252 253 iqSquashedNonSpecRemoved 254 .name(name() + ".iqSquashedNonSpecRemoved") 255 .desc("Number of squashed non-spec instructions that were removed") 256 .prereq(iqSquashedNonSpecRemoved); 257 258 queue_res_dist 259 .init(Num_OpClasses, 0, 99, 2) 260 .name(name() + ".IQ:residence:") 261 .desc("cycles from dispatch to issue") 262 .flags(total | pdf | cdf ) 263 ; 264 for (int i = 0; i < Num_OpClasses; ++i) { 265 queue_res_dist.subname(i, opClassStrings[i]); 266 } 267 n_issued_dist 268 .init(0,totalWidth,1) 269 .name(name() + ".ISSUE:issued_per_cycle") 270 .desc("Number of insts issued each cycle") 271 .flags(pdf) 272 ; 273/* 274 dist_unissued 275 .init(Num_OpClasses+2) 276 .name(name() + ".ISSUE:unissued_cause") 277 .desc("Reason ready instruction not issued") 278 .flags(pdf | dist) 279 ; 280 for (int i=0; i < (Num_OpClasses + 2); ++i) { 281 dist_unissued.subname(i, unissued_names[i]); 282 } 283*/ 284 stat_issued_inst_type 285 .init(numThreads,Num_OpClasses) 286 .name(name() + ".ISSUE:FU_type") 287 .desc("Type of FU issued") 288 .flags(total | pdf | dist) 289 ; 290 stat_issued_inst_type.ysubnames(opClassStrings); 291 292 // 293 // How long did instructions for a particular FU type wait prior to issue 294 // 295 296 issue_delay_dist 297 .init(Num_OpClasses,0,99,2) 298 .name(name() + ".ISSUE:") 299 .desc("cycles from operands ready to issue") 300 .flags(pdf | cdf) 301 ; 302 303 for (int i=0; i<Num_OpClasses; ++i) { 304 stringstream subname; 305 subname << opClassStrings[i] << "_delay"; 306 issue_delay_dist.subname(i, subname.str()); 307 } 308 309 issue_rate 310 .name(name() + ".ISSUE:rate") 311 .desc("Inst issue rate") 312 .flags(total) 313 ; 314 issue_rate = iqInstsIssued / cpu->numCycles; 315/* 316 issue_stores 317 .name(name() + ".ISSUE:stores") 318 .desc("Number of stores issued") 319 .flags(total) 320 ; 321 issue_stores = exe_refs - exe_loads; 322*/ 323/* 324 issue_op_rate 325 .name(name() + ".ISSUE:op_rate") 326 .desc("Operation issue rate") 327 .flags(total) 328 ; 329 issue_op_rate = issued_ops / numCycles; 330*/ 331 stat_fu_busy 332 .init(Num_OpClasses) 333 .name(name() + ".ISSUE:fu_full") 334 .desc("attempts to use FU when none available") 335 .flags(pdf | dist) 336 ; 337 for (int i=0; i < Num_OpClasses; ++i) { 338 stat_fu_busy.subname(i, opClassStrings[i]); 339 } 340 341 fu_busy 342 .init(numThreads) 343 .name(name() + ".ISSUE:fu_busy_cnt") 344 .desc("FU busy when requested") 345 .flags(total) 346 ; 347 348 fu_busy_rate 349 .name(name() + ".ISSUE:fu_busy_rate") 350 .desc("FU busy rate (busy events/executed inst)") 351 .flags(total) 352 ; 353 fu_busy_rate = fu_busy / iqInstsIssued; 354 355 for ( int i=0; i < numThreads; i++) { 356 // Tell mem dependence unit to reg stats as well. 357 memDepUnit[i].regStats(); 358 } 359} 360 361template <class Impl> 362void 363InstructionQueue<Impl>::resetState() 364{ 365 //Initialize thread IQ counts 366 for (int i = 0; i <numThreads; i++) { 367 count[i] = 0; 368 instList[i].clear(); 369 } 370 371 // Initialize the number of free IQ entries. 372 freeEntries = numEntries; 373 374 // Note that in actuality, the registers corresponding to the logical 375 // registers start off as ready. However this doesn't matter for the 376 // IQ as the instruction should have been correctly told if those 377 // registers are ready in rename. Thus it can all be initialized as 378 // unready. 379 for (int i = 0; i < numPhysRegs; ++i) { 380 regScoreboard[i] = false; 381 } 382 383 for (int i = 0; i < numThreads; ++i) { 384 squashedSeqNum[i] = 0; 385 } 386 387 for (int i = 0; i < Num_OpClasses; ++i) { 388 while (!readyInsts[i].empty()) 389 readyInsts[i].pop(); 390 queueOnList[i] = false; 391 readyIt[i] = listOrder.end(); 392 } 393 nonSpecInsts.clear(); 394 listOrder.clear(); 395} 396 397template <class Impl> 398void 399InstructionQueue<Impl>::resetDependencyGraph() 400{ 401 // Clear the dependency graph 402 DependencyEntry *curr; 403 DependencyEntry *prev; 404 405 for (int i = 0; i < numPhysRegs; ++i) { 406 curr = dependGraph[i].next; 407 408 while (curr) { 409 DependencyEntry::mem_alloc_counter--; 410 411 prev = curr; 412 curr = prev->next; 413 prev->inst = NULL; 414 415 delete prev; 416 } 417 418 if (dependGraph[i].inst) { 419 dependGraph[i].inst = NULL; 420 } 421 422 dependGraph[i].next = NULL; 423 } 424} 425 426template <class Impl> 427void 428InstructionQueue<Impl>::setActiveThreads(list<unsigned> *at_ptr) 429{ 430 DPRINTF(IQ, "Setting active threads list pointer.