inst_queue_impl.hh revision 12110
1/* 2 * Copyright (c) 2011-2014 ARM Limited 3 * Copyright (c) 2013 Advanced Micro Devices, Inc. 4 * All rights reserved. 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2004-2006 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Korey Sewell 43 */ 44 45#ifndef __CPU_O3_INST_QUEUE_IMPL_HH__ 46#define __CPU_O3_INST_QUEUE_IMPL_HH__ 47 48#include <limits> 49#include <vector> 50 51#include "cpu/o3/fu_pool.hh" 52#include "cpu/o3/inst_queue.hh" 53#include "debug/IQ.hh" 54#include "enums/OpClass.hh" 55#include "params/DerivO3CPU.hh" 56#include "sim/core.hh" 57 58// clang complains about std::set being overloaded with Packet::set if 59// we open up the entire namespace std 60using std::list; 61 62template <class Impl> 63InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 64 int fu_idx, InstructionQueue<Impl> *iq_ptr) 65 : Event(Stat_Event_Pri, AutoDelete), 66 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false) 67{ 68} 69 70template <class Impl> 71void 72InstructionQueue<Impl>::FUCompletion::process() 73{ 74 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1); 75 inst = NULL; 76} 77 78 79template <class Impl> 80const char * 81InstructionQueue<Impl>::FUCompletion::description() const 82{ 83 return "Functional unit completion"; 84} 85 86template <class Impl> 87InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, 88 DerivO3CPUParams *params) 89 : cpu(cpu_ptr), 90 iewStage(iew_ptr), 91 fuPool(params->fuPool), 92 numEntries(params->numIQEntries), 93 totalWidth(params->issueWidth), 94 commitToIEWDelay(params->commitToIEWDelay) 95{ 96 assert(fuPool); 97 98 numThreads = params->numThreads; 99 100 // Set the number of total physical registers 101 // As the vector registers have two addressing modes, they are added twice 102 numPhysRegs = params->numPhysIntRegs + params->numPhysFloatRegs + 103 params->numPhysVecRegs + 104 params->numPhysVecRegs * TheISA::NumVecElemPerVecReg + 105 params->numPhysCCRegs; 106 107 //Create an entry for each physical register within the 108 //dependency graph. 109 dependGraph.resize(numPhysRegs); 110 111 // Resize the register scoreboard. 112 regScoreboard.resize(numPhysRegs); 113 114 //Initialize Mem Dependence Units 115 for (ThreadID tid = 0; tid < numThreads; tid++) { 116 memDepUnit[tid].init(params, tid); 117 memDepUnit[tid].setIQ(this); 118 } 119 120 resetState(); 121 122 std::string policy = params->smtIQPolicy; 123 124 //Convert string to lowercase 125 std::transform(policy.begin(), policy.end(), policy.begin(), 126 (int(*)(int)) tolower); 127 128 //Figure out resource sharing policy 129 if (policy == "dynamic") { 130 iqPolicy = Dynamic; 131 132 //Set Max Entries to Total ROB Capacity 133 for (ThreadID tid = 0; tid < numThreads; tid++) { 134 maxEntries[tid] = numEntries; 135 } 136 137 } else if (policy == "partitioned") { 138 iqPolicy = Partitioned; 139 140 //@todo:make work if part_amt doesnt divide evenly. 141 int part_amt = numEntries / numThreads; 142 143 //Divide ROB up evenly 144 for (ThreadID tid = 0; tid < numThreads; tid++) { 145 maxEntries[tid] = part_amt; 146 } 147 148 DPRINTF(IQ, "IQ sharing policy set to Partitioned:" 149 "%i entries per thread.\n",part_amt); 150 } else if (policy == "threshold") { 151 iqPolicy = Threshold; 152 153 double threshold = (double)params->smtIQThreshold / 100; 154 155 int thresholdIQ = (int)((double)threshold * numEntries); 156 157 //Divide up by threshold amount 158 for (ThreadID tid = 0; tid < numThreads; tid++) { 159 maxEntries[tid] = thresholdIQ; 160 } 161 162 DPRINTF(IQ, "IQ sharing policy set to Threshold:" 163 "%i entries per thread.\n",thresholdIQ); 164 } else { 165 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 166 "Partitioned, Threshold}"); 167 } 168} 169 170template <class Impl> 171InstructionQueue<Impl>::~InstructionQueue() 172{ 173 dependGraph.reset(); 174#ifdef DEBUG 175 cprintf("Nodes traversed: %i, removed: %i\n", 176 dependGraph.nodesTraversed, dependGraph.nodesRemoved); 177#endif 178} 179 180template <class Impl> 181std::string 182InstructionQueue<Impl>::name() const 183{ 184 return cpu->name() + ".iq"; 185} 186 187template <class Impl> 188void 189InstructionQueue<Impl>::regStats() 190{ 191 using namespace Stats; 192 iqInstsAdded 193 .name(name() + ".iqInstsAdded") 194 .desc("Number of instructions added to the IQ (excludes non-spec)") 195 .prereq(iqInstsAdded); 196 197 iqNonSpecInstsAdded 198 .name(name() + ".iqNonSpecInstsAdded") 199 .desc("Number of non-speculative instructions added to the IQ") 200 .prereq(iqNonSpecInstsAdded); 201 202 iqInstsIssued 203 .name(name() + ".iqInstsIssued") 204 .desc("Number of instructions issued") 205 .prereq(iqInstsIssued); 206 207 iqIntInstsIssued 208 .name(name() + ".iqIntInstsIssued") 209 .desc("Number of integer instructions issued") 210 .prereq(iqIntInstsIssued); 211 212 iqFloatInstsIssued 213 .name(name() + ".iqFloatInstsIssued") 214 .desc("Number of float instructions issued") 215 .prereq(iqFloatInstsIssued); 216 217 iqBranchInstsIssued 218 .name(name() + ".iqBranchInstsIssued") 219 .desc("Number of branch instructions issued") 220 .prereq(iqBranchInstsIssued); 221 222 iqMemInstsIssued 223 .name(name() + ".iqMemInstsIssued") 224 .desc("Number of memory instructions issued") 225 .prereq(iqMemInstsIssued); 226 227 iqMiscInstsIssued 228 .name(name() + ".iqMiscInstsIssued") 229 .desc("Number of miscellaneous instructions issued") 230 .prereq(iqMiscInstsIssued); 231 232 iqSquashedInstsIssued 233 .name(name() + ".iqSquashedInstsIssued") 234 .desc("Number of squashed instructions issued") 235 .prereq(iqSquashedInstsIssued); 236 237 iqSquashedInstsExamined 238 .name(name() + ".iqSquashedInstsExamined") 239 .desc("Number of squashed instructions iterated over during squash;" 240 " mainly for profiling") 241 .prereq(iqSquashedInstsExamined); 242 243 iqSquashedOperandsExamined 244 .name(name() + ".iqSquashedOperandsExamined") 245 .desc("Number of squashed operands that are examined and possibly " 246 "removed from graph") 247 .prereq(iqSquashedOperandsExamined); 248 249 iqSquashedNonSpecRemoved 250 .name(name() + ".iqSquashedNonSpecRemoved") 251 .desc("Number of squashed non-spec instructions that were removed") 252 .prereq(iqSquashedNonSpecRemoved); 253/* 254 queueResDist 255 .init(Num_OpClasses, 0, 99, 2) 256 .name(name() + ".IQ:residence:") 257 .desc("cycles from dispatch to issue") 258 .flags(total | pdf | cdf ) 259 ; 260 for (int i = 0; i < Num_OpClasses; ++i) { 261 queueResDist.subname(i, opClassStrings[i]); 262 } 263*/ 264 numIssuedDist 265 .init(0,totalWidth,1) 266 .name(name() + ".issued_per_cycle") 267 .desc("Number of insts issued each cycle") 268 .flags(pdf) 269 ; 270/* 271 dist_unissued 272 .init(Num_OpClasses+2) 273 .name(name() + ".unissued_cause") 274 .desc("Reason ready instruction not issued") 275 .flags(pdf | dist) 276 ; 277 for (int i=0; i < (Num_OpClasses + 2); ++i) { 278 dist_unissued.subname(i, unissued_names[i]); 279 } 280*/ 281 statIssuedInstType 282 .init(numThreads,Enums::Num_OpClass) 283 .name(name() + ".FU_type") 284 .desc("Type of FU issued") 285 .flags(total | pdf | dist) 286 ; 287 statIssuedInstType.ysubnames(Enums::OpClassStrings); 288 289 // 290 // How long did instructions for a particular FU type wait prior to issue 291 // 292/* 293 issueDelayDist 294 .init(Num_OpClasses,0,99,2) 295 .name(name() + ".") 296 .desc("cycles from operands ready to issue") 297 .flags(pdf | cdf) 298 ; 299 300 for (int i=0; i<Num_OpClasses; ++i) { 301 std::stringstream subname; 302 subname << opClassStrings[i] << "_delay"; 303 issueDelayDist.subname(i, subname.str()); 304 } 305*/ 306 issueRate 307 .name(name() + ".rate") 308 .desc("Inst issue rate") 309 .flags(total) 310 ; 311 issueRate = iqInstsIssued / cpu->numCycles; 312 313 statFuBusy 314 .init(Num_OpClasses) 315 .name(name() + ".fu_full") 316 .desc("attempts to use FU when none available") 317 .flags(pdf | dist) 318 ; 319 for (int i=0; i < Num_OpClasses; ++i) { 320 statFuBusy.subname(i, Enums::OpClassStrings[i]); 321 } 322 323 fuBusy 324 .init(numThreads) 325 .name(name() + ".fu_busy_cnt") 326 .desc("FU busy when requested") 327 .flags(total) 328 ; 329 330 fuBusyRate 331 .name(name() + ".fu_busy_rate") 332 .desc("FU busy rate (busy events/executed inst)") 333 .flags(total) 334 ; 335 fuBusyRate = fuBusy / iqInstsIssued; 336 337 for (ThreadID tid = 0; tid < numThreads; tid++) { 338 // Tell mem dependence unit to reg stats as well. 339 memDepUnit[tid].regStats(); 340 } 341 342 intInstQueueReads 343 .name(name() + ".int_inst_queue_reads") 344 .desc("Number of integer instruction queue reads") 345 .flags(total); 346 347 intInstQueueWrites 348 .name(name() + ".int_inst_queue_writes") 349 .desc("Number of integer instruction queue writes") 350 .flags(total); 351 352 intInstQueueWakeupAccesses 353 .name(name() + ".int_inst_queue_wakeup_accesses") 354 .desc("Number of integer instruction queue wakeup accesses") 355 .flags(total); 356 357 fpInstQueueReads 358 .name(name() + ".fp_inst_queue_reads") 359 .desc("Number of floating instruction queue reads") 360 .flags(total); 361 362 fpInstQueueWrites 363 .name(name() + ".fp_inst_queue_writes") 364 .desc("Number of floating instruction queue writes") 365 .flags(total); 366 367 fpInstQueueWakeupAccesses 368 .name(name() + ".fp_inst_queue_wakeup_accesses") 369 .desc("Number of floating instruction queue wakeup accesses") 370 .flags(total); 371 372 intAluAccesses 373 .name(name() + ".int_alu_accesses") 374 .desc("Number of integer alu accesses") 375 .flags(total); 376 377 fpAluAccesses 378 .name(name() + ".fp_alu_accesses") 379 .desc("Number of floating point alu accesses") 380 .flags(total); 381 382} 383 384template <class Impl> 385void 386InstructionQueue<Impl>::resetState() 387{ 388 //Initialize thread IQ counts 389 for (ThreadID tid = 0; tid <numThreads; tid++) { 390 count[tid] = 0; 391 instList[tid].clear(); 392 } 393 394 // Initialize the number of free IQ entries. 395 freeEntries = numEntries; 396 397 // Note that in actuality, the registers corresponding to the logical 398 // registers start off as ready. However this doesn't matter for the 399 // IQ as the instruction should have been correctly told if those 400 // registers are ready in rename. Thus it can all be initialized as 401 // unready. 