inst_queue_impl.hh revision 12109
1/* 2 * Copyright (c) 2011-2014 ARM Limited 3 * Copyright (c) 2013 Advanced Micro Devices, Inc. 4 * All rights reserved. 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2004-2006 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 * Korey Sewell 43 */ 44 45#ifndef __CPU_O3_INST_QUEUE_IMPL_HH__ 46#define __CPU_O3_INST_QUEUE_IMPL_HH__ 47 48#include <limits> 49#include <vector> 50 51#include "cpu/o3/fu_pool.hh" 52#include "cpu/o3/inst_queue.hh" 53#include "debug/IQ.hh" 54#include "enums/OpClass.hh" 55#include "params/DerivO3CPU.hh" 56#include "sim/core.hh" 57 58// clang complains about std::set being overloaded with Packet::set if 59// we open up the entire namespace std 60using std::list; 61 62template <class Impl> 63InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst, 64 int fu_idx, InstructionQueue<Impl> *iq_ptr) 65 : Event(Stat_Event_Pri, AutoDelete), 66 inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false) 67{ 68} 69 70template <class Impl> 71void 72InstructionQueue<Impl>::FUCompletion::process() 73{ 74 iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1); 75 inst = NULL; 76} 77 78 79template <class Impl> 80const char * 81InstructionQueue<Impl>::FUCompletion::description() const 82{ 83 return "Functional unit completion"; 84} 85 86template <class Impl> 87InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, 88 DerivO3CPUParams *params) 89 : cpu(cpu_ptr), 90 iewStage(iew_ptr), 91 fuPool(params->fuPool), 92 numEntries(params->numIQEntries), 93 totalWidth(params->issueWidth), 94 commitToIEWDelay(params->commitToIEWDelay) 95{ 96 assert(fuPool); 97 98 numThreads = params->numThreads; 99 100 // Set the number of total physical registers 101 // As the vector registers have two addressing modes, they are added twice 102 numPhysRegs = params->numPhysIntRegs + params->numPhysFloatRegs + 103 params->numPhysVecRegs + 104 params->numPhysVecRegs * TheISA::NumVecElemPerVecReg + 105 params->numPhysCCRegs; 106 107 //Create an entry for each physical register within the 108 //dependency graph. 109 dependGraph.resize(numPhysRegs); 110 111 // Resize the register scoreboard. 112 regScoreboard.resize(numPhysRegs); 113 114 //Initialize Mem Dependence Units 115 for (ThreadID tid = 0; tid < numThreads; tid++) { 116 memDepUnit[tid].init(params, tid); 117 memDepUnit[tid].setIQ(this); 118 } 119 120 resetState(); 121 122 std::string policy = params->smtIQPolicy; 123 124 //Convert string to lowercase 125 std::transform(policy.begin(), policy.end(), policy.begin(), 126 (int(*)(int)) tolower); 127 128 //Figure out resource sharing policy 129 if (policy == "dynamic") { 130 iqPolicy = Dynamic; 131 132 //Set Max Entries to Total ROB Capacity 133 for (ThreadID tid = 0; tid < numThreads; tid++) { 134 maxEntries[tid] = numEntries; 135 } 136 137 } else if (policy == "partitioned") { 138 iqPolicy = Partitioned; 139 140 //@todo:make work if part_amt doesnt divide evenly. 141 int part_amt = numEntries / numThreads; 142 143 //Divide ROB up evenly 144 for (ThreadID tid = 0; tid < numThreads; tid++) { 145 maxEntries[tid] = part_amt; 146 } 147 148 DPRINTF(IQ, "IQ sharing policy set to Partitioned:" 149 "%i entries per thread.\n",part_amt); 150 } else if (policy == "threshold") { 151 iqPolicy = Threshold; 152 153 double threshold = (double)params->smtIQThreshold / 100; 154 155 int thresholdIQ = (int)((double)threshold * numEntries); 156 157 //Divide up by threshold amount 158 for (ThreadID tid = 0; tid < numThreads; tid++) { 159 maxEntries[tid] = thresholdIQ; 160 } 161 162 DPRINTF(IQ, "IQ sharing policy set to Threshold:" 163 "%i entries per thread.