inst_queue_impl.hh revision 2292
1/* 2 * Copyright (c) 2004-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29// Todo: 30// Current ordering allows for 0 cycle added-to-scheduled. Could maybe fake 31// it; either do in reverse order, or have added instructions put into a 32// different ready queue that, in scheduleRreadyInsts(), gets put onto the 33// normal ready queue. This would however give only a one cycle delay, 34// but probably is more flexible to actually add in a delay parameter than 35// just running it backwards. 36 37#include <limits> 38#include <vector> 39 40#include "sim/root.hh" 41 42#include "cpu/o3/fu_pool.hh" 43#include "cpu/o3/inst_queue.hh" 44 45using namespace std; 46 47template <class Impl> 48InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 49 int fu_idx, 50 InstructionQueue<Impl> *iq_ptr) 51 : Event(&mainEventQueue, Stat_Event_Pri), 52 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr) 53{ 54 this->setFlags(Event::AutoDelete); 55} 56 57template <class Impl> 58void 59InstructionQueue<Impl>::FUCompletion::process() 60{ 61 iqPtr->processFUCompletion(inst, fuIdx); 62 inst = NULL; 63} 64 65 66template <class Impl> 67const char * 68InstructionQueue<Impl>::FUCompletion::description() 69{ 70 return "Functional unit completion event"; 71} 72 73template <class Impl> 74InstructionQueue<Impl>::InstructionQueue(Params *params) 75 : dcacheInterface(params->dcacheInterface), 76 fuPool(params->fuPool), 77 numEntries(params->numIQEntries), 78 totalWidth(params->issueWidth), 79 numPhysIntRegs(params->numPhysIntRegs), 80 numPhysFloatRegs(params->numPhysFloatRegs), 81 commitToIEWDelay(params->commitToIEWDelay) 82{ 83 assert(fuPool); 84 85 numThreads = params->numberOfThreads; 86 87 //Initialize thread IQ counts 88 for (int i = 0; i <numThreads; i++) { 89 count[i] = 0; 90 } 91 92 // Initialize the number of free IQ entries. 93 freeEntries = numEntries; 94 95 // Set the number of physical registers as the number of int + float 96 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 97 98 DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs); 99 100 //Create an entry for each physical register within the 101 //dependency graph. 102 dependGraph = new DependencyEntry[numPhysRegs]; 103 104 // Resize the register scoreboard. 105 regScoreboard.resize(numPhysRegs); 106 107 //Initialize Mem Dependence Units 108 for (int i = 0; i < numThreads; i++) { 109 memDepUnit[i].init(params,i); 110 memDepUnit[i].setIQ(this); 111 } 112 113 // Initialize all the head pointers to point to NULL, and all the 114 // entries as unready. 115 // Note that in actuality, the registers corresponding to the logical 116 // registers start off as ready. However this doesn't matter for the 117 // IQ as the instruction should have been correctly told if those 118 // registers are ready in rename. Thus it can all be initialized as 119 // unready. 120 for (int i = 0; i < numPhysRegs; ++i) { 121 dependGraph[i].next = NULL; 122 dependGraph[i].inst = NULL; 123 regScoreboard[i] = false; 124 } 125 126 for (int i = 0; i < numThreads; ++i) { 127 squashedSeqNum[i] = 0; 128 } 129 130 for (int i = 0; i < Num_OpClasses; ++i) { 131 queueOnList[i] = false; 132 readyIt[i] = listOrder.end(); 133 } 134 135 string policy = params->smtIQPolicy; 136 137 //Convert string to lowercase 138 std::transform(policy.begin(), policy.end(), policy.begin(), 139 (int(*)(int)) tolower); 140 141 //Figure out resource sharing policy 142 if (policy == "dynamic") { 143 iqPolicy = Dynamic; 144 145 //Set Max Entries to Total ROB Capacity 146 for (int i = 0; i < numThreads; i++) { 147 maxEntries[i] = numEntries; 148 } 149 150 } else if (policy == "partitioned") { 151 iqPolicy = Partitioned; 152 153 //@todo:make work if part_amt doesnt divide evenly. 154 int part_amt = numEntries / numThreads; 155 156 //Divide ROB up evenly 157 for (int i = 0; i < numThreads; i++) { 158 maxEntries[i] = part_amt; 159 } 160 161 DPRINTF(Fetch, "IQ sharing policy set to Partitioned:" 162 "%i entries per thread.\n",part_amt); 163 164 } else if (policy == "threshold") { 165 iqPolicy = Threshold; 166 167 double threshold = (double)params->smtIQThreshold / 100; 168 169 int thresholdIQ = (int)((double)threshold * numEntries); 170 171 //Divide up by threshold amount 172 for (int i = 0; i < numThreads; i++) { 173 maxEntries[i] = thresholdIQ; 174 } 175 176 DPRINTF(Fetch, "IQ sharing policy set to Threshold:" 177 "%i entries per thread.