402 for (int i = 0; i < numPhysRegs; ++i) { 403 regScoreboard[i] = false; 404 } 405 406 for (ThreadID tid = 0; tid < numThreads; ++tid) { 407 squashedSeqNum[tid] = 0; 408 } 409 410 for (int i = 0; i < Num_OpClasses; ++i) { 411 while (!readyInsts[i].empty()) 412 readyInsts[i].pop(); 413 queueOnList[i] = false; 414 readyIt[i] = listOrder.end(); 415 } 416 nonSpecInsts.clear(); 417 listOrder.clear(); 418 deferredMemInsts.clear(); 419 blockedMemInsts.clear(); 420 retryMemInsts.clear(); 421 wbOutstanding = 0; 422} 423 424template <class Impl> 425void 426InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr) 427{ 428 activeThreads = at_ptr; 429} 430 431template <class Impl> 432void 433InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 434{ 435 issueToExecuteQueue = i2e_ptr; 436} 437 438template <class Impl> 439void 440InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 441{ 442 timeBuffer = tb_ptr; 443 444 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 445} 446 447template <class Impl> 448bool 449InstructionQueue<Impl>::isDrained() const 450{ 451 bool drained = dependGraph.empty() && 452 instsToExecute.empty() && 453 wbOutstanding == 0; 454 for (ThreadID tid = 0; tid < numThreads; ++tid) 455 drained = drained && memDepUnit[tid].isDrained(); 456 457 return drained; 458} 459 460template <class Impl> 461void 462InstructionQueue<Impl>::drainSanityCheck() const 463{ 464 assert(dependGraph.empty()); 465 assert(instsToExecute.empty()); 466 for (ThreadID tid = 0; tid < numThreads; ++tid) 467 memDepUnit[tid].drainSanityCheck(); 468} 469 470template <class Impl> 471void 472InstructionQueue<Impl>::takeOverFrom() 473{ 474 resetState(); 475} 476 477template <class Impl> 478int 479InstructionQueue<Impl>::entryAmount(ThreadID num_threads) 480{ 481 if (iqPolicy == Partitioned) { 482 return numEntries / num_threads; 483 } else { 484 return 0; 485 } 486} 487 488 489template <class Impl> 490void 491InstructionQueue<Impl>::resetEntries() 492{ 493 if (iqPolicy != Dynamic || numThreads > 1) { 494 int active_threads = activeThreads->size(); 495 496 list<ThreadID>::iterator threads = activeThreads->begin(); 497 list<ThreadID>::iterator end = activeThreads->end(); 498 499 while (threads != end) { 500 ThreadID tid = *threads++; 501 502 if (iqPolicy == Partitioned) { 503 maxEntries[tid] = numEntries / active_threads; 504 } else if (iqPolicy == Threshold && active_threads == 1) { 505 maxEntries[tid] = numEntries; 506 } 507 } 508 } 509} 510 511template <class Impl> 512unsigned 513InstructionQueue<Impl>::numFreeEntries() 514{ 515 return freeEntries; 516} 517 518template <class Impl> 519unsigned 520InstructionQueue<Impl>::numFreeEntries(ThreadID tid) 521{ 522 return maxEntries[tid] - count[tid]; 523} 524 525// Might want to do something more complex if it knows how many instructions 526// will be issued this cycle. 527template <class Impl> 528bool 529InstructionQueue<Impl>::isFull() 530{ 531 if (freeEntries == 0) { 532 return(true); 533 } else { 534 return(false); 535 } 536} 537 538template <class Impl> 539bool 540InstructionQueue<Impl>::isFull(ThreadID tid) 541{ 542 if (numFreeEntries(tid) == 0) { 543 return(true); 544 } else { 545 return(false); 546 } 547} 548 549template <class Impl> 550bool 551InstructionQueue<Impl>::hasReadyInsts() 552{ 553 if (!listOrder.empty()) { 554 return true; 555 } 556 557 for (int i = 0; i < Num_OpClasses; ++i) { 558 if (!readyInsts[i].empty()) { 559 return true; 560 } 561 } 562 563 return false; 564} 565 566template <class Impl> 567void 568InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 569{ 570 if (new_inst->isFloating()) { 571 fpInstQueueWrites++; 572 } else if (new_inst->isVector()) { 573 vecInstQueueWrites++; 574 } else { 575 intInstQueueWrites++; 576 } 577 // Make sure the instruction is valid 578 assert(new_inst); 579 580 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n", 581 new_inst->seqNum, new_inst->pcState()); 582 583 assert(freeEntries != 0); 584 585 instList[new_inst->threadNumber].push_back(new_inst); 586 587 --freeEntries; 588 589 new_inst->setInIQ(); 590 591 // Look through its source registers (physical regs), and mark any 592 // dependencies. 593 addToDependents(new_inst); 594 595 // Have this instruction set itself as the producer of its destination 596 // register(s). 597 addToProducers(new_inst); 598 599 if (new_inst->isMemRef()) { 600 memDepUnit[new_inst->threadNumber].insert(new_inst); 601 } else { 602 addIfReady(new_inst); 603 } 604 605 ++iqInstsAdded; 606 607 count[new_inst->threadNumber]++; 608 609 assert(freeEntries == (numEntries - countInsts())); 610} 611 612template <class Impl> 613void 614InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 615{ 616 // @todo: Clean up this code; can do it by setting inst as unable 617 // to issue, then calling normal insert on the inst. 618 if (new_inst->isFloating()) { 619 fpInstQueueWrites++; 620 } else if (new_inst->isVector()) { 621 vecInstQueueWrites++; 622 } else { 623 intInstQueueWrites++; 624 } 625 626 assert(new_inst); 627 628 nonSpecInsts[new_inst->seqNum] = new_inst; 629 630 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s " 631 "to the IQ.\n", 632 new_inst->seqNum, new_inst->pcState()); 633 634 assert(freeEntries != 0); 635 636 instList[new_inst->threadNumber].push_back(new_inst); 637 638 --freeEntries; 639 640 new_inst->setInIQ(); 641 642 // Have this instruction set itself as the producer of its destination 643 // register(s). 