\n",thresholdIQ); 164 } else { 165 assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic," 166 "Partitioned, Threshold}"); 167 } 168} 169 170template <class Impl> 171InstructionQueue<Impl>::~InstructionQueue() 172{ 173 dependGraph.reset(); 174#ifdef DEBUG 175 cprintf("Nodes traversed: %i, removed: %i\n", 176 dependGraph.nodesTraversed, dependGraph.nodesRemoved); 177#endif 178} 179 180template <class Impl> 181std::string 182InstructionQueue<Impl>::name() const 183{ 184 return cpu->name() + ".iq"; 185} 186 187template <class Impl> 188void 189InstructionQueue<Impl>::regStats() 190{ 191 using namespace Stats; 192 iqInstsAdded 193 .name(name() + ".iqInstsAdded") 194 .desc("Number of instructions added to the IQ (excludes non-spec)") 195 .prereq(iqInstsAdded); 196 197 iqNonSpecInstsAdded 198 .name(name() + ".iqNonSpecInstsAdded") 199 .desc("Number of non-speculative instructions added to the IQ") 200 .prereq(iqNonSpecInstsAdded); 201 202 iqInstsIssued 203 .name(name() + ".iqInstsIssued") 204 .desc("Number of instructions issued") 205 .prereq(iqInstsIssued); 206 207 iqIntInstsIssued 208 .name(name() + ".iqIntInstsIssued") 209 .desc("Number of integer instructions issued") 210 .prereq(iqIntInstsIssued); 211 212 iqFloatInstsIssued 213 .name(name() + ".iqFloatInstsIssued") 214 .desc("Number of float instructions issued") 215 .prereq(iqFloatInstsIssued); 216 217 iqBranchInstsIssued 218 .name(name() + ".iqBranchInstsIssued") 219 .desc("Number of branch instructions issued") 220 .prereq(iqBranchInstsIssued); 221 222 iqMemInstsIssued 223 .name(name() + ".iqMemInstsIssued") 224 .desc("Number of memory instructions issued") 225 .prereq(iqMemInstsIssued); 226 227 iqMiscInstsIssued 228 .name(name() + ".iqMiscInstsIssued") 229 .desc("Number of miscellaneous instructions issued") 230 .prereq(iqMiscInstsIssued); 231 232 iqSquashedInstsIssued 233 .name(name() + ".iqSquashedInstsIssued") 234 .desc("Number of squashed instructions issued") 235 .prereq(iqSquashedInstsIssued); 236 237 iqSquashedInstsExamined 238 .name(name() + ".iqSquashedInstsExamined") 239 .desc("Number of squashed instructions iterated over during squash;" 240 " mainly for profiling") 241 .prereq(iqSquashedInstsExamined); 242 243 iqSquashedOperandsExamined 244 .name(name() + ".iqSquashedOperandsExamined") 245 .desc("Number of squashed operands that are examined and possibly " 246 "removed from graph") 247 .prereq(iqSquashedOperandsExamined); 248 249 iqSquashedNonSpecRemoved 250 .name(name() + ".iqSquashedNonSpecRemoved") 251 .desc("Number of squashed non-spec instructions that were removed") 252 .prereq(iqSquashedNonSpecRemoved); 253/* 254 queueResDist 255 .init(Num_OpClasses, 0, 99, 2) 256 .name(name() + ".IQ:residence:") 257 .desc("cycles from dispatch to issue") 258 .flags(total | pdf | cdf ) 259 ; 260 for (int i = 0; i < Num_OpClasses; ++i) { 261 queueResDist.subname(i, opClassStrings[i]); 262 } 263*/ 264 numIssuedDist 265 .init(0,totalWidth,1) 266 .name(name() + ".issued_per_cycle") 267 .desc("Number of insts issued each cycle") 268 .flags(pdf) 269 ; 270/* 271 dist_unissued 272 .init(Num_OpClasses+2) 273 .name(name() + ".unissued_cause") 274 .desc("Reason ready instruction not issued") 275 .flags(pdf | dist) 276 ; 277 for (int i=0; i < (Num_OpClasses + 2); ++i) { 278 dist_unissued.subname(i, unissued_names[i]); 279 } 280*/ 281 statIssuedInstType 282 .init(numThreads,Enums::Num_OpClass) 283 .name(name() + ".FU_type") 284 .desc("Type of FU issued") 285 .flags(total | pdf | dist) 286 ; 287 statIssuedInstType.ysubnames(Enums::OpClassStrings); 288 289 // 290 // How long did instructions for a particular FU type wait prior to issue 291 // 292/* 293 issueDelayDist 294 .init(Num_OpClasses,0,99,2) 295 .name(name() + ".") 296 .desc("cycles from operands ready to issue") 297 .flags(pdf | cdf) 298 ; 299 300 for (int i=0; i<Num_OpClasses; ++i) { 301 std::stringstream subname; 302 subname << opClassStrings[i] << "_delay"; 303 issueDelayDist.subname(i, subname.str()); 304 } 305*/ 306 issueRate 307 .name(name() + ".rate") 308 .desc("Inst issue rate") 309 .flags(total) 310 ; 311 issueRate = iqInstsIssued / cpu->numCycles; 312 313 statFuBusy 314 .init(Num_OpClasses) 315 .name(name() + ".fu_full") 316 .desc("attempts to use FU when none available") 317 .flags(pdf | dist) 318 ; 319 for (int i=0; i < Num_OpClasses; ++i) { 320 statFuBusy.subname(i, Enums::OpClassStrings[i]); 321 } 322 323 fuBusy 324 .init(numThreads) 325 .name(name() + ".fu_busy_cnt") 326 .desc("FU busy when requested") 327 .flags(total) 328 ; 329 330 fuBusyRate 331 .name(name() + ".fu_busy_rate") 332 .desc("FU busy rate (busy events/executed