\n",thresholdIQ); 178 } else { 179 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 180 "Partitioned, Threshold}"); 181 } 182} 183 184template <class Impl> 185InstructionQueue<Impl>::~InstructionQueue() 186{ 187 // Clear the dependency graph 188 DependencyEntry *curr; 189 DependencyEntry *prev; 190 191 for (int i = 0; i < numPhysRegs; ++i) { 192 curr = dependGraph[i].next; 193 194 while (curr) { 195 DependencyEntry::mem_alloc_counter--; 196 197 prev = curr; 198 curr = prev->next; 199 prev->inst = NULL; 200 201 delete prev; 202 } 203 204 if (dependGraph[i].inst) { 205 dependGraph[i].inst = NULL; 206 } 207 208 dependGraph[i].next = NULL; 209 } 210 211 assert(DependencyEntry::mem_alloc_counter == 0); 212 213 delete [] dependGraph; 214} 215 216template <class Impl> 217std::string 218InstructionQueue<Impl>::name() const 219{ 220 return cpu->name() + ".iq"; 221} 222 223template <class Impl> 224void 225InstructionQueue<Impl>::regStats() 226{ 227 iqInstsAdded 228 .name(name() + ".iqInstsAdded") 229 .desc("Number of instructions added to the IQ (excludes non-spec)") 230 .prereq(iqInstsAdded); 231 232 iqNonSpecInstsAdded 233 .name(name() + ".iqNonSpecInstsAdded") 234 .desc("Number of non-speculative instructions added to the IQ") 235 .prereq(iqNonSpecInstsAdded); 236 237// iqIntInstsAdded; 238 239 iqIntInstsIssued 240 .name(name() + ".iqIntInstsIssued") 241 .desc("Number of integer instructions issued") 242 .prereq(iqIntInstsIssued); 243 244// iqFloatInstsAdded; 245 246 iqFloatInstsIssued 247 .name(name() + ".iqFloatInstsIssued") 248 .desc("Number of float instructions issued") 249 .prereq(iqFloatInstsIssued); 250 251// iqBranchInstsAdded; 252 253 iqBranchInstsIssued 254 .name(name() + ".iqBranchInstsIssued") 255 .desc("Number of branch instructions issued") 256 .prereq(iqBranchInstsIssued); 257 258// iqMemInstsAdded; 259 260 iqMemInstsIssued 261 .name(name() + ".iqMemInstsIssued") 262 .desc("Number of memory instructions issued") 263 .prereq(iqMemInstsIssued); 264 265// iqMiscInstsAdded; 266 267 iqMiscInstsIssued 268 .name(name() + ".iqMiscInstsIssued") 269 .desc("Number of miscellaneous instructions issued") 270 .prereq(iqMiscInstsIssued); 271 272 iqSquashedInstsIssued 273 .name(name() + ".iqSquashedInstsIssued") 274 .desc("Number of squashed instructions issued") 275 .prereq(iqSquashedInstsIssued); 276 277 iqSquashedInstsExamined 278 .name(name() + ".iqSquashedInstsExamined") 279 .desc("Number of squashed instructions iterated over during squash;" 280 " mainly for profiling") 281 .prereq(iqSquashedInstsExamined); 282 283 iqSquashedOperandsExamined 284 .name(name() + ".iqSquashedOperandsExamined") 285 .desc("Number of squashed operands that are examined and possibly " 286 "removed from graph") 287 .prereq(iqSquashedOperandsExamined); 288 289 iqSquashedNonSpecRemoved 290 .name(name() + ".iqSquashedNonSpecRemoved") 291 .desc("Number of squashed non-spec instructions that were removed") 292 .prereq(iqSquashedNonSpecRemoved); 293 294 for ( int i=0; i < numThreads; i++) { 295 // Tell mem dependence unit to reg stats as well. 296 memDepUnit[i].regStats(); 297 } 298} 299 300template <class Impl> 301void 302InstructionQueue<Impl>::setActiveThreads(list<unsigned> *at_ptr) 303{ 304 DPRINTF(IQ, "Setting active threads list pointer.\n"); 305 activeThreads = at_ptr; 306} 307 308template <class Impl> 309void 310InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 311{ 312 DPRINTF(IQ, "Set the issue to execute queue.\n"); 313 issueToExecuteQueue = i2e_ptr; 314} 315 316template <class Impl> 317void 318InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 319{ 320 DPRINTF(IQ, "Set the time buffer.\n"); 321 timeBuffer = tb_ptr; 322 323 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 324} 325 326template <class Impl> 327int 328InstructionQueue<Impl>::entryAmount(int num_threads) 329{ 330 if (iqPolicy == Partitioned) { 331 return numEntries / num_threads; 332 } else { 333 return 0; 334 } 335} 336 337 338template <class Impl> 339void 340InstructionQueue<Impl>::resetEntries() 341{ 342 if (iqPolicy != Dynamic || numThreads > 1) { 343 int active_threads = (*activeThreads).size(); 344 345 list<unsigned>::iterator threads = (*activeThreads).begin(); 346 list<unsigned>::iterator list_end = (*activeThreads).end(); 347 348 while (threads != list_end) { 349 if (iqPolicy == Partitioned) { 350 maxEntries[*threads++] = numEntries / active_threads; 351 } else if(iqPolicy == Threshold && active_threads == 1) { 352 maxEntries[*threads++] = numEntries; 353 } 354 } 355 } 356} 357 358template <class Impl> 359unsigned 360InstructionQueue<Impl>::numFreeEntries() 361{ 362 return freeEntries; 363} 364 365template <class Impl> 366unsigned 367InstructionQueue<Impl>::numFreeEntries(unsigned tid) 368{ 369 return maxEntries[tid] - count[tid]; 370} 371 372// Might want to do something more complex if it knows how many instructions 373// will be issued this cycle. 