\n"); 431 activeThreads = at_ptr; 432} 433 434template <class Impl> 435void 436InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 437{ 438 DPRINTF(IQ, "Set the issue to execute queue.\n"); 439 issueToExecuteQueue = i2e_ptr; 440} 441 442template <class Impl> 443void 444InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 445{ 446 DPRINTF(IQ, "Set the time buffer.\n"); 447 timeBuffer = tb_ptr; 448 449 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 450} 451 452template <class Impl> 453void 454InstructionQueue<Impl>::switchOut() 455{ 456 resetState(); 457 resetDependencyGraph(); 458 switchedOut = true; 459 for (int i = 0; i < numThreads; ++i) { 460 memDepUnit[i].switchOut(); 461 } 462} 463 464template <class Impl> 465void 466InstructionQueue<Impl>::takeOverFrom() 467{ 468 switchedOut = false; 469} 470 471template <class Impl> 472int 473InstructionQueue<Impl>::entryAmount(int num_threads) 474{ 475 if (iqPolicy == Partitioned) { 476 return numEntries / num_threads; 477 } else { 478 return 0; 479 } 480} 481 482 483template <class Impl> 484void 485InstructionQueue<Impl>::resetEntries() 486{ 487 if (iqPolicy != Dynamic || numThreads > 1) { 488 int active_threads = (*activeThreads).size(); 489 490 list<unsigned>::iterator threads = (*activeThreads).begin(); 491 list<unsigned>::iterator list_end = (*activeThreads).end(); 492 493 while (threads != list_end) { 494 if (iqPolicy == Partitioned) { 495 maxEntries[*threads++] = numEntries / active_threads; 496 } else if(iqPolicy == Threshold && active_threads == 1) { 497 maxEntries[*threads++] = numEntries; 498 } 499 } 500 } 501} 502 503template <class Impl> 504unsigned 505InstructionQueue<Impl>::numFreeEntries() 506{ 507 return freeEntries; 508} 509 510template <class Impl> 511unsigned 512InstructionQueue<Impl>::numFreeEntries(unsigned tid) 513{ 514 return maxEntries[tid] - count[tid]; 515} 516 517// Might want to do something more complex if it knows how many instructions 518// will be issued this cycle. 519template <class Impl> 520bool 521InstructionQueue<Impl>::isFull() 522{ 523 if (freeEntries == 0) { 524 return(true); 525 } else { 526 return(false); 527 } 528} 529 530template <class Impl> 531bool 532InstructionQueue<Impl>::isFull(unsigned tid) 533{ 534 if (numFreeEntries(tid) == 0) { 535 return(true); 536 } else { 537 return(false); 538 } 539} 540 541template <class Impl> 542bool 543InstructionQueue<Impl>::hasReadyInsts() 544{ 545 if (!listOrder.empty()) { 546 return true; 547 } 548 549 for (int i = 0; i < Num_OpClasses; ++i) { 550 if (!readyInsts[i].empty()) { 551 return true; 552 } 553 } 554 555 return false; 556} 557 558template <class Impl> 559void 560InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 561{ 562 // Make sure the instruction is valid 563 assert(new_inst); 564 565 DPRINTF(IQ, "Adding instruction PC %#x to the IQ.\n", 566 new_inst->readPC()); 567 568 // Check if there are any free entries. Panic if there are none. 569 // Might want to have this return a fault in the future instead of 570 // panicing. 571 assert(freeEntries != 0); 572 573 instList[new_inst->threadNumber].push_back(new_inst); 574 575 // Decrease the number of free entries. 576 --freeEntries; 577 578 //Mark Instruction as in IQ 579 new_inst->setInIQ(); 580 581 // Look through its source registers (physical regs), and mark any 582 // dependencies. 583 addToDependents(new_inst); 584 585 // Have this instruction set itself as the producer of its destination 586 // register(s). 587 createDependency(new_inst); 588 589 // If it's a memory instruction, add it to the memory dependency 590 // unit. 591 if (new_inst->isMemRef()) { 592 memDepUnit[new_inst->threadNumber].insert(new_inst); 593 } else { 594 // If the instruction is ready then add it to the ready list. 595 addIfReady(new_inst); 596 } 597 598 ++iqInstsAdded; 599 600 601 //Update Thread IQ Count 602 count[new_inst->threadNumber]++; 603 604 assert(freeEntries == (numEntries - countInsts())); 605} 606 607template <class Impl> 608void 609InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 610{ 611 // @todo: Clean up this code; can do it by setting inst as unable 612 // to issue, then calling normal insert on the inst. 613 614 // Make sure the instruction is valid 615 assert(new_inst); 616 617 nonSpecInsts[new_inst->seqNum] = new_inst; 618 619 DPRINTF(IQ, "Adding instruction PC %#x to the IQ.