644 addToProducers(new_inst); 645 646 // If it's a memory instruction, add it to the memory dependency 647 // unit. 648 if (new_inst->isMemRef()) { 649 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 650 } 651 652 ++iqNonSpecInstsAdded; 653 654 count[new_inst->threadNumber]++; 655 656 assert(freeEntries == (numEntries - countInsts())); 657} 658 659template <class Impl> 660void 661InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 662{ 663 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 664 665 insertNonSpec(barr_inst); 666} 667 668template <class Impl> 669typename Impl::DynInstPtr 670InstructionQueue<Impl>::getInstToExecute() 671{ 672 assert(!instsToExecute.empty()); 673 DynInstPtr inst = instsToExecute.front(); 674 instsToExecute.pop_front(); 675 if (inst->isFloating()) { 676 fpInstQueueReads++; 677 } else if (inst->isVector()) { 678 vecInstQueueReads++; 679 } else { 680 intInstQueueReads++; 681 } 682 return inst; 683} 684 685template <class Impl> 686void 687InstructionQueue<Impl>::addToOrderList(OpClass op_class) 688{ 689 assert(!readyInsts[op_class].empty()); 690 691 ListOrderEntry queue_entry; 692 693 queue_entry.queueType = op_class; 694 695 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 696 697 ListOrderIt list_it = listOrder.begin(); 698 ListOrderIt list_end_it = listOrder.end(); 699 700 while (list_it != list_end_it) { 701 if ((*list_it).oldestInst > queue_entry.oldestInst) { 702 break; 703 } 704 705 list_it++; 706 } 707 708 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 709 queueOnList[op_class] = true; 710} 711 712template <class Impl> 713void 714InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 715{ 716 // Get iterator of next item on the list 717 // Delete the original iterator 718 // Determine if the next item is either the end of the list or younger 719 // than the new instruction. If so, then add in a new iterator right here. 720 // If not, then move along. 721 ListOrderEntry queue_entry; 722 OpClass op_class = (*list_order_it).queueType; 723 ListOrderIt next_it = list_order_it; 724 725 ++next_it; 726 727 queue_entry.queueType = op_class; 728 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 729 730 while (next_it != listOrder.end() && 731 (*next_it).oldestInst < queue_entry.oldestInst) { 732 ++next_it; 733 } 734 735 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 736} 737 738template <class Impl> 739void 740InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 741{ 742 DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum); 743 assert(!cpu->switchedOut()); 744 // The CPU could have been sleeping until this op completed (*extremely* 745 // long latency op). Wake it if it was. This may be overkill. 746 --wbOutstanding; 747 iewStage->wakeCPU(); 748 749 if (fu_idx > -1) 750 fuPool->freeUnitNextCycle(fu_idx); 751 752 // @todo: Ensure that these FU Completions happen at the beginning 753 // of a cycle, otherwise they could add too many instructions to 754 // the queue. 755 issueToExecuteQueue->access(-1)->size++; 756 instsToExecute.push_back(inst); 757} 758 759// @todo: Figure out a better way to remove the squashed items from the 760// lists. Checking the top item of each list to see if it's squashed 761// wastes time and forces jumps. 762template <class Impl> 763void 764InstructionQueue<Impl>::scheduleReadyInsts() 765{ 766 DPRINTF(IQ, "Attempting to schedule ready instructions from " 767 "the IQ.\n"); 768 769 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 770 771 DynInstPtr mem_inst; 772 while (mem_inst = getDeferredMemInstToExecute()) { 773 addReadyMemInst(mem_inst); 774 } 775 776 // See if any cache blocked instructions are able to be executed 777 while (mem_inst = getBlockedMemInstToExecute()) { 778 addReadyMemInst(mem_inst); 779 } 780 781 // Have iterator to head of the list 782 // While I haven't exceeded bandwidth or reached the end of the list, 783 // Try to get a FU that can do what this op needs. 784 // If successful, change the oldestInst to the new top of the list, put 785 // the queue in the proper place in the list. 786 // Increment the iterator. 787 // This will avoid trying to schedule a certain op class if there are no 788 // FUs that handle it. 789 int total_issued = 0; 790 ListOrderIt order_it = listOrder.begin(); 791 ListOrderIt order_end_it = listOrder.end(); 792 793 while (total_issued < totalWidth && order_it != order_end_it) { 794 OpClass op_class = (*order_it).queueType; 795 796 assert(!readyInsts[op_class].empty()); 797 798 DynInstPtr issuing_inst = readyInsts[op_class].top(); 799 800 if (issuing_inst->isFloating()) { 801 fpInstQueueReads++; 802 } else if (issuing_inst->isVector()) { 803 vecInstQueueReads++; 804 } else { 805 intInstQueueReads++; 806 } 807 808 assert(issuing_inst->seqNum == (*order_it).oldestInst); 809 810 if (issuing_inst->isSquashed()) { 811 readyInsts[op_class].pop(); 812 813 if (!readyInsts[op_class].empty()) { 814 moveToYoungerInst(order_it); 815 } else { 816 readyIt[op_class] = listOrder.end(); 817 queueOnList[op_class] = false; 818 } 819 820 listOrder.erase(order_it++); 821 822 ++iqSquashedInstsIssued; 823 824 continue; 825 } 826 827 int idx = FUPool::NoCapableFU; 828 Cycles op_latency = Cycles(1); 829 ThreadID tid = issuing_inst->threadNumber; 830 831 if (op_class != No_OpClass) { 832 idx = fuPool->getUnit(op_class); 833 if (issuing_inst->isFloating()) { 834 fpAluAccesses++; 835 } else if (issuing_inst->isVector()) { 836 vecAluAccesses++; 837 } else { 838 intAluAccesses++; 839 } 840 if (idx > FUPool::NoFreeFU) { 841 op_latency = fuPool->getOpLatency(op_class); 842 } 843 } 844 845 // If we have an instruction that doesn't require a FU, or a 846 // valid FU, then schedule for execution. 847 if (idx != FUPool::NoFreeFU) { 848 if (op_latency == Cycles(1)) { 849 i2e_info->size++; 850 instsToExecute.push_back(issuing_inst); 851 852 // Add the FU onto the list of FU's to be freed next 853 // cycle if we used one. 854 if (idx >= 0) 855 fuPool->freeUnitNextCycle(idx); 856 } else { 857 bool pipelined = fuPool->isPipelined(op_class); 858 // Generate completion event for the FU 859 ++wbOutstanding; 860 FUCompletion *execution = new FUCompletion(issuing_inst, 861 idx, this); 862 863 cpu->schedule(execution, 864 cpu->clockEdge(Cycles(op_latency - 1))); 865 866 if (!pipelined) { 867 // If FU isn't pipelined, then it must be freed 868 // upon the execution completing. 