inst)") 333 .flags(total) 334 ; 335 fuBusyRate = fuBusy / iqInstsIssued; 336 337 for (ThreadID tid = 0; tid < numThreads; tid++) { 338 // Tell mem dependence unit to reg stats as well. 339 memDepUnit[tid].regStats(); 340 } 341 342 intInstQueueReads 343 .name(name() + ".int_inst_queue_reads") 344 .desc("Number of integer instruction queue reads") 345 .flags(total); 346 347 intInstQueueWrites 348 .name(name() + ".int_inst_queue_writes") 349 .desc("Number of integer instruction queue writes") 350 .flags(total); 351 352 intInstQueueWakeupAccesses 353 .name(name() + ".int_inst_queue_wakeup_accesses") 354 .desc("Number of integer instruction queue wakeup accesses") 355 .flags(total); 356 357 fpInstQueueReads 358 .name(name() + ".fp_inst_queue_reads") 359 .desc("Number of floating instruction queue reads") 360 .flags(total); 361 362 fpInstQueueWrites 363 .name(name() + ".fp_inst_queue_writes") 364 .desc("Number of floating instruction queue writes") 365 .flags(total); 366 367 fpInstQueueWakeupQccesses 368 .name(name() + ".fp_inst_queue_wakeup_accesses") 369 .desc("Number of floating instruction queue wakeup accesses") 370 .flags(total); 371 372 intAluAccesses 373 .name(name() + ".int_alu_accesses") 374 .desc("Number of integer alu accesses") 375 .flags(total); 376 377 fpAluAccesses 378 .name(name() + ".fp_alu_accesses") 379 .desc("Number of floating point alu accesses") 380 .flags(total); 381 382} 383 384template <class Impl> 385void 386InstructionQueue<Impl>::resetState() 387{ 388 //Initialize thread IQ counts 389 for (ThreadID tid = 0; tid <numThreads; tid++) { 390 count[tid] = 0; 391 instList[tid].clear(); 392 } 393 394 // Initialize the number of free IQ entries. 395 freeEntries = numEntries; 396 397 // Note that in actuality, the registers corresponding to the logical 398 // registers start off as ready. However this doesn't matter for the 399 // IQ as the instruction should have been correctly told if those 400 // registers are ready in rename. Thus it can all be initialized as 401 // unready. 402 for (int i = 0; i < numPhysRegs; ++i) { 403 regScoreboard[i] = false; 404 } 405 406 for (ThreadID tid = 0; tid < numThreads; ++tid) { 407 squashedSeqNum[tid] = 0; 408 } 409 410 for (int i = 0; i < Num_OpClasses; ++i) { 411 while (!readyInsts[i].empty()) 412 readyInsts[i].pop(); 413 queueOnList[i] = false; 414 readyIt[i] = listOrder.end(); 415 } 416 nonSpecInsts.clear(); 417 listOrder.clear(); 418 deferredMemInsts.clear(); 419 blockedMemInsts.clear(); 420 retryMemInsts.clear(); 421 wbOutstanding = 0; 422} 423 424template <class Impl> 425void 426InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr) 427{ 428 activeThreads = at_ptr; 429} 430 431template <class Impl> 432void 433InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr) 434{ 435 issueToExecuteQueue = i2e_ptr; 436} 437 438template <class Impl> 439void 440InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 441{ 442 timeBuffer = tb_ptr; 443 444 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 445} 446 447template <class Impl> 448bool 449InstructionQueue<Impl>::isDrained() const 450{ 451 bool drained = dependGraph.empty() && 452 instsToExecute.empty() && 453 wbOutstanding == 0; 454 for (ThreadID tid = 0; tid < numThreads; ++tid) 455 drained = drained && memDepUnit[tid].isDrained(); 456 457 return drained; 458} 459 460template <class Impl> 461void 462InstructionQueue<Impl>::drainSanityCheck() const 463{ 464 assert(dependGraph.empty()); 465 assert(instsToExecute.empty()); 466 for (ThreadID tid = 0; tid < numThreads; ++tid) 467 memDepUnit[tid].drainSanityCheck(); 468} 469 470template <class Impl> 471void 472InstructionQueue<Impl>::takeOverFrom() 473{ 474 resetState(); 475} 476 477template <class Impl> 478int 479InstructionQueue<Impl>::entryAmount(ThreadID num_threads) 480{ 481 if (iqPolicy == Partitioned) { 482 return numEntries / num_threads; 483 } else { 484 return 0; 485 } 486} 487 488 489template <class Impl> 490void 491InstructionQueue<Impl>::resetEntries() 492{ 493 if (iqPolicy != Dynamic || numThreads > 1) { 494 int active_threads = activeThreads->size(); 495 496 list<ThreadID>::iterator