\n", 620 new_inst->readPC()); 621 622 // Check if there are any free entries. Panic if there are none. 623 // Might want to have this return a fault in the future instead of 624 // panicing. 625 assert(freeEntries != 0); 626 627 instList[new_inst->threadNumber].push_back(new_inst); 628 629 // Decrease the number of free entries. 630 --freeEntries; 631 632 //Mark Instruction as in IQ 633 new_inst->setInIQ(); 634 635 // Have this instruction set itself as the producer of its destination 636 // register(s). 637 createDependency(new_inst); 638 639 // If it's a memory instruction, add it to the memory dependency 640 // unit. 641 if (new_inst->isMemRef()) { 642 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 643 } 644 645 ++iqNonSpecInstsAdded; 646 647 //Update Thread IQ Count 648 count[new_inst->threadNumber]++; 649 650 assert(freeEntries == (numEntries - countInsts())); 651} 652 653template <class Impl> 654void 655InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 656{ 657 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 658 659 insertNonSpec(barr_inst); 660} 661 662template <class Impl> 663void 664InstructionQueue<Impl>::advanceTail(DynInstPtr &inst) 665{ 666 // Have this instruction set itself as the producer of its destination 667 // register(s). 668 createDependency(inst); 669} 670 671template <class Impl> 672void 673InstructionQueue<Impl>::addToOrderList(OpClass op_class) 674{ 675 assert(!readyInsts[op_class].empty()); 676 677 ListOrderEntry queue_entry; 678 679 queue_entry.queueType = op_class; 680 681 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 682 683 ListOrderIt list_it = listOrder.begin(); 684 ListOrderIt list_end_it = listOrder.end(); 685 686 while (list_it != list_end_it) { 687 if ((*list_it).oldestInst > queue_entry.oldestInst) { 688 break; 689 } 690 691 list_it++; 692 } 693 694 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 695 queueOnList[op_class] = true; 696} 697 698template <class Impl> 699void 700InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 701{ 702 // Get iterator of next item on the list 703 // Delete the original iterator 704 // Determine if the next item is either the end of the list or younger 705 // than the new instruction. If so, then add in a new iterator right here. 706 // If not, then move along. 707 ListOrderEntry queue_entry; 708 OpClass op_class = (*list_order_it).queueType; 709 ListOrderIt next_it = list_order_it; 710 711 ++next_it; 712 713 queue_entry.queueType = op_class; 714 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 715 716 while (next_it != listOrder.end() && 717 (*next_it).oldestInst < queue_entry.oldestInst) { 718 ++next_it; 719 } 720 721 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 722} 723 724template <class Impl> 725void 726InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 727{ 728 // The CPU could have been sleeping until this op completed (*extremely* 729 // long latency op). Wake it if it was. This may be overkill. 730 if (isSwitchedOut()) { 731 return; 732 } 733 734 iewStage->wakeCPU(); 735 736 fuPool->freeUnit(fu_idx); 737 738 int &size = issueToExecuteQueue->access(0)->size; 739 740 issueToExecuteQueue->access(0)->insts[size++] = inst; 741} 742 743// @todo: Figure out a better way to remove the squashed items from the 744// lists. Checking the top item of each list to see if it's squashed 745// wastes time and forces jumps. 746template <class Impl> 747void 748InstructionQueue<Impl>::scheduleReadyInsts() 749{ 750 DPRINTF(IQ, "Attempting to schedule ready instructions from " 751 "the IQ.\n"); 752 753 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 754 755 // Will need to reorder the list if either a queue is not on the list, 756 // or it has an older instruction than last time. 757 for (int i = 0; i < Num_OpClasses; ++i) { 758 if (!readyInsts[i].empty()) { 759 if (!queueOnList[i]) { 760 addToOrderList(OpClass(i)); 761 } else if (readyInsts[i].top()->seqNum < 762 (*readyIt[i]).oldestInst) { 763 listOrder.erase(readyIt[i]); 764 addToOrderList(OpClass(i)); 765 } 766 } 767 } 768 769 // Have iterator to head of the list 770 // While I haven't exceeded bandwidth or reached the end of the list, 771 // Try to get a FU that can do what this op needs. 772 // If successful, change the oldestInst to the new top of the list, put 773 // the queue in the proper place in the list. 774 // Increment the iterator. 