869 execution->setFreeFU(); 870 } else { 871 // Add the FU onto the list of FU's to be freed next cycle. 872 fuPool->freeUnitNextCycle(idx); 873 } 874 } 875 876 DPRINTF(IQ, "Thread %i: Issuing instruction PC %s " 877 "[sn:%lli]\n", 878 tid, issuing_inst->pcState(), 879 issuing_inst->seqNum); 880 881 readyInsts[op_class].pop(); 882 883 if (!readyInsts[op_class].empty()) { 884 moveToYoungerInst(order_it); 885 } else { 886 readyIt[op_class] = listOrder.end(); 887 queueOnList[op_class] = false; 888 } 889 890 issuing_inst->setIssued(); 891 ++total_issued; 892 893#if TRACING_ON 894 issuing_inst->issueTick = curTick() - issuing_inst->fetchTick; 895#endif 896 897 if (!issuing_inst->isMemRef()) { 898 // Memory instructions can not be freed from the IQ until they 899 // complete. 900 ++freeEntries; 901 count[tid]--; 902 issuing_inst->clearInIQ(); 903 } else { 904 memDepUnit[tid].issue(issuing_inst); 905 } 906 907 listOrder.erase(order_it++); 908 statIssuedInstType[tid][op_class]++; 909 } else { 910 statFuBusy[op_class]++; 911 fuBusy[tid]++; 912 ++order_it; 913 } 914 } 915 916 numIssuedDist.sample(total_issued); 917 iqInstsIssued+= total_issued; 918 919 // If we issued any instructions, tell the CPU we had activity. 920 // @todo If the way deferred memory instructions are handeled due to 921 // translation changes then the deferredMemInsts condition should be removed 922 // from the code below. 923 if (total_issued || !retryMemInsts.empty() || !deferredMemInsts.empty()) { 924 cpu->activityThisCycle(); 925 } else { 926 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 927 } 928} 929 930template <class Impl> 931void 932InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 933{ 934 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 935 "to execute.\n", inst); 936 937 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 938 939 assert(inst_it != nonSpecInsts.end()); 940 941 ThreadID tid = (*inst_it).second->threadNumber; 942 943 (*inst_it).second->setAtCommit(); 944 945 (*inst_it).second->setCanIssue(); 946 947 if (!(*inst_it).second->isMemRef()) { 948 addIfReady((*inst_it).second); 949 } else { 950 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 951 } 952 953 (*inst_it).second = NULL; 954 955 nonSpecInsts.erase(inst_it); 956} 957 958template <class Impl> 959void 960InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid) 961{ 962 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 963 tid,inst); 964 965 ListIt iq_it = instList[tid].begin(); 966 967 while (iq_it != instList[tid].end() && 968 (*iq_it)->seqNum <= inst) { 969 ++iq_it; 970 instList[tid].pop_front(); 971 } 972 973 assert(freeEntries == (numEntries - countInsts())); 974} 975 976template <class Impl> 977int 978InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 979{ 980 int dependents = 0; 981 982 // The instruction queue here takes care of both floating and int ops 983 if (completed_inst->isFloating()) { 984 fpInstQueueWakeupAccesses++; 985 } else if (completed_inst->isVector()) { 986 vecInstQueueWakeupAccesses++; 987 } else { 988 intInstQueueWakeupAccesses++; 989 } 990 991 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 992 993 assert(!completed_inst->isSquashed()); 994 995 // Tell the memory dependence unit to wake any dependents on this 996 // instruction if it is a memory instruction. Also complete the memory 997 // instruction at this point since we know it executed without issues. 998 // @todo: Might want to rename "completeMemInst" to something that 999 // indicates that it won't need to be replayed, and call this 1000 // earlier. Might not be a big deal. 1001 if (completed_inst->isMemRef()) { 1002 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 1003 completeMemInst(completed_inst); 1004 } else if (completed_inst->isMemBarrier() || 1005 completed_inst->isWriteBarrier()) { 1006 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 1007 } 1008 1009 for (int dest_reg_idx = 0; 1010 dest_reg_idx < completed_inst->numDestRegs(); 1011 dest_reg_idx++) 1012 { 1013 PhysRegIdPtr dest_reg = 1014 completed_inst->renamedDestRegIdx(dest_reg_idx); 1015 1016 // Special case of uniq or control registers. They are not 1017 // handled by the IQ and thus have no dependency graph entry. 1018 if (dest_reg->isFixedMapping()) { 1019 DPRINTF(IQ, "Reg %d [%s] is part of a fix mapping, skipping\n", 1020 dest_reg->index(), dest_reg->className()); 1021 continue; 1022 } 1023 1024 DPRINTF(IQ, "Waking any dependents on register %i (%s).\n", 1025 dest_reg->index(), 1026 dest_reg->className()); 1027 1028 //Go through the dependency chain, marking the registers as 1029 //ready within the waiting instructions. 1030 DynInstPtr dep_inst = dependGraph.pop(dest_reg->flatIndex()); 1031 1032 while (dep_inst) { 1033 DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] " 1034 "PC %s.\n", dep_inst->seqNum, dep_inst->pcState()); 1035 1036 // Might want to give more information to the instruction 1037 // so that it knows which of its source registers is 1038 // ready. However that would mean that the dependency 1039 // graph entries would need to hold the src_reg_idx. 1040 dep_inst->markSrcRegReady(); 1041 1042 addIfReady(dep_inst); 1043 1044 dep_inst = dependGraph.pop(dest_reg->flatIndex()); 1045 1046 ++dependents; 1047 } 1048 1049 // Reset the head node now that all of its dependents have 1050 // been woken up. 1051 assert(dependGraph.empty(dest_reg->flatIndex())); 1052 dependGraph.clearInst(dest_reg->flatIndex()); 1053 1054 // Mark the scoreboard as having that register ready. 