threads = activeThreads->begin(); 497 list<ThreadID>::iterator end = activeThreads->end(); 498 499 while (threads != end) { 500 ThreadID tid = *threads++; 501 502 if (iqPolicy == Partitioned) { 503 maxEntries[tid] = numEntries / active_threads; 504 } else if (iqPolicy == Threshold && active_threads == 1) { 505 maxEntries[tid] = numEntries; 506 } 507 } 508 } 509} 510 511template <class Impl> 512unsigned 513InstructionQueue<Impl>::numFreeEntries() 514{ 515 return freeEntries; 516} 517 518template <class Impl> 519unsigned 520InstructionQueue<Impl>::numFreeEntries(ThreadID tid) 521{ 522 return maxEntries[tid] - count[tid]; 523} 524 525// Might want to do something more complex if it knows how many instructions 526// will be issued this cycle. 527template <class Impl> 528bool 529InstructionQueue<Impl>::isFull() 530{ 531 if (freeEntries == 0) { 532 return(true); 533 } else { 534 return(false); 535 } 536} 537 538template <class Impl> 539bool 540InstructionQueue<Impl>::isFull(ThreadID tid) 541{ 542 if (numFreeEntries(tid) == 0) { 543 return(true); 544 } else { 545 return(false); 546 } 547} 548 549template <class Impl> 550bool 551InstructionQueue<Impl>::hasReadyInsts() 552{ 553 if (!listOrder.empty()) { 554 return true; 555 } 556 557 for (int i = 0; i < Num_OpClasses; ++i) { 558 if (!readyInsts[i].empty()) { 559 return true; 560 } 561 } 562 563 return false; 564} 565 566template <class Impl> 567void 568InstructionQueue<Impl>::insert(DynInstPtr &new_inst) 569{ 570 new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++; 571 // Make sure the instruction is valid 572 assert(new_inst); 573 574 DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n", 575 new_inst->seqNum, new_inst->pcState()); 576 577 assert(freeEntries != 0); 578 579 instList[new_inst->threadNumber].push_back(new_inst); 580 581 --freeEntries; 582 583 new_inst->setInIQ(); 584 585 // Look through its source registers (physical regs), and mark any 586 // dependencies. 587 addToDependents(new_inst); 588 589 // Have this instruction set itself as the producer of its destination 590 // register(s). 591 addToProducers(new_inst); 592 593 if (new_inst->isMemRef()) { 594 memDepUnit[new_inst->threadNumber].insert(new_inst); 595 } else { 596 addIfReady(new_inst); 597 } 598 599 ++iqInstsAdded; 600 601 count[new_inst->threadNumber]++; 602 603 assert(freeEntries == (numEntries - countInsts())); 604} 605 606template <class Impl> 607void 608InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst) 609{ 610 // @todo: Clean up this code; can do it by setting inst as unable 611 // to issue, then calling normal insert on the inst. 612 new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++; 613 614 assert(new_inst); 615 616 nonSpecInsts[new_inst->seqNum] = new_inst; 617 618 DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s " 619 "to the IQ.\n", 620 new_inst->seqNum, new_inst->pcState()); 621 622 assert(freeEntries != 0); 623 624 instList[new_inst->threadNumber].push_back(new_inst); 625 626 --freeEntries; 627 628 new_inst->setInIQ(); 629 630 // Have this instruction set itself as the producer of its destination 631 // register(s). 632 addToProducers(new_inst); 633 634 // If it's a memory instruction, add it to the memory dependency 635 // unit. 636 if (new_inst->isMemRef()) { 637 memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst); 638 } 639 640 ++iqNonSpecInstsAdded; 641 642 count[new_inst->threadNumber]++; 643 644 assert(freeEntries == (numEntries - countInsts())); 645} 646 647template <class Impl> 648void 649InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst) 650{ 651 memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst); 652 653 insertNonSpec(barr_inst); 654} 655 656template <class Impl> 657typename Impl::DynInstPtr 658InstructionQueue<Impl>::getInstToExecute() 659{ 660 assert(!instsToExecute.empty()); 661 DynInstPtr inst = instsToExecute.front(); 662 instsToExecute.pop_front(); 663 if (inst->isFloating()){ 664 fpInstQueueReads++; 665 } else { 666 intInstQueueReads++; 667 } 668 return inst; 669} 670 671template <class Impl> 672void 673InstructionQueue<Impl>::addToOrderList(OpClass