775 // This will avoid trying to schedule a certain op class if there are no 776 // FUs that handle it. 777 ListOrderIt order_it = listOrder.begin(); 778 ListOrderIt order_end_it = listOrder.end(); 779 int total_issued = 0; 780 int exec_queue_slot = i2e_info->size; 781 782 while (exec_queue_slot < totalWidth && order_it != order_end_it) { 783 OpClass op_class = (*order_it).queueType; 784 785 assert(!readyInsts[op_class].empty()); 786 787 DynInstPtr issuing_inst = readyInsts[op_class].top(); 788 789 assert(issuing_inst->seqNum == (*order_it).oldestInst); 790 791 if (issuing_inst->isSquashed()) { 792 readyInsts[op_class].pop(); 793 794 if (!readyInsts[op_class].empty()) { 795 moveToYoungerInst(order_it); 796 } else { 797 readyIt[op_class] = listOrder.end(); 798 queueOnList[op_class] = false; 799 } 800 801 listOrder.erase(order_it++); 802 803 ++iqSquashedInstsIssued; 804 805 continue; 806 } 807 808 int idx = fuPool->getUnit(op_class); 809 810 int tid = issuing_inst->threadNumber; 811 812 if (idx == -2) { 813 assert(op_class == No_OpClass); 814 815 i2e_info->insts[exec_queue_slot++] = issuing_inst; 816 i2e_info->size++; 817 818 DPRINTF(IQ, "Thread %i: Issuing instruction PC that needs no FU" 819 " %#x [sn:%lli]\n", 820 tid, issuing_inst->readPC(), 821 issuing_inst->seqNum); 822 823 readyInsts[op_class].pop(); 824 825 if (!readyInsts[op_class].empty()) { 826 moveToYoungerInst(order_it); 827 } else { 828 readyIt[op_class] = listOrder.end(); 829 queueOnList[op_class] = false; 830 } 831 832 issuing_inst->setIssued(); 833 ++total_issued; 834 835 if (!issuing_inst->isMemRef()) { 836 // Memory instructions can not be freed from the IQ until they 837 // complete. 838 ++freeEntries; 839 count[tid]--; 840 issuing_inst->removeInIQ(); 841 } else { 842 memDepUnit[tid].issue(issuing_inst); 843 } 844 845 listOrder.erase(order_it++); 846 847 stat_issued_inst_type[tid][op_class]++; 848 } else if (idx != -1) { 849 int op_latency = fuPool->getOpLatency(op_class); 850 851 if (op_latency == 1) { 852 i2e_info->insts[exec_queue_slot++] = issuing_inst; 853 i2e_info->size++; 854 855 // Add the FU onto the list of FU's to be freed next cycle. 856 fuPool->freeUnit(idx); 857 } else { 858 int issue_latency = fuPool->getIssueLatency(op_class); 859 860 if (issue_latency > 1) { 861 // Generate completion event for the FU 862 FUCompletion *execution = new FUCompletion(issuing_inst, 863 idx, this); 864 865 execution->schedule(curTick + cpu->cycles(issue_latency - 1)); 866 } else { 867 i2e_info->insts[exec_queue_slot++] = issuing_inst; 868 i2e_info->size++; 869 870 // Add the FU onto the list of FU's to be freed next cycle. 871 fuPool->freeUnit(idx); 872 } 873 } 874 875 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 876 "[sn:%lli]\n", 877 tid, issuing_inst->readPC(), 878 issuing_inst->seqNum); 879 880 readyInsts[op_class].pop(); 881 882 if (!readyInsts[op_class].empty()) { 883 moveToYoungerInst(order_it); 884 } else { 885 readyIt[op_class] = listOrder.end(); 886 queueOnList[op_class] = false; 887 } 888 889 issuing_inst->setIssued(); 890 ++total_issued; 891 892 if (!issuing_inst->isMemRef()) { 893 // Memory instructions can not be freed from the IQ until they 894 // complete. 895 ++freeEntries; 896 count[tid]--; 897 issuing_inst->removeInIQ(); 898 } else { 899 memDepUnit[tid].issue(issuing_inst); 900 } 901 902 listOrder.erase(order_it++); 903 stat_issued_inst_type[tid][op_class]++; 904 } else { 905 stat_fu_busy[op_class]++; 906 fu_busy[tid]++; 907 ++order_it; 908 } 909 } 910 911 n_issued_dist.sample(total_issued); 912 913 if (total_issued) { 914 cpu->activityThisCycle(); 915 } else { 916 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 917 } 918} 919 920template <class Impl> 921void 922InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 923{ 924 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 925 "to execute.\n", inst); 926 927 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 928 929 assert(inst_it != nonSpecInsts.end()); 930 931 unsigned tid = (*inst_it).second->threadNumber; 932 933 // Mark this instruction as ready to issue. 934 (*inst_it).second->setCanIssue(); 935 936 // Now schedule the instruction. 937 if (!