1055 regScoreboard[dest_reg->flatIndex()] = true; 1056 } 1057 return dependents; 1058} 1059 1060template <class Impl> 1061void 1062InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 1063{ 1064 OpClass op_class = ready_inst->opClass(); 1065 1066 readyInsts[op_class].push(ready_inst); 1067 1068 // Will need to reorder the list if either a queue is not on the list, 1069 // or it has an older instruction than last time. 1070 if (!queueOnList[op_class]) { 1071 addToOrderList(op_class); 1072 } else if (readyInsts[op_class].top()->seqNum < 1073 (*readyIt[op_class]).oldestInst) { 1074 listOrder.erase(readyIt[op_class]); 1075 addToOrderList(op_class); 1076 } 1077 1078 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1079 "the ready list, PC %s opclass:%i [sn:%lli].\n", 1080 ready_inst->pcState(), op_class, ready_inst->seqNum); 1081} 1082 1083template <class Impl> 1084void 1085InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 1086{ 1087 DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum); 1088 1089 // Reset DTB translation state 1090 resched_inst->translationStarted(false); 1091 resched_inst->translationCompleted(false); 1092 1093 resched_inst->clearCanIssue(); 1094 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 1095} 1096 1097template <class Impl> 1098void 1099InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 1100{ 1101 memDepUnit[replay_inst->threadNumber].replay(); 1102} 1103 1104template <class Impl> 1105void 1106InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 1107{ 1108 ThreadID tid = completed_inst->threadNumber; 1109 1110 DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n", 1111 completed_inst->pcState(), completed_inst->seqNum); 1112 1113 ++freeEntries; 1114 1115 completed_inst->memOpDone(true); 1116 1117 memDepUnit[tid].completed(completed_inst); 1118 count[tid]--; 1119} 1120 1121template <class Impl> 1122void 1123InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst) 1124{ 1125 deferredMemInsts.push_back(deferred_inst); 1126} 1127 1128template <class Impl> 1129void 1130InstructionQueue<Impl>::blockMemInst(DynInstPtr &blocked_inst) 1131{ 1132 blocked_inst->translationStarted(false); 1133 blocked_inst->translationCompleted(false); 1134 1135 blocked_inst->clearIssued(); 1136 blocked_inst->clearCanIssue(); 1137 blockedMemInsts.push_back(blocked_inst); 1138} 1139 1140template <class Impl> 1141void 1142InstructionQueue<Impl>::cacheUnblocked() 1143{ 1144 retryMemInsts.splice(retryMemInsts.end(), blockedMemInsts); 1145 // Get the CPU ticking again 1146 cpu->wakeCPU(); 1147} 1148 1149template <class Impl> 1150typename Impl::DynInstPtr 1151InstructionQueue<Impl>::getDeferredMemInstToExecute() 1152{ 1153 for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end(); 1154 ++it) { 1155 if ((*it)->translationCompleted() || (*it)->isSquashed()) { 1156 DynInstPtr mem_inst = *it; 1157 deferredMemInsts.erase(it); 1158 return mem_inst; 1159 } 1160 } 1161 return nullptr; 1162} 1163 1164template <class Impl> 1165typename Impl::DynInstPtr 1166InstructionQueue<Impl>::getBlockedMemInstToExecute() 1167{ 1168 if (retryMemInsts.empty()) { 1169 return nullptr; 1170 } else { 1171 DynInstPtr mem_inst = retryMemInsts.front(); 1172 retryMemInsts.pop_front(); 1173 return mem_inst; 1174 } 1175} 1176 1177template <class Impl> 1178void 1179InstructionQueue<Impl>::violation(DynInstPtr &store, 1180 DynInstPtr &faulting_load) 1181{ 1182 intInstQueueWrites++; 1183 memDepUnit[store->threadNumber].violation(store, faulting_load); 1184} 1185 1186template <class Impl> 1187void 1188InstructionQueue<Impl>::squash(ThreadID tid) 1189{ 1190 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 1191 "the IQ.\n", tid); 1192 1193 // Read instruction sequence number of last instruction out of the 1194 // time buffer. 1195 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 1196 1197 doSquash(tid); 1198 1199 // Also tell the memory dependence unit to squash. 1200 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1201} 1202 1203template <class Impl> 1204void 1205InstructionQueue<Impl>::doSquash(ThreadID tid) 1206{ 1207 // Start at the tail. 1208 ListIt squash_it = instList[tid].end(); 1209 --squash_it; 1210 1211 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1212 tid, squashedSeqNum[tid]); 1213 1214 // Squash any instructions younger than the squashed sequence number 1215 // given. 1216 while (squash_it != instList[tid].end() && 1217 (*squash_it)->seqNum > squashedSeqNum[tid]) { 1218 1219 DynInstPtr squashed_inst = (*squash_it); 1220 if (squashed_inst->isFloating()) { 1221 fpInstQueueWrites++; 1222 } else if (squashed_inst->isVector()) { 1223 vecInstQueueWrites++; 1224 } else { 1225 intInstQueueWrites++; 1226 } 1227 1228 // Only handle the instruction if it actually is in the IQ and 1229 // hasn't already been squashed in the IQ. 1230 if (squashed_inst->threadNumber != tid || 1231 squashed_inst->isSquashedInIQ()) { 1232 --squash_it; 1233 continue; 1234 } 1235 1236 if (!squashed_inst->isIssued() || 1237 (squashed_inst->isMemRef() && 1238 !squashed_inst->memOpDone())) { 1239 1240 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n", 1241 tid, squashed_inst->seqNum, squashed_inst->pcState()); 1242 1243 bool is_acq_rel = squashed_inst->isMemBarrier() && 1244 (squashed_inst->isLoad() || 1245 (squashed_inst->isStore() && 1246 !squashed_inst->isStoreConditional())); 1247 1248 // Remove the instruction from the dependency list. 1249 if (is_acq_rel || 1250 (!squashed_inst->isNonSpeculative() && 1251 !squashed_inst->isStoreConditional() && 1252 !squashed_inst->isMemBarrier() && 1253 !squashed_inst->isWriteBarrier())) { 1254 1255 for (int src_reg_idx = 0; 1256 src_reg_idx < squashed_inst->numSrcRegs(); 1257 src_reg_idx++) 1258 { 1259 PhysRegIdPtr src_reg = 1260 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1261 1262 // Only remove it from the dependency graph if it 1263 // was placed there in the first place. 