374template <class Impl> 375bool 376InstructionQueue<Impl>::isFull() 377{ 378 if (freeEntries == 0) { 379 return(true); 380 } else { 381 return(false); 382 } 383} 384 385template <class Impl> 386bool 387InstructionQueue<Impl>::isFull(unsigned tid) 388{ 389 if (numFreeEntries(tid) == 0) { 390 return(true); 391 } else { 392 return(false); 393 } 394} 395 396template <class Impl> 397bool 398InstructionQueue<Impl>::hasReadyInsts() 399{ 400 if (!listOrder.empty()) { 401 return true; 402 } 403 404 for (int i = 0; i < Num_OpClasses; ++i) { 405 if (!readyInsts[i].empty()) { 406 return true; 407 } 408 } 409 410 return false; 411} 412 413template <class Impl> 414void 415InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 416{ 417 // Make sure the instruction is valid 418 assert(new_inst); 419 420 DPRINTF(IQ, "Adding instruction PC %#x to the IQ.\n", 421 new_inst->readPC()); 422 423 // Check if there are any free entries. Panic if there are none. 424 // Might want to have this return a fault in the future instead of 425 // panicing. 426 assert(freeEntries != 0); 427 428 instList[new_inst->threadNumber].push_back(new_inst); 429 430 // Decrease the number of free entries. 431 --freeEntries; 432 433 //Mark Instruction as in IQ 434 new_inst->setInIQ(); 435 436 // Look through its source registers (physical regs), and mark any 437 // dependencies. 438 addToDependents(new_inst); 439 440 // Have this instruction set itself as the producer of its destination 441 // register(s). 442 createDependency(new_inst); 443 444 // If it's a memory instruction, add it to the memory dependency 445 // unit. 446 if (new_inst->isMemRef()) { 447 memDepUnit[new_inst->threadNumber].insert(new_inst); 448 } else { 449 // If the instruction is ready then add it to the ready list. 450 addIfReady(new_inst); 451 } 452 453 ++iqInstsAdded; 454 455 456 //Update Thread IQ Count 457 count[new_inst->threadNumber]++; 458 459 assert(freeEntries == (numEntries - countInsts())); 460} 461 462template <class Impl> 463void 464InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 465{ 466 // @todo: Clean up this code; can do it by setting inst as unable 467 // to issue, then calling normal insert on the inst. 468 469 // Make sure the instruction is valid 470 assert(new_inst); 471 472 nonSpecInsts[new_inst->seqNum] = new_inst; 473 474 DPRINTF(IQ, "Adding instruction PC %#x to the IQ.\n", 475 new_inst->readPC()); 476 477 // Check if there are any free entries. Panic if there are none. 478 // Might want to have this return a fault in the future instead of 479 // panicing. 480 assert(freeEntries != 0); 481 482 instList[new_inst->threadNumber].push_back(new_inst); 483 484 // Decrease the number of free entries. 485 --freeEntries; 486 487 //Mark Instruction as in IQ 488 new_inst->setInIQ(); 489 490 // Have this instruction set itself as the producer of its destination 491 // register(s). 492 createDependency(new_inst); 493 494 // If it's a memory instruction, add it to the memory dependency 495 // unit. 496 if (new_inst->isMemRef()) { 497 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 498 } 499 500 ++iqNonSpecInstsAdded; 501 502 //Update Thread IQ Count 503 count[new_inst->threadNumber]++; 504 505 assert(freeEntries == (numEntries - countInsts())); 506} 507 508template <class Impl> 509void 510InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 511{ 512 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 513 514 insertNonSpec(barr_inst); 515} 516 517template <class Impl> 518void 519InstructionQueue<Impl>::advanceTail(DynInstPtr &inst) 520{ 521 // Have this instruction set itself as the producer of its destination 522 // register(s). 523 createDependency(inst); 524} 525 526template <class Impl> 527void 528InstructionQueue<Impl>::addToOrderList(OpClass op_class) 529{ 530 assert(!readyInsts[op_class].empty()); 531 532 ListOrderEntry queue_entry; 533 534 queue_entry.queueType = op_class; 535 536 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 537 538 ListOrderIt list_it = listOrder.begin(); 539 ListOrderIt list_end_it = listOrder.end(); 540 541 while (list_it != list_end_it) { 542 if ((*list_it).oldestInst > queue_entry.oldestInst) { 543 break; 544 } 545 546 list_it++; 547 } 548 549 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 550 queueOnList[op_class] = true; 551} 552 553template <class Impl> 554void 555InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 556{ 557 // Get iterator of next item on the list 558 // Delete the original iterator 559 // Determine if the next item is either the end of the list or younger 560 // than the new instruction. If so, then add in a new iterator right here. 561 // If not, then move along. 