(*inst_it).second->isMemRef()) { 938 addIfReady((*inst_it).second); 939 } else { 940 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 941 } 942 943 (*inst_it).second = NULL; 944 945 nonSpecInsts.erase(inst_it); 946} 947 948template <class Impl> 949void 950InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 951{ 952 /*Need to go through each thread??*/ 953 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 954 tid,inst); 955 956 ListIt iq_it = instList[tid].begin(); 957 958 while (iq_it != instList[tid].end() && 959 (*iq_it)->seqNum <= inst) { 960 ++iq_it; 961 instList[tid].pop_front(); 962 } 963 964 assert(freeEntries == (numEntries - countInsts())); 965} 966 967template <class Impl> 968int 969InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 970{ 971 int dependents = 0; 972 973 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 974 975 assert(!completed_inst->isSquashed()); 976 // Look at the physical destination register of the DynInst 977 // and look it up on the dependency graph. Then mark as ready 978 // any instructions within the instruction queue. 979 DependencyEntry *curr; 980 DependencyEntry *prev; 981 982 // Tell the memory dependence unit to wake any dependents on this 983 // instruction if it is a memory instruction. Also complete the memory 984 // instruction at this point since we know it executed fine. 985 // @todo: Might want to rename "completeMemInst" to 986 // something that indicates that it won't need to be replayed, and call 987 // this earlier. Might not be a big deal. 988 if (completed_inst->isMemRef()) { 989 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 990 completeMemInst(completed_inst); 991 } else if (completed_inst->isMemBarrier() || 992 completed_inst->isWriteBarrier()) { 993 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 994 } 995 996 for (int dest_reg_idx = 0; 997 dest_reg_idx < completed_inst->numDestRegs(); 998 dest_reg_idx++) 999 { 1000 PhysRegIndex dest_reg = 1001 completed_inst->renamedDestRegIdx(dest_reg_idx); 1002 1003 // Special case of uniq or control registers. They are not 1004 // handled by the IQ and thus have no dependency graph entry. 1005 // @todo Figure out a cleaner way to handle this. 1006 if (dest_reg >= numPhysRegs) { 1007 continue; 1008 } 1009 1010 DPRINTF(IQ, "Waking any dependents on register %i.\n", 1011 (int) dest_reg); 1012 1013 //Maybe abstract this part into a function. 1014 //Go through the dependency chain, marking the registers as ready 1015 //within the waiting instructions. 1016 1017 curr = dependGraph[dest_reg].next; 1018 1019 while (curr) { 1020 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 1021 curr->inst->readPC()); 1022 1023 // Might want to give more information to the instruction 1024 // so that it knows which of its source registers is ready. 1025 // However that would mean that the dependency graph entries 1026 // would need to hold the src_reg_idx. 1027 curr->inst->markSrcRegReady(); 1028 1029 addIfReady(curr->inst); 1030 1031 DependencyEntry::mem_alloc_counter--; 1032 1033 prev = curr; 1034 curr = prev->next; 1035 prev->inst = NULL; 1036 1037 ++dependents; 1038 1039 delete prev; 1040 } 1041 1042 // Reset the head node now that all of its dependents have been woken 1043 // up. 1044 dependGraph[dest_reg].next = NULL; 1045 dependGraph[dest_reg].inst = NULL; 1046 1047 // Mark the scoreboard as having that register ready. 1048 regScoreboard[dest_reg] = true; 1049 } 1050 return dependents; 1051} 1052 1053template <class Impl> 1054void 1055InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 1056{ 1057 OpClass op_class = ready_inst->opClass(); 1058 1059 readyInsts[op_class].push(ready_inst); 1060 1061 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1062 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1063 ready_inst->readPC(), op_class, ready_inst->seqNum); 1064} 1065 1066template <class Impl> 1067void 1068InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 1069{ 1070 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 1071} 1072 1073template <class Impl> 1074void 1075InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 1076{ 1077 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 1078} 1079 1080template <class Impl> 1081void 1082InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 1083{ 1084 int tid = completed_inst->threadNumber; 1085 1086 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 1087 completed_inst->readPC(), completed_inst->seqNum); 1088 1089 ++freeEntries; 1090 1091 completed_inst->memOpDone = true; 1092 1093 memDepUnit[tid].completed(completed_inst); 1094 1095 count[tid]--; 1096} 1097 1098template <class Impl> 1099void 1100InstructionQueue<Impl>::violation(DynInstPtr &store, 1101 DynInstPtr &faulting_load) 1102{ 1103 memDepUnit[store->threadNumber].violation(store, faulting_load); 1104} 1105 1106template <class Impl> 1107void 1108InstructionQueue<Impl>::squash(unsigned tid) 1109{ 1110 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 1111 "the IQ.