1264 1265 // Instead of doing a linked list traversal, we 1266 // can just remove these squashed instructions 1267 // either at issue time, or when the register is 1268 // overwritten. The only downside to this is it 1269 // leaves more room for error. 1270 1271 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1272 !src_reg->isFixedMapping()) { 1273 dependGraph.remove(src_reg->flatIndex(), 1274 squashed_inst); 1275 } 1276 1277 1278 ++iqSquashedOperandsExamined; 1279 } 1280 } else if (!squashed_inst->isStoreConditional() || 1281 !squashed_inst->isCompleted()) { 1282 NonSpecMapIt ns_inst_it = 1283 nonSpecInsts.find(squashed_inst->seqNum); 1284 1285 // we remove non-speculative instructions from 1286 // nonSpecInsts already when they are ready, and so we 1287 // cannot always expect to find them 1288 if (ns_inst_it == nonSpecInsts.end()) { 1289 // loads that became ready but stalled on a 1290 // blocked cache are alreayd removed from 1291 // nonSpecInsts, and have not faulted 1292 assert(squashed_inst->getFault() != NoFault || 1293 squashed_inst->isMemRef()); 1294 } else { 1295 1296 (*ns_inst_it).second = NULL; 1297 1298 nonSpecInsts.erase(ns_inst_it); 1299 1300 ++iqSquashedNonSpecRemoved; 1301 } 1302 } 1303 1304 // Might want to also clear out the head of the dependency graph. 1305 1306 // Mark it as squashed within the IQ. 1307 squashed_inst->setSquashedInIQ(); 1308 1309 // @todo: Remove this hack where several statuses are set so the 1310 // inst will flow through the rest of the pipeline. 1311 squashed_inst->setIssued(); 1312 squashed_inst->setCanCommit(); 1313 squashed_inst->clearInIQ(); 1314 1315 //Update Thread IQ Count 1316 count[squashed_inst->threadNumber]--; 1317 1318 ++freeEntries; 1319 } 1320 1321 instList[tid].erase(squash_it--); 1322 ++iqSquashedInstsExamined; 1323 } 1324} 1325 1326template <class Impl> 1327bool 1328InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1329{ 1330 // Loop through the instruction's source registers, adding 1331 // them to the dependency list if they are not ready. 1332 int8_t total_src_regs = new_inst->numSrcRegs(); 1333 bool return_val = false; 1334 1335 for (int src_reg_idx = 0; 1336 src_reg_idx < total_src_regs; 1337 src_reg_idx++) 1338 { 1339 // Only add it to the dependency graph if it's not ready. 1340 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1341 PhysRegIdPtr src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1342 1343 // Check the IQ's scoreboard to make sure the register 1344 // hasn't become ready while the instruction was in flight 1345 // between stages. Only if it really isn't ready should 1346 // it be added to the dependency graph. 1347 if (src_reg->isFixedMapping()) { 1348 continue; 1349 } else if (!regScoreboard[src_reg->flatIndex()]) { 1350 DPRINTF(IQ, "Instruction PC %s has src reg %i (%s) that " 1351 "is being added to the dependency chain.\n", 1352 new_inst->pcState(), src_reg->index(), 1353 src_reg->className()); 1354 1355 dependGraph.insert(src_reg->flatIndex(), new_inst); 1356 1357 // Change the return value to indicate that something 1358 // was added to the dependency graph. 1359 return_val = true; 1360 } else { 1361 DPRINTF(IQ, "Instruction PC %s has src reg %i (%s) that " 1362 "became ready before it reached the IQ.\n", 1363 new_inst->pcState(), src_reg->index(), 1364 src_reg->className()); 1365 // Mark a register ready within the instruction. 1366 new_inst->markSrcRegReady(src_reg_idx); 1367 } 1368 } 1369 } 1370 1371 return return_val; 1372} 1373 1374template <class Impl> 1375void 1376InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst) 1377{ 1378 // Nothing really needs to be marked when an instruction becomes 1379 // the producer of a register's value, but for convenience a ptr 1380 // to the producing instruction will be placed in the head node of 1381 // the dependency links. 1382 int8_t total_dest_regs = new_inst->numDestRegs(); 1383 1384 for (int dest_reg_idx = 0; 1385 dest_reg_idx < total_dest_regs; 1386 dest_reg_idx++) 1387 { 1388 PhysRegIdPtr dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1389 1390 // Some registers have fixed mapping, and there is no need to track 1391 // dependencies as these instructions must be executed at commit. 1392 if (dest_reg->isFixedMapping()) { 1393 continue; 1394 } 1395 1396 if (!dependGraph.empty(dest_reg->flatIndex())) { 1397 dependGraph.dump(); 1398 panic("Dependency graph %i (%s) (flat: %i) not empty!", 1399 dest_reg->index(), dest_reg->className(), 1400 dest_reg->flatIndex()); 1401 } 1402 1403 dependGraph.setInst(dest_reg->flatIndex(), new_inst); 1404 1405 // Mark the scoreboard to say it's not yet ready. 1406 regScoreboard[dest_reg->flatIndex()] = false; 1407 } 1408} 1409 1410template <class Impl> 1411void 1412InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1413{ 1414 // If the instruction now has all of its source registers 1415 // available, then add it to the list of ready instructions. 