562 ListOrderEntry queue_entry; 563 OpClass op_class = (*list_order_it).queueType; 564 ListOrderIt next_it = list_order_it; 565 566 ++next_it; 567 568 queue_entry.queueType = op_class; 569 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 570 571 while (next_it != listOrder.end() && 572 (*next_it).oldestInst < queue_entry.oldestInst) { 573 ++next_it; 574 } 575 576 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 577} 578 579template <class Impl> 580void 581InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 582{ 583 // The CPU could have been sleeping until this op completed (*extremely* 584 // long latency op). Wake it if it was. This may be overkill. 585 iewStage->wakeCPU(); 586 587 fuPool->freeUnit(fu_idx); 588 589 int &size = issueToExecuteQueue->access(0)->size; 590 591 issueToExecuteQueue->access(0)->insts[size++] = inst; 592} 593 594// @todo: Figure out a better way to remove the squashed items from the 595// lists. Checking the top item of each list to see if it's squashed 596// wastes time and forces jumps. 597template <class Impl> 598void 599InstructionQueue<Impl>::scheduleReadyInsts() 600{ 601 DPRINTF(IQ, "Attempting to schedule ready instructions from " 602 "the IQ.\n"); 603 604 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 605 606 // Will need to reorder the list if either a queue is not on the list, 607 // or it has an older instruction than last time. 608 for (int i = 0; i < Num_OpClasses; ++i) { 609 if (!readyInsts[i].empty()) { 610 if (!queueOnList[i]) { 611 addToOrderList(OpClass(i)); 612 } else if (readyInsts[i].top()->seqNum < 613 (*readyIt[i]).oldestInst) { 614 listOrder.erase(readyIt[i]); 615 addToOrderList(OpClass(i)); 616 } 617 } 618 } 619 620 // Have iterator to head of the list 621 // While I haven't exceeded bandwidth or reached the end of the list, 622 // Try to get a FU that can do what this op needs. 623 // If successful, change the oldestInst to the new top of the list, put 624 // the queue in the proper place in the list. 625 // Increment the iterator. 626 // This will avoid trying to schedule a certain op class if there are no 627 // FUs that handle it. 628 ListOrderIt order_it = listOrder.begin(); 629 ListOrderIt order_end_it = listOrder.end(); 630 int total_issued = 0; 631 int exec_queue_slot = i2e_info->size; 632 633 while (exec_queue_slot < totalWidth && order_it != order_end_it) { 634 OpClass op_class = (*order_it).queueType; 635 636 assert(!readyInsts[op_class].empty()); 637 638 DynInstPtr issuing_inst = readyInsts[op_class].top(); 639 640 assert(issuing_inst->seqNum == (*order_it).oldestInst); 641 642 if (issuing_inst->isSquashed()) { 643 readyInsts[op_class].pop(); 644 645 if (!readyInsts[op_class].empty()) { 646 moveToYoungerInst(order_it); 647 } else { 648 readyIt[op_class] = listOrder.end(); 649 queueOnList[op_class] = false; 650 } 651 652 listOrder.erase(order_it++); 653 654 ++iqSquashedInstsIssued; 655 656 continue; 657 } 658 659 int idx = fuPool->getUnit(op_class); 660 661 if (idx == -2) { 662 assert(op_class == No_OpClass); 663 664 i2e_info->insts[exec_queue_slot++] = issuing_inst; 665 i2e_info->size++; 666 667 DPRINTF(IQ, "Thread %i: Issuing instruction PC that needs no FU" 668 " %#x [sn:%lli]\n", 669 issuing_inst->threadNumber, issuing_inst->readPC(), 670 issuing_inst->seqNum); 671 672 readyInsts[op_class].pop(); 673 674 if (!readyInsts[op_class].empty()) { 675 moveToYoungerInst(order_it); 676 } else { 677 readyIt[op_class] = listOrder.end(); 678 queueOnList[op_class] = false; 679 } 680 681 issuing_inst->setIssued(); 682 ++total_issued; 683 684 if (!issuing_inst->isMemRef()) { 685 // Memory instructions can not be freed from the IQ until they 686 // complete. 687 ++freeEntries; 688 count[issuing_inst->threadNumber]--; 689 issuing_inst->removeInIQ(); 690 } else { 691 memDepUnit[issuing_inst->threadNumber].issue(issuing_inst); 692 } 693 694 listOrder.erase(order_it++); 695 696 } else if (idx != -1) { 697 int op_latency = fuPool->getOpLatency(op_class); 698 699 if (op_latency == 1) { 700 i2e_info->insts[exec_queue_slot++] = issuing_inst; 701 i2e_info->size++; 702 703 // Add the FU onto the list of FU's to be freed next cycle. 704 fuPool->freeUnit(idx); 705 } else { 706 int issue_latency = fuPool->getIssueLatency(op_class); 707 708 if (issue_latency > 1) { 709 // Generate completion event for the FU 710 FUCompletion *execution = new FUCompletion(issuing_inst, 711 idx, this); 712 713 execution->schedule(curTick + issue_latency - 1); 714 } else { 715 i2e_info->insts[exec_queue_slot++] = issuing_inst; 716 i2e_info->size++; 717 718 // Add the FU onto the list of FU's to be freed next cycle. 