op_class) 674{ 675 assert(!readyInsts[op_class].empty()); 676 677 ListOrderEntry queue_entry; 678 679 queue_entry.queueType = op_class; 680 681 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 682 683 ListOrderIt list_it = listOrder.begin(); 684 ListOrderIt list_end_it = listOrder.end(); 685 686 while (list_it != list_end_it) { 687 if ((*list_it).oldestInst > queue_entry.oldestInst) { 688 break; 689 } 690 691 list_it++; 692 } 693 694 readyIt[op_class] = listOrder.insert(list_it, queue_entry); 695 queueOnList[op_class] = true; 696} 697 698template <class Impl> 699void 700InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it) 701{ 702 // Get iterator of next item on the list 703 // Delete the original iterator 704 // Determine if the next item is either the end of the list or younger 705 // than the new instruction. If so, then add in a new iterator right here. 706 // If not, then move along. 707 ListOrderEntry queue_entry; 708 OpClass op_class = (*list_order_it).queueType; 709 ListOrderIt next_it = list_order_it; 710 711 ++next_it; 712 713 queue_entry.queueType = op_class; 714 queue_entry.oldestInst = readyInsts[op_class].top()->seqNum; 715 716 while (next_it != listOrder.end() && 717 (*next_it).oldestInst < queue_entry.oldestInst) { 718 ++next_it; 719 } 720 721 readyIt[op_class] = listOrder.insert(next_it, queue_entry); 722} 723 724template <class Impl> 725void 726InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx) 727{ 728 DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum); 729 assert(!cpu->switchedOut()); 730 // The CPU could have been sleeping until this op completed (*extremely* 731 // long latency op). Wake it if it was. This may be overkill. 732 --wbOutstanding; 733 iewStage->wakeCPU(); 734 735 if (fu_idx > -1) 736 fuPool->freeUnitNextCycle(fu_idx); 737 738 // @todo: Ensure that these FU Completions happen at the beginning 739 // of a cycle, otherwise they could add too many instructions to 740 // the queue. 741 issueToExecuteQueue->access(-1)->size++; 742 instsToExecute.push_back(inst); 743} 744 745// @todo: Figure out a better way to remove the squashed items from the 746// lists. Checking the top item of each list to see if it's squashed 747// wastes time and forces jumps. 748template <class Impl> 749void 750InstructionQueue<Impl>::scheduleReadyInsts() 751{ 752 DPRINTF(IQ, "Attempting to schedule ready instructions from " 753 "the IQ.\n"); 754 755 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 756 757 DynInstPtr mem_inst; 758 while (mem_inst = getDeferredMemInstToExecute()) { 759 addReadyMemInst(mem_inst); 760 } 761 762 // See if any cache blocked instructions are able to be executed 763 while (mem_inst = getBlockedMemInstToExecute()) { 764 addReadyMemInst(mem_inst); 765 } 766 767 // Have iterator to head of the list 768 // While I haven't exceeded bandwidth or reached the end of the list, 769 // Try to get a FU that can do what this op needs. 770 // If successful, change the oldestInst to the new top of the list, put 771 // the queue in the proper place in the list. 772 // Increment the iterator. 773 // This will avoid trying to schedule a certain op class if there are no 774 // FUs that handle it. 775 int total_issued = 0; 776 ListOrderIt order_it = listOrder.begin(); 777 ListOrderIt order_end_it = listOrder.end(); 778 779 while (total_issued < totalWidth && order_it != order_end_it) { 780 OpClass op_class = (*order_it).queueType; 781 782 assert(!readyInsts[op_class].empty()); 783 784 DynInstPtr issuing_inst = readyInsts[op_class].top(); 785 786 issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++; 787 788 assert(issuing_inst->seqNum == (*order_it).oldestInst); 789 790 if (issuing_inst->isSquashed()) { 791 readyInsts[op_class].pop(); 792 793 if (!readyInsts[op_class].empty()) { 794 moveToYoungerInst(order_it); 795 } else { 796 readyIt[op_class] = listOrder.end(); 797 queueOnList[op_class] = false; 798 } 799 800 listOrder.erase(order_it++); 801 802 ++iqSquashedInstsIssued; 803 804 continue; 805 } 806 807 int idx = FUPool::NoCapableFU; 808 Cycles op_latency = Cycles(1); 809 ThreadID tid = issuing_inst->threadNumber; 810 811 if (op_class != No_OpClass) { 812 idx = fuPool->getUnit(op_class); 813 issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++; 814 if (idx > FUPool::NoFreeFU) { 815 op_latency = fuPool->getOpLatency(op_class); 816 } 817 } 818 819 // If we have an instruction that doesn't require a FU, or a 820 // valid FU, then schedule for execution. 