1416 if (inst->readyToIssue()) { 1417 1418 //Add the instruction to the proper ready list. 1419 if (inst->isMemRef()) { 1420 1421 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1422 1423 // Message to the mem dependence unit that this instruction has 1424 // its registers ready. 1425 memDepUnit[inst->threadNumber].regsReady(inst); 1426 1427 return; 1428 } 1429 1430 OpClass op_class = inst->opClass(); 1431 1432 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1433 "the ready list, PC %s opclass:%i [sn:%lli].\n", 1434 inst->pcState(), op_class, inst->seqNum); 1435 1436 readyInsts[op_class].push(inst); 1437 1438 // Will need to reorder the list if either a queue is not on the list, 1439 // or it has an older instruction than last time. 1440 if (!queueOnList[op_class]) { 1441 addToOrderList(op_class); 1442 } else if (readyInsts[op_class].top()->seqNum < 1443 (*readyIt[op_class]).oldestInst) { 1444 listOrder.erase(readyIt[op_class]); 1445 addToOrderList(op_class); 1446 } 1447 } 1448} 1449 1450template <class Impl> 1451int 1452InstructionQueue<Impl>::countInsts() 1453{ 1454#if 0 1455 //ksewell:This works but definitely could use a cleaner write 1456 //with a more intuitive way of counting. Right now it's 1457 //just brute force .... 1458 // Change the #if if you want to use this method. 1459 int total_insts = 0; 1460 1461 for (ThreadID tid = 0; tid < numThreads; ++tid) { 1462 ListIt count_it = instList[tid].begin(); 1463 1464 while (count_it != instList[tid].end()) { 1465 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1466 if (!(*count_it)->isIssued()) { 1467 ++total_insts; 1468 } else if ((*count_it)->isMemRef() && 1469 !(*count_it)->memOpDone) { 1470 // Loads that have not been marked as executed still count 1471 // towards the total instructions. 1472 ++total_insts; 1473 } 1474 } 1475 1476 ++count_it; 1477 } 1478 } 1479 1480 return total_insts; 1481#else 1482 return numEntries - freeEntries; 1483#endif 1484} 1485 1486template <class Impl> 1487void 1488InstructionQueue<Impl>::dumpLists() 1489{ 1490 for (int i = 0; i < Num_OpClasses; ++i) { 1491 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1492 1493 cprintf("\n"); 1494 } 1495 1496 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1497 1498 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1499 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1500 1501 cprintf("Non speculative list: "); 1502 1503 while (non_spec_it != non_spec_end_it) { 1504 cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(), 1505 (*non_spec_it).second->seqNum); 1506 ++non_spec_it; 1507 } 1508 1509 cprintf("\n"); 1510 1511 ListOrderIt list_order_it = listOrder.begin(); 1512 ListOrderIt list_order_end_it = listOrder.end(); 1513 int i = 1; 1514 1515 cprintf("List order: "); 1516 1517 while (list_order_it != list_order_end_it) { 1518 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1519 (*list_order_it).oldestInst); 1520 1521 ++list_order_it; 1522 ++i; 1523 } 1524 1525 cprintf("\n"); 1526} 1527 1528 1529template <class Impl> 1530void 1531InstructionQueue<Impl>::dumpInsts() 1532{ 1533 for (ThreadID tid = 0; tid < numThreads; ++tid) { 1534 int num = 0; 1535 int valid_num = 0; 1536 ListIt inst_list_it = instList[tid].begin(); 1537 1538 while (inst_list_it != instList[tid].end()) { 1539 cprintf("Instruction:%i\n", num); 1540 if (!(*inst_list_it)->isSquashed()) { 1541 if (!(*inst_list_it)->isIssued()) { 1542 ++valid_num; 1543 cprintf("Count:%i\n", valid_num); 1544 } else if ((*inst_list_it)->isMemRef() && 1545 !(*inst_list_it)->memOpDone()) { 1546 // Loads that have not been marked as executed 1547 // still count towards the total instructions. 1548 ++valid_num; 1549 cprintf("Count:%i\n", valid_num); 1550 } 1551 } 1552 1553 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n" 1554 "Issued:%i\nSquashed:%i\n", 1555 (*inst_list_it)->pcState(), 1556 (*inst_list_it)->seqNum, 1557 (*inst_list_it)->threadNumber, 1558 (*inst_list_it)->isIssued(), 1559 (*inst_list_it)->isSquashed()); 1560 1561 if ((*inst_list_it)->isMemRef()) { 1562 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone()); 1563 } 1564 1565 cprintf("\n"); 1566 1567 inst_list_it++; 1568 ++num; 1569 } 1570 } 1571 1572 cprintf("Insts to Execute list:\n"); 1573 1574 int num = 0; 1575 int valid_num = 0; 1576 ListIt inst_list_it = instsToExecute.begin(); 1577 1578 while (inst_list_it != instsToExecute.end()) 1579 { 1580 cprintf("Instruction:%i\n", 1581 num); 1582 if (!(*inst_list_it)->isSquashed()) { 1583 if (!(*inst_list_it)->isIssued()) { 1584 ++valid_num; 1585 cprintf("Count:%i\n", valid_num); 1586 } else if ((*inst_list_it)->isMemRef() && 1587 !(*inst_list_it)->memOpDone()) { 1588 // Loads that have not been marked as executed 1589 // still count towards the total instructions. 1590 ++valid_num; 1591 cprintf("Count:%i\n", valid_num); 1592 } 1593 } 1594 1595 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n" 1596 "Issued:%i\nSquashed:%i\n", 1597 (*inst_list_it)->pcState(), 1598 (*inst_list_it)->seqNum, 1599 (*inst_list_it)->threadNumber, 1600 (*inst_list_it)->isIssued(), 1601 (*inst_list_it)->isSquashed()); 1602 1603 if ((*inst_list_it)->isMemRef()) { 1604 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone()); 1605 } 1606 1607 cprintf("\n"); 1608 1609 inst_list_it++; 1610 ++num; 1611 } 1612} 1613 1614#endif//__CPU_O3_INST_QUEUE_IMPL_HH__ 1615