719 fuPool->freeUnit(idx); 720 } 721 } 722 723 DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x " 724 "[sn:%lli]\n", 725 issuing_inst->threadNumber, issuing_inst->readPC(), 726 issuing_inst->seqNum); 727 728 readyInsts[op_class].pop(); 729 730 if (!readyInsts[op_class].empty()) { 731 moveToYoungerInst(order_it); 732 } else { 733 readyIt[op_class] = listOrder.end(); 734 queueOnList[op_class] = false; 735 } 736 737 issuing_inst->setIssued(); 738 ++total_issued; 739 740 if (!issuing_inst->isMemRef()) { 741 // Memory instructions can not be freed from the IQ until they 742 // complete. 743 ++freeEntries; 744 count[issuing_inst->threadNumber]--; 745 issuing_inst->removeInIQ(); 746 } else { 747 memDepUnit[issuing_inst->threadNumber].issue(issuing_inst); 748 } 749 750 listOrder.erase(order_it++); 751 } else { 752 ++order_it; 753 } 754 } 755 756 if (total_issued) { 757 cpu->activityThisCycle(); 758 } else { 759 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 760 } 761} 762 763template <class Impl> 764void 765InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 766{ 767 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 768 "to execute.\n", inst); 769 770 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 771 772 assert(inst_it != nonSpecInsts.end()); 773 774 unsigned tid = (*inst_it).second->threadNumber; 775 776 // Mark this instruction as ready to issue. 777 (*inst_it).second->setCanIssue(); 778 779 // Now schedule the instruction. 780 if (!(*inst_it).second->isMemRef()) { 781 addIfReady((*inst_it).second); 782 } else { 783 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 784 } 785 786 (*inst_it).second = NULL; 787 788 nonSpecInsts.erase(inst_it); 789} 790 791template <class Impl> 792void 793InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid) 794{ 795 /*Need to go through each thread??*/ 796 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 797 tid,inst); 798 799 ListIt iq_it = instList[tid].begin(); 800 801 while (iq_it != instList[tid].end() && 802 (*iq_it)->seqNum <= inst) { 803 ++iq_it; 804 instList[tid].pop_front(); 805 } 806 807 assert(freeEntries == (numEntries - countInsts())); 808} 809 810template <class Impl> 811void 812InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 813{ 814 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 815 816 assert(!completed_inst->isSquashed()); 817 // Look at the physical destination register of the DynInst 818 // and look it up on the dependency graph. Then mark as ready 819 // any instructions within the instruction queue. 820 DependencyEntry *curr; 821 DependencyEntry *prev; 822 823 // Tell the memory dependence unit to wake any dependents on this 824 // instruction if it is a memory instruction. Also complete the memory 825 // instruction at this point since we know it executed fine. 826 // @todo: Might want to rename "completeMemInst" to 827 // something that indicates that it won't need to be replayed, and call 828 // this earlier. Might not be a big deal. 829 if (completed_inst->isMemRef()) { 830 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 831 completeMemInst(completed_inst); 832 } else if (completed_inst->isMemBarrier() || 833 completed_inst->isWriteBarrier()) { 834 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 835 } 836 837 for (int dest_reg_idx = 0; 838 dest_reg_idx < completed_inst->numDestRegs(); 839 dest_reg_idx++) 840 { 841 PhysRegIndex dest_reg = 842 completed_inst->renamedDestRegIdx(dest_reg_idx); 843 844 // Special case of uniq or control registers. They are not 845 // handled by the IQ and thus have no dependency graph entry. 846 // @todo Figure out a cleaner way to handle this. 847 if (dest_reg >= numPhysRegs) { 848 continue; 849 } 850 851 DPRINTF(IQ, "Waking any dependents on register %i.\n", 852 (int) dest_reg); 853 854 //Maybe abstract this part into a function. 855 //Go through the dependency chain, marking the registers as ready 856 //within the waiting instructions. 857 858 curr = dependGraph[dest_reg].next; 859 860 while (curr) { 861 DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n", 862 curr->inst->readPC()); 863 864 // Might want to give more information to the instruction 865 // so that it knows which of its source registers is ready. 866 // However that would mean that the dependency graph entries 867 // would need to hold the src_reg_idx. 868 curr->inst->markSrcRegReady(); 869 870 addIfReady(curr->inst); 871 872 DependencyEntry::mem_alloc_counter--; 873 874 prev = curr; 875 curr = prev->next; 876 prev->inst = NULL; 877 878 delete prev; 879 } 880 881 // Reset the head node now that all of its dependents have been woken 882 // up. 883 dependGraph[dest_reg].next = NULL; 884 dependGraph[dest_reg].inst = NULL; 885 886 // Mark the scoreboard as having that register ready. 