821 if (idx != FUPool::NoFreeFU) { 822 if (op_latency == Cycles(1)) { 823 i2e_info->size++; 824 instsToExecute.push_back(issuing_inst); 825 826 // Add the FU onto the list of FU's to be freed next 827 // cycle if we used one. 828 if (idx >= 0) 829 fuPool->freeUnitNextCycle(idx); 830 } else { 831 bool pipelined = fuPool->isPipelined(op_class); 832 // Generate completion event for the FU 833 ++wbOutstanding; 834 FUCompletion *execution = new FUCompletion(issuing_inst, 835 idx, this); 836 837 cpu->schedule(execution, 838 cpu->clockEdge(Cycles(op_latency - 1))); 839 840 if (!pipelined) { 841 // If FU isn't pipelined, then it must be freed 842 // upon the execution completing. 843 execution->setFreeFU(); 844 } else { 845 // Add the FU onto the list of FU's to be freed next cycle. 846 fuPool->freeUnitNextCycle(idx); 847 } 848 } 849 850 DPRINTF(IQ, "Thread %i: Issuing instruction PC %s " 851 "[sn:%lli]\n", 852 tid, issuing_inst->pcState(), 853 issuing_inst->seqNum); 854 855 readyInsts[op_class].pop(); 856 857 if (!readyInsts[op_class].empty()) { 858 moveToYoungerInst(order_it); 859 } else { 860 readyIt[op_class] = listOrder.end(); 861 queueOnList[op_class] = false; 862 } 863 864 issuing_inst->setIssued(); 865 ++total_issued; 866 867#if TRACING_ON 868 issuing_inst->issueTick = curTick() - issuing_inst->fetchTick; 869#endif 870 871 if (!issuing_inst->isMemRef()) { 872 // Memory instructions can not be freed from the IQ until they 873 // complete. 874 ++freeEntries; 875 count[tid]--; 876 issuing_inst->clearInIQ(); 877 } else { 878 memDepUnit[tid].issue(issuing_inst); 879 } 880 881 listOrder.erase(order_it++); 882 statIssuedInstType[tid][op_class]++; 883 } else { 884 statFuBusy[op_class]++; 885 fuBusy[tid]++; 886 ++order_it; 887 } 888 } 889 890 numIssuedDist.sample(total_issued); 891 iqInstsIssued+= total_issued; 892 893 // If we issued any instructions, tell the CPU we had activity. 894 // @todo If the way deferred memory instructions are handeled due to 895 // translation changes then the deferredMemInsts condition should be removed 896 // from the code below. 897 if (total_issued || !retryMemInsts.empty() || !deferredMemInsts.empty()) { 898 cpu->activityThisCycle(); 899 } else { 900 DPRINTF(IQ, "Not able to schedule any instructions.\n"); 901 } 902} 903 904template <class Impl> 905void 906InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst) 907{ 908 DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready " 909 "to execute.\n", inst); 910 911 NonSpecMapIt inst_it = nonSpecInsts.find(inst); 912 913 assert(inst_it != nonSpecInsts.end()); 914 915 ThreadID tid = (*inst_it).second->threadNumber; 916 917 (*inst_it).second->setAtCommit(); 918 919 (*inst_it).second->setCanIssue(); 920 921 if (!(*inst_it).second->isMemRef()) { 922 addIfReady((*inst_it).second); 923 } else { 924 memDepUnit[tid].nonSpecInstReady((*inst_it).second); 925 } 926 927 (*inst_it).second = NULL; 928 929 nonSpecInsts.erase(inst_it); 930} 931 932template <class Impl> 933void 934InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid) 935{ 936 DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n", 937 tid,inst); 938 939 ListIt iq_it = instList[tid].begin(); 940 941 while (iq_it != instList[tid].end() && 942 (*iq_it)->seqNum <= inst) { 943 ++iq_it; 944 instList[tid].pop_front(); 945 } 946 947 assert(freeEntries == (numEntries - countInsts())); 948} 949 950template <class Impl> 951int 952InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst) 953{ 954 int dependents = 0; 955 956 // The instruction queue here takes care of both floating and int ops 957 if (completed_inst->isFloating()) { 958 fpInstQueueWakeupQccesses++; 959 } else { 960 intInstQueueWakeupAccesses++; 961 } 962 963 DPRINTF(IQ, "Waking dependents of completed instruction.