\n", tid); 1112 1113 // Read instruction sequence number of last instruction out of the 1114 // time buffer. 1115 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 1116 1117 // Setup the squash iterator to point to the tail. 1118 squashIt[tid] = instList[tid].end(); 1119 --squashIt[tid]; 1120 1121 // Call doSquash if there are insts in the IQ 1122 if (count[tid] > 0) { 1123 doSquash(tid); 1124 } 1125 1126 // Also tell the memory dependence unit to squash. 1127 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1128} 1129 1130template <class Impl> 1131void 1132InstructionQueue<Impl>::doSquash(unsigned tid) 1133{ 1134 // Make sure the squashed sequence number is valid. 1135// assert(squashedSeqNum[tid] != 0); 1136 1137 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1138 tid, squashedSeqNum[tid]); 1139 1140 // Squash any instructions younger than the squashed sequence number 1141 // given. 1142 while (squashIt[tid] != instList[tid].end() && 1143 (*squashIt[tid])->seqNum > squashedSeqNum[tid]) { 1144 1145 DynInstPtr squashed_inst = (*squashIt[tid]); 1146 1147 // Only handle the instruction if it actually is in the IQ and 1148 // hasn't already been squashed in the IQ. 1149 if (squashed_inst->threadNumber != tid || 1150 squashed_inst->isSquashedInIQ()) { 1151 --squashIt[tid]; 1152 continue; 1153 } 1154 1155 if (!squashed_inst->isIssued() || 1156 (squashed_inst->isMemRef() && 1157 !squashed_inst->memOpDone)) { 1158 1159 // Remove the instruction from the dependency list. 1160 if (!squashed_inst->isNonSpeculative() && 1161 !squashed_inst->isMemBarrier() && 1162 !squashed_inst->isWriteBarrier()) { 1163 1164 for (int src_reg_idx = 0; 1165 src_reg_idx < squashed_inst->numSrcRegs(); 1166 src_reg_idx++) 1167 { 1168 PhysRegIndex src_reg = 1169 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1170 1171 // Only remove it from the dependency graph if it was 1172 // placed there in the first place. 1173 // HACK: This assumes that instructions woken up from the 1174 // dependency chain aren't informed that a specific src 1175 // register has become ready. This may not always be true 1176 // in the future. 1177 // Instead of doing a linked list traversal, we can just 1178 // remove these squashed instructions either at issue time, 1179 // or when the register is overwritten. The only downside 1180 // to this is it leaves more room for error. 1181 1182 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1183 src_reg < numPhysRegs) { 1184 dependGraph[src_reg].remove(squashed_inst); 1185 } 1186 1187 1188 ++iqSquashedOperandsExamined; 1189 } 1190 1191 // Might want to remove producers as well. 1192 } else { 1193 NonSpecMapIt ns_inst_it = 1194 nonSpecInsts.find(squashed_inst->seqNum); 1195 assert(ns_inst_it != nonSpecInsts.end()); 1196 1197 (*ns_inst_it).second = NULL; 1198 1199 nonSpecInsts.erase(ns_inst_it); 1200 1201 ++iqSquashedNonSpecRemoved; 1202 } 1203 1204 // Might want to also clear out the head of the dependency graph. 1205 1206 // Mark it as squashed within the IQ. 1207 squashed_inst->setSquashedInIQ(); 1208 1209 // @todo: Remove this hack where several statuses are set so the 1210 // inst will flow through the rest of the pipeline. 1211 squashed_inst->setIssued(); 1212 squashed_inst->setCanCommit(); 1213 squashed_inst->removeInIQ(); 1214 1215 //Update Thread IQ Count 1216 count[squashed_inst->threadNumber]--; 1217 1218 ++freeEntries; 1219 1220 if (numThreads > 1) { 1221 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1222 "squashed.\n", 1223 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1224 } else { 1225 DPRINTF(IQ, "Instruction [sn:%lli] PC %#x squashed.\n", 1226 squashed_inst->seqNum, squashed_inst->readPC()); 1227 } 1228 } 1229 1230 instList[tid].erase(squashIt[tid]--); 1231 ++iqSquashedInstsExamined; 1232 } 1233} 1234 1235template <class Impl> 1236void 1237InstructionQueue<Impl>::DependencyEntry::insert(DynInstPtr &new_inst) 1238{ 1239 //Add this new, dependent instruction at the head of the dependency 1240 //chain. 