887 regScoreboard[dest_reg] = true; 888 } 889} 890 891template <class Impl> 892void 893InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 894{ 895 OpClass op_class = ready_inst->opClass(); 896 897 readyInsts[op_class].push(ready_inst); 898 899 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 900 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 901 ready_inst->readPC(), op_class, ready_inst->seqNum); 902} 903 904template <class Impl> 905void 906InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 907{ 908 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 909} 910 911template <class Impl> 912void 913InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 914{ 915 memDepUnit[replay_inst->threadNumber].replay(replay_inst); 916} 917 918template <class Impl> 919void 920InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 921{ 922 int tid = completed_inst->threadNumber; 923 924 DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n", 925 completed_inst->readPC(), completed_inst->seqNum); 926 927 ++freeEntries; 928 929 completed_inst->memOpDone = true; 930 931 memDepUnit[tid].completed(completed_inst); 932 933 count[tid]--; 934} 935 936template <class Impl> 937void 938InstructionQueue<Impl>::violation(DynInstPtr &store, 939 DynInstPtr &faulting_load) 940{ 941 memDepUnit[store->threadNumber].violation(store, faulting_load); 942} 943 944template <class Impl> 945void 946InstructionQueue<Impl>::squash(unsigned tid) 947{ 948 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 949 "the IQ.\n", tid); 950 951 // Read instruction sequence number of last instruction out of the 952 // time buffer. 953 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 954 955 // Setup the squash iterator to point to the tail. 956 squashIt[tid] = instList[tid].end(); 957 --squashIt[tid]; 958 959 // Call doSquash if there are insts in the IQ 960 if (count[tid] > 0) { 961 doSquash(tid); 962 } 963 964 // Also tell the memory dependence unit to squash. 965 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 966} 967 968template <class Impl> 969void 970InstructionQueue<Impl>::doSquash(unsigned tid) 971{ 972 // Make sure the squashed sequence number is valid. 973// assert(squashedSeqNum[tid] != 0); 974 975 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 976 tid, squashedSeqNum[tid]); 977 978 // Squash any instructions younger than the squashed sequence number 979 // given. 980 while (squashIt[tid] != instList[tid].end() && 981 (*squashIt[tid])->seqNum > squashedSeqNum[tid]) { 982 983 DynInstPtr squashed_inst = (*squashIt[tid]); 984 985 // Only handle the instruction if it actually is in the IQ and 986 // hasn't already been squashed in the IQ. 987 if (squashed_inst->threadNumber != tid || 988 squashed_inst->isSquashedInIQ()) { 989 --squashIt[tid]; 990 continue; 991 } 992 993 if (!squashed_inst->isIssued() || 994 (squashed_inst->isMemRef() && 995 !squashed_inst->memOpDone)) { 996 997 // Remove the instruction from the dependency list. 998 if (!squashed_inst->isNonSpeculative() && 999 !squashed_inst->isMemBarrier() && 1000 !squashed_inst->isWriteBarrier()) { 1001 1002 for (int src_reg_idx = 0; 1003 src_reg_idx < squashed_inst->numSrcRegs(); 1004 src_reg_idx++) 1005 { 1006 PhysRegIndex src_reg = 1007 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1008 1009 // Only remove it from the dependency graph if it was 1010 // placed there in the first place. 1011 // HACK: This assumes that instructions woken up from the 1012 // dependency chain aren't informed that a specific src 1013 // register has become ready. This may not always be true 1014 // in the future. 1015 // Instead of doing a linked list traversal, we can just 1016 // remove these squashed instructions either at issue time, 1017 // or when the register is overwritten. The only downside 1018 // to this is it leaves more room for error. 1019 1020 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1021 src_reg < numPhysRegs) { 1022 dependGraph[src_reg].remove(squashed_inst); 1023 } 1024 1025 1026 ++iqSquashedOperandsExamined; 1027 } 1028 1029 // Might want to remove producers as well. 1030 } else { 1031 NonSpecMapIt ns_inst_it = 1032 nonSpecInsts.find(squashed_inst->seqNum); 1033 assert(ns_inst_it != nonSpecInsts.end()); 1034 1035 (*ns_inst_it).second = NULL; 1036 1037 nonSpecInsts.erase(ns_inst_it); 1038 1039 ++iqSquashedNonSpecRemoved; 1040 } 1041 1042 // Might want to also clear out the head of the dependency graph. 1043 1044 // Mark it as squashed within the IQ. 1045 squashed_inst->setSquashedInIQ(); 1046 1047 // @todo: Remove this hack where several statuses are set so the 1048 // inst will flow through the rest of the pipeline. 