\n"); 964 965 assert(!completed_inst->isSquashed()); 966 967 // Tell the memory dependence unit to wake any dependents on this 968 // instruction if it is a memory instruction. Also complete the memory 969 // instruction at this point since we know it executed without issues. 970 // @todo: Might want to rename "completeMemInst" to something that 971 // indicates that it won't need to be replayed, and call this 972 // earlier. Might not be a big deal. 973 if (completed_inst->isMemRef()) { 974 memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst); 975 completeMemInst(completed_inst); 976 } else if (completed_inst->isMemBarrier() || 977 completed_inst->isWriteBarrier()) { 978 memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst); 979 } 980 981 for (int dest_reg_idx = 0; 982 dest_reg_idx < completed_inst->numDestRegs(); 983 dest_reg_idx++) 984 { 985 PhysRegIdPtr dest_reg = 986 completed_inst->renamedDestRegIdx(dest_reg_idx); 987 988 // Special case of uniq or control registers. They are not 989 // handled by the IQ and thus have no dependency graph entry. 990 if (dest_reg->isFixedMapping()) { 991 DPRINTF(IQ, "Reg %d [%s] is part of a fix mapping, skipping\n", 992 dest_reg->index(), dest_reg->className()); 993 continue; 994 } 995 996 DPRINTF(IQ, "Waking any dependents on register %i (%s).\n", 997 dest_reg->index(), 998 dest_reg->className()); 999 1000 //Go through the dependency chain, marking the registers as 1001 //ready within the waiting instructions. 1002 DynInstPtr dep_inst = dependGraph.pop(dest_reg->flatIndex()); 1003 1004 while (dep_inst) { 1005 DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] " 1006 "PC %s.\n", dep_inst->seqNum, dep_inst->pcState()); 1007 1008 // Might want to give more information to the instruction 1009 // so that it knows which of its source registers is 1010 // ready. However that would mean that the dependency 1011 // graph entries would need to hold the src_reg_idx. 1012 dep_inst->markSrcRegReady(); 1013 1014 addIfReady(dep_inst); 1015 1016 dep_inst = dependGraph.pop(dest_reg->flatIndex()); 1017 1018 ++dependents; 1019 } 1020 1021 // Reset the head node now that all of its dependents have 1022 // been woken up. 1023 assert(dependGraph.empty(dest_reg->flatIndex())); 1024 dependGraph.clearInst(dest_reg->flatIndex()); 1025 1026 // Mark the scoreboard as having that register ready. 1027 regScoreboard[dest_reg->flatIndex()] = true; 1028 } 1029 return dependents; 1030} 1031 1032template <class Impl> 1033void 1034InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst) 1035{ 1036 OpClass op_class = ready_inst->opClass(); 1037 1038 readyInsts[op_class].push(ready_inst); 1039 1040 // Will need to reorder the list if either a queue is not on the list, 1041 // or it has an older instruction than last time. 1042 if (!queueOnList[op_class]) { 1043 addToOrderList(op_class); 1044 } else if (readyInsts[op_class].top()->seqNum < 1045 (*readyIt[op_class]).oldestInst) { 1046 listOrder.erase(readyIt[op_class]); 1047 addToOrderList(op_class); 1048 } 1049 1050 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1051 "the ready list, PC %s opclass:%i [sn:%lli].\n", 1052 ready_inst->pcState(), op_class, ready_inst->seqNum); 1053} 1054 1055template <class Impl> 1056void 1057InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst) 1058{ 1059 DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum); 1060 1061 // Reset DTB translation state 1062 resched_inst->translationStarted(false); 1063 resched_inst->translationCompleted(false); 1064 1065 resched_inst->clearCanIssue(); 1066 memDepUnit[resched_inst->threadNumber].reschedule(resched_inst); 1067} 1068 1069template <class Impl> 1070void 1071InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst) 1072{ 1073 memDepUnit[replay_inst->threadNumber].replay(); 1074} 1075 1076template <class Impl> 1077void 1078InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst) 1079{ 1080 ThreadID tid = completed_inst->threadNumber; 1081 1082 DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n", 1083 completed_inst->pcState(), completed_inst->seqNum); 1084 1085 ++freeEntries; 1086 1087 