1241 1242 // First create the entry that will be added to the head of the 1243 // dependency chain. 1244 DependencyEntry *new_entry = new DependencyEntry; 1245 new_entry->next = this->next; 1246 new_entry->inst = new_inst; 1247 1248 // Then actually add it to the chain. 1249 this->next = new_entry; 1250 1251 ++mem_alloc_counter; 1252} 1253 1254template <class Impl> 1255void 1256InstructionQueue<Impl>::DependencyEntry::remove(DynInstPtr &inst_to_remove) 1257{ 1258 DependencyEntry *prev = this; 1259 DependencyEntry *curr = this->next; 1260 1261 // Make sure curr isn't NULL. Because this instruction is being 1262 // removed from a dependency list, it must have been placed there at 1263 // an earlier time. The dependency chain should not be empty, 1264 // unless the instruction dependent upon it is already ready. 1265 if (curr == NULL) { 1266 return; 1267 } 1268 1269 // Find the instruction to remove within the dependency linked list. 1270 while (curr->inst != inst_to_remove) { 1271 prev = curr; 1272 curr = curr->next; 1273 1274 assert(curr != NULL); 1275 } 1276 1277 // Now remove this instruction from the list. 1278 prev->next = curr->next; 1279 1280 --mem_alloc_counter; 1281 1282 // Could push this off to the destructor of DependencyEntry 1283 curr->inst = NULL; 1284 1285 delete curr; 1286} 1287 1288template <class Impl> 1289bool 1290InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1291{ 1292 // Loop through the instruction's source registers, adding 1293 // them to the dependency list if they are not ready. 1294 int8_t total_src_regs = new_inst->numSrcRegs(); 1295 bool return_val = false; 1296 1297 for (int src_reg_idx = 0; 1298 src_reg_idx < total_src_regs; 1299 src_reg_idx++) 1300 { 1301 // Only add it to the dependency graph if it's not ready. 1302 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1303 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1304 1305 // Check the IQ's scoreboard to make sure the register 1306 // hasn't become ready while the instruction was in flight 1307 // between stages. Only if it really isn't ready should 1308 // it be added to the dependency graph. 1309 if (src_reg >= numPhysRegs) { 1310 continue; 1311 } else if (regScoreboard[src_reg] == false) { 1312 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1313 "is being added to the dependency chain.\n", 1314 new_inst->readPC(), src_reg); 1315 1316 dependGraph[src_reg].insert(new_inst); 1317 1318 // Change the return value to indicate that something 1319 // was added to the dependency graph. 1320 return_val = true; 1321 } else { 1322 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1323 "became ready before it reached the IQ.\n", 1324 new_inst->readPC(), src_reg); 1325 // Mark a register ready within the instruction. 1326 new_inst->markSrcRegReady(); 1327 } 1328 } 1329 } 1330 1331 return return_val; 1332} 1333 1334template <class Impl> 1335void 1336InstructionQueue<Impl>::createDependency(DynInstPtr &new_inst) 1337{ 1338 //Actually nothing really needs to be marked when an 1339 //instruction becomes the producer of a register's value, 1340 //but for convenience a ptr to the producing instruction will 1341 //be placed in the head node of the dependency links. 1342 int8_t total_dest_regs = new_inst->numDestRegs(); 1343 1344 for (int dest_reg_idx = 0; 1345 dest_reg_idx < total_dest_regs; 1346 dest_reg_idx++) 1347 { 1348 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1349 1350 // Instructions that use the misc regs will have a reg number 1351 // higher than the normal physical registers. In this case these 1352 // registers are not renamed, and there is no need to track 1353 // dependencies as these instructions must be executed at commit. 1354 if (dest_reg >= numPhysRegs) { 1355 continue; 1356 } 1357 1358 if (dependGraph[dest_reg].next) { 1359 dumpDependGraph(); 1360 panic("Dependency graph %i not empty!", dest_reg); 1361 } 1362 1363 dependGraph[dest_reg].inst = new_inst; 1364 1365 // Mark the scoreboard to say it's not yet ready. 1366 regScoreboard[dest_reg] = false; 1367 } 1368} 1369 1370template <class Impl> 1371void 1372InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1373{ 1374 //If the instruction now has all of its source registers 1375 // available, then add it to the list of ready instructions. 