1049 squashed_inst->setIssued(); 1050 squashed_inst->setCanCommit(); 1051 squashed_inst->removeInIQ(); 1052 1053 //Update Thread IQ Count 1054 count[squashed_inst->threadNumber]--; 1055 1056 ++freeEntries; 1057 1058 if (numThreads > 1) { 1059 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x " 1060 "squashed.\n", 1061 tid, squashed_inst->seqNum, squashed_inst->readPC()); 1062 } else { 1063 DPRINTF(IQ, "Instruction [sn:%lli] PC %#x squashed.\n", 1064 squashed_inst->seqNum, squashed_inst->readPC()); 1065 } 1066 } 1067 1068 instList[tid].erase(squashIt[tid]--); 1069 ++iqSquashedInstsExamined; 1070 } 1071} 1072 1073template <class Impl> 1074void 1075InstructionQueue<Impl>::DependencyEntry::insert(DynInstPtr &new_inst) 1076{ 1077 //Add this new, dependent instruction at the head of the dependency 1078 //chain. 1079 1080 // First create the entry that will be added to the head of the 1081 // dependency chain. 1082 DependencyEntry *new_entry = new DependencyEntry; 1083 new_entry->next = this->next; 1084 new_entry->inst = new_inst; 1085 1086 // Then actually add it to the chain. 1087 this->next = new_entry; 1088 1089 ++mem_alloc_counter; 1090} 1091 1092template <class Impl> 1093void 1094InstructionQueue<Impl>::DependencyEntry::remove(DynInstPtr &inst_to_remove) 1095{ 1096 DependencyEntry *prev = this; 1097 DependencyEntry *curr = this->next; 1098 1099 // Make sure curr isn't NULL. Because this instruction is being 1100 // removed from a dependency list, it must have been placed there at 1101 // an earlier time. The dependency chain should not be empty, 1102 // unless the instruction dependent upon it is already ready. 1103 if (curr == NULL) { 1104 return; 1105 } 1106 1107 // Find the instruction to remove within the dependency linked list. 1108 while (curr->inst != inst_to_remove) { 1109 prev = curr; 1110 curr = curr->next; 1111 1112 assert(curr != NULL); 1113 } 1114 1115 // Now remove this instruction from the list. 1116 prev->next = curr->next; 1117 1118 --mem_alloc_counter; 1119 1120 // Could push this off to the destructor of DependencyEntry 1121 curr->inst = NULL; 1122 1123 delete curr; 1124} 1125 1126template <class Impl> 1127bool 1128InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1129{ 1130 // Loop through the instruction's source registers, adding 1131 // them to the dependency list if they are not ready. 1132 int8_t total_src_regs = new_inst->numSrcRegs(); 1133 bool return_val = false; 1134 1135 for (int src_reg_idx = 0; 1136 src_reg_idx < total_src_regs; 1137 src_reg_idx++) 1138 { 1139 // Only add it to the dependency graph if it's not ready. 1140 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1141 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1142 1143 // Check the IQ's scoreboard to make sure the register 1144 // hasn't become ready while the instruction was in flight 1145 // between stages. Only if it really isn't ready should 1146 // it be added to the dependency graph. 1147 if (src_reg >= numPhysRegs) { 1148 continue; 1149 } else if (regScoreboard[src_reg] == false) { 1150 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1151 "is being added to the dependency chain.\n", 1152 new_inst->readPC(), src_reg); 1153 1154 dependGraph[src_reg].insert(new_inst); 1155 1156 // Change the return value to indicate that something 1157 // was added to the dependency graph. 1158 return_val = true; 1159 } else { 1160 DPRINTF(IQ, "Instruction PC %#x has src reg %i that " 1161 "became ready before it reached the IQ.\n", 1162 new_inst->readPC(), src_reg); 1163 // Mark a register ready within the instruction. 1164 new_inst->markSrcRegReady(); 1165 } 1166 } 1167 } 1168 1169 return return_val; 1170} 1171 1172template <class Impl> 1173void 1174InstructionQueue<Impl>::createDependency(DynInstPtr &new_inst) 1175{ 1176 //Actually nothing really needs to be marked when an 1177 //instruction becomes the producer of a register's value, 1178 //but for convenience a ptr to the producing instruction will 1179 //be placed in the head node of the dependency links. 1180 int8_t total_dest_regs = new_inst->numDestRegs(); 1181 1182 for (int dest_reg_idx = 0; 1183 dest_reg_idx < total_dest_regs; 1184 dest_reg_idx++) 1185 { 1186 PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1187 1188 // Instructions that use the misc regs will have a reg number 1189 // higher than the normal physical registers. In this case these 1190 // registers are not renamed, and there is no need to track 1191 // dependencies as these instructions must be executed at commit. 1192 if (dest_reg >= numPhysRegs) { 1193 continue; 1194 } 1195 1196 if (dependGraph[dest_reg].next) { 1197 dumpDependGraph(); 1198 panic("Dependency graph %i not empty!", dest_reg); 1199 } 1200 1201 dependGraph[dest_reg].inst = new_inst; 1202 1203 // Mark the scoreboard to say it's not yet ready. 1204 regScoreboard[dest_reg] = false; 1205 } 1206} 1207 1208template <class Impl> 1209void 1210InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1211{ 1212 //If the instruction now has all of its source registers 1213 // available, then add it to the list of ready instructions. 1214 if (inst->readyToIssue()) { 1215 1216 //Add the instruction to the proper ready list. 1217 if (inst->isMemRef()) { 1218 1219 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1220 1221 // Message to the mem dependence unit that this instruction has 1222 // its registers ready. 1223 1224 memDepUnit[inst->threadNumber].regsReady(inst); 1225 1226 return; 1227 } 1228 1229 OpClass op_class = inst->opClass(); 1230 1231 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1232 "the ready list, PC %#x opclass:%i [sn:%lli].\n", 1233 inst->readPC(), op_class, inst->seqNum); 1234 1235 readyInsts[op_class].push(inst); 1236 } 1237} 1238 1239template <class Impl> 1240int 1241InstructionQueue<Impl>::countInsts() 1242{ 1243 //ksewell:This works but definitely could use a cleaner write 1244 //with a more intuitive way of counting. Right now it's 1245 //just brute force .... 1246 1247#if 0 1248 int total_insts = 0; 1249 1250 for (int i = 0; i < numThreads; ++i) { 1251 ListIt count_it = instList[i].begin(); 1252 1253 while (count_it != instList[i].end()) { 1254 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1255 if (!(*count_it)->isIssued()) { 1256 ++total_insts; 1257 } else if ((*count_it)->isMemRef() && 1258 !(*count_it)->memOpDone) { 1259 // Loads that have not been marked as executed still count 1260 // towards the total instructions. 1261 ++total_insts; 1262 } 1263 } 1264 1265 ++count_it; 1266 } 1267 } 1268 1269 return total_insts; 1270#else 1271 return numEntries - freeEntries; 1272#endif 1273} 1274 1275template <class Impl> 1276void 1277InstructionQueue<Impl>::dumpDependGraph() 1278{ 1279 DependencyEntry *curr; 1280 1281 for (int i = 0; i < numPhysRegs; ++i) 1282 { 1283 curr = &dependGraph[i]; 1284 1285 if (curr->inst) { 1286 cprintf("dependGraph[%i]: producer: %#x [sn:%lli] consumer: ", 1287 i, curr->inst->readPC(), curr->inst->seqNum); 1288 } else { 1289 cprintf("dependGraph[%i]: No producer. consumer: ", i); 1290 } 1291 1292 while (curr->next != NULL) { 1293 curr = curr->next; 1294 1295 cprintf("%#x [sn:%lli] ", 1296 curr->inst->readPC(), curr->inst->seqNum); 1297 } 1298 1299 cprintf("\n"); 1300 } 1301} 1302 1303template <class Impl> 1304void 1305InstructionQueue<Impl>::dumpLists() 1306{ 1307 for (int i = 0; i < Num_OpClasses; ++i) { 1308 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1309 1310 cprintf("\n"); 1311 } 1312 1313 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1314 1315 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1316 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1317 1318 cprintf("Non speculative list: "); 1319 1320 while (non_spec_it != non_spec_end_it) { 1321 cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(), 1322 (*non_spec_it).second->seqNum); 1323 ++non_spec_it; 1324 } 1325 1326 cprintf("\n"); 1327 1328 ListOrderIt list_order_it = listOrder.begin(); 1329 ListOrderIt list_order_end_it = listOrder.end(); 1330 int i = 1; 1331 1332 cprintf("List order: "); 1333 1334 while (list_order_it != list_order_end_it) { 1335 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1336 (*list_order_it).oldestInst); 1337 1338 ++list_order_it; 1339 ++i; 1340 } 1341 1342 cprintf("\n"); 1343} 1344 1345 1346template <class Impl> 1347void 1348InstructionQueue<Impl>::dumpInsts() 1349{ 1350 for (int i = 0; i < numThreads; ++i) { 1351 int num = 0; 1352 int valid_num = 0; 1353 ListIt inst_list_it = instList[i].begin(); 1354 1355 while (inst_list_it != instList[i].end()) 1356 { 1357 cprintf("Instruction:%i\n", 1358 num); 1359 if (!(*inst_list_it)->isSquashed()) { 1360 if (!(*inst_list_it)->isIssued()) { 1361 ++valid_num; 1362 cprintf("Count:%i\n", valid_num); 1363 } else if ((*inst_list_it)->isMemRef() && 1364 !(*inst_list_it)->memOpDone) { 1365 // Loads that have not been marked as executed still count 1366 // towards the total instructions. 1367 ++valid_num; 1368 cprintf("Count:%i\n", valid_num); 1369 } 1370 } 1371 1372 cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n" 1373 "Issued:%i\nSquashed:%i\n", 1374 (*inst_list_it)->readPC(), 1375 (*inst_list_it)->seqNum, 1376 (*inst_list_it)->threadNumber, 1377 (*inst_list_it)->isIssued(), 1378 (*inst_list_it)->isSquashed()); 1379 1380 if ((*inst_list_it)->isMemRef()) { 1381 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone); 1382 } 1383 1384 cprintf("\n"); 1385 1386 inst_list_it++; 1387 ++num; 1388 } 1389 } 1390} 1391