1376 if (inst->readyToIssue()) { 1377 1378 //Add the instruction to the proper ready list. 1379 if (inst->isMemRef()) { 1380 1381 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1382 1383 // Message to the mem dependence unit that this instruction has 1384 // its registers ready. 1385 1386 memDepUnit[inst->threadNumber].regsReady(inst); 1387 1388 return; 1389 } 1390 1391 OpClass op_class = inst->opClass(); 1392 1393 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1394 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1395 inst->readPC(), op_class, inst->seqNum); 1396 1397 readyInsts[op_class].push(inst); 1398 } 1399} 1400 1401template <class Impl> 1402int 1403InstructionQueue<Impl>::countInsts() 1404{ 1405 //ksewell:This works but definitely could use a cleaner write 1406 //with a more intuitive way of counting. Right now it's 1407 //just brute force .... 1408 1409#if 0 1410 int total_insts = 0; 1411 1412 for (int i = 0; i < numThreads; ++i) { 1413 ListIt count_it = instList[i].begin(); 1414 1415 while (count_it != instList[i].end()) { 1416 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1417 if (!(*count_it)->isIssued()) { 1418 ++total_insts; 1419 } else if ((*count_it)->isMemRef() && 1420 !(*count_it)->memOpDone) { 1421 // Loads that have not been marked as executed still count 1422 // towards the total instructions. 1423 ++total_insts; 1424 } 1425 } 1426 1427 ++count_it; 1428 } 1429 } 1430 1431 return total_insts; 1432#else 1433 return numEntries - freeEntries; 1434#endif 1435} 1436 1437template <class Impl> 1438void 1439InstructionQueue<Impl>::dumpDependGraph() 1440{ 1441 DependencyEntry *curr; 1442 1443 for (int i = 0; i < numPhysRegs; ++i) 1444 { 1445 curr = &dependGraph[i]; 1446 1447 if (curr->inst) { 1448 cprintf("dependGraph[%i]: producer: %#x [sn:%lli] consumer: ", 1449 i, curr->inst->readPC(), curr->inst->seqNum); 1450 } else { 1451 cprintf("dependGraph[%i]: No producer. consumer: ", i); 1452 } 1453 1454 while (curr->next != NULL) { 1455 curr = curr->next; 1456 1457 cprintf("%#x [sn:%lli] ", 1458 curr->inst->readPC(), curr->inst->seqNum); 1459 } 1460 1461 cprintf("\n"); 1462 } 1463} 1464 1465template <class Impl> 1466void 1467InstructionQueue<Impl>::dumpLists() 1468{ 1469 for (int i = 0; i < Num_OpClasses; ++i) { 1470 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1471 1472 cprintf("\n"); 1473 } 1474 1475 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1476 1477 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1478 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1479 1480 cprintf("Non speculative list: "); 1481 1482 while (non_spec_it != non_spec_end_it) { 1483 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1484 (*non_spec_it).second->seqNum); 1485 ++non_spec_it; 1486 } 1487 1488 cprintf("\n"); 1489 1490 ListOrderIt list_order_it = listOrder.begin(); 1491 ListOrderIt list_order_end_it = listOrder.end(); 1492 int i = 1; 1493 1494 cprintf("List order: "); 1495 1496 while (list_order_it != list_order_end_it) { 1497 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1498 (*list_order_it).oldestInst); 1499 1500 ++list_order_it; 1501 ++i; 1502 } 1503 1504 cprintf("\n"); 1505} 1506 1507 1508template <class Impl> 1509void 1510InstructionQueue<Impl>::dumpInsts() 1511{ 1512 for (int i = 0; i < numThreads; ++i) { 1513 int num = 0; 1514 int valid_num = 0; 1515 ListIt inst_list_it = instList[i].begin(); 1516 1517 while (inst_list_it != instList[i].end()) 1518 { 1519 cprintf("Instruction:%i\n", 1520 num); 1521 if (!(*inst_list_it)->isSquashed()) { 1522 if (!(*inst_list_it)->isIssued()) { 1523 ++valid_num; 1524 cprintf("Count:%i\n", valid_num); 1525 } else if ((*inst_list_it)->isMemRef() && 1526 !(*inst_list_it)->memOpDone) { 1527 // Loads that have not been marked as executed still count 1528 // towards the total instructions. 1529 ++valid_num; 1530 cprintf("Count:%i\n", valid_num); 1531 } 1532 } 1533 1534 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1535 "Issued:%i\nSquashed:%i\n", 1536 (*inst_list_it)->readPC(), 1537 (*inst_list_it)->seqNum, 1538 (*inst_list_it)->threadNumber, 1539 (*inst_list_it)->isIssued(), 1540 (*inst_list_it)->isSquashed()); 1541 1542 if ((*inst_list_it)->isMemRef()) { 1543 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1544 } 1545 1546 cprintf("\n"); 1547 1548 inst_list_it++; 1549 ++num; 1550 } 1551 } 1552} 1553