completed_inst->memOpDone(true); 1088 1089 memDepUnit[tid].completed(completed_inst); 1090 count[tid]--; 1091} 1092 1093template <class Impl> 1094void 1095InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst) 1096{ 1097 deferredMemInsts.push_back(deferred_inst); 1098} 1099 1100template <class Impl> 1101void 1102InstructionQueue<Impl>::blockMemInst(DynInstPtr &blocked_inst) 1103{ 1104 blocked_inst->translationStarted(false); 1105 blocked_inst->translationCompleted(false); 1106 1107 blocked_inst->clearIssued(); 1108 blocked_inst->clearCanIssue(); 1109 blockedMemInsts.push_back(blocked_inst); 1110} 1111 1112template <class Impl> 1113void 1114InstructionQueue<Impl>::cacheUnblocked() 1115{ 1116 retryMemInsts.splice(retryMemInsts.end(), blockedMemInsts); 1117 // Get the CPU ticking again 1118 cpu->wakeCPU(); 1119} 1120 1121template <class Impl> 1122typename Impl::DynInstPtr 1123InstructionQueue<Impl>::getDeferredMemInstToExecute() 1124{ 1125 for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end(); 1126 ++it) { 1127 if ((*it)->translationCompleted() || (*it)->isSquashed()) { 1128 DynInstPtr mem_inst = *it; 1129 deferredMemInsts.erase(it); 1130 return mem_inst; 1131 } 1132 } 1133 return nullptr; 1134} 1135 1136template <class Impl> 1137typename Impl::DynInstPtr 1138InstructionQueue<Impl>::getBlockedMemInstToExecute() 1139{ 1140 if (retryMemInsts.empty()) { 1141 return nullptr; 1142 } else { 1143 DynInstPtr mem_inst = retryMemInsts.front(); 1144 retryMemInsts.pop_front(); 1145 return mem_inst; 1146 } 1147} 1148 1149template <class Impl> 1150void 1151InstructionQueue<Impl>::violation(DynInstPtr &store, 1152 DynInstPtr &faulting_load) 1153{ 1154 intInstQueueWrites++; 1155 memDepUnit[store->threadNumber].violation(store, faulting_load); 1156} 1157 1158template <class Impl> 1159void 1160InstructionQueue<Impl>::squash(ThreadID tid) 1161{ 1162 DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in " 1163 "the IQ.\n", tid); 1164 1165 // Read instruction sequence number of last instruction out of the 1166 // time buffer. 1167 squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum; 1168 1169 doSquash(tid); 1170 1171 // Also tell the memory dependence unit to squash. 1172 memDepUnit[tid].squash(squashedSeqNum[tid], tid); 1173} 1174 1175template <class Impl> 1176void 1177InstructionQueue<Impl>::doSquash(ThreadID tid) 1178{ 1179 // Start at the tail. 1180 ListIt squash_it = instList[tid].end(); 1181 --squash_it; 1182 1183 DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n", 1184 tid, squashedSeqNum[tid]); 1185 1186 // Squash any instructions younger than the squashed sequence number 1187 // given. 1188 while (squash_it != instList[tid].end() && 1189 (*squash_it)->seqNum > squashedSeqNum[tid]) { 1190 1191 DynInstPtr squashed_inst = (*squash_it); 1192 squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++; 1193 1194 // Only handle the instruction if it actually is in the IQ and 1195 // hasn't already been squashed in the IQ. 1196 if (squashed_inst->threadNumber != tid || 1197 squashed_inst->isSquashedInIQ()) { 1198 --squash_it; 1199 continue; 1200 } 1201 1202 if (!squashed_inst->isIssued() || 1203 (squashed_inst->isMemRef() && 1204 !squashed_inst->memOpDone())) { 1205 1206 DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n", 1207 tid, squashed_inst->seqNum, squashed_inst->pcState()); 1208 1209 bool is_acq_rel = squashed_inst->isMemBarrier() && 1210 (squashed_inst->isLoad() || 1211 (squashed_inst->isStore() && 1212 !squashed_inst->isStoreConditional())); 1213 1214 // Remove the instruction from the dependency list. 1215 if (is_acq_rel || 1216 (!squashed_inst->isNonSpeculative() && 1217 !squashed_inst->isStoreConditional() && 1218 !squashed_inst->isMemBarrier() && 1219 !squashed_inst->isWriteBarrier())) { 1220 1221 for (int src_reg_idx = 0; 1222 src_reg_idx < squashed_inst->numSrcRegs(); 1223 src_reg_idx++) 1224 { 1225 PhysRegIdPtr src_reg = 1226 squashed_inst->renamedSrcRegIdx(src_reg_idx); 1227 1228 // Only remove it from the dependency graph if it 1229 // was placed there in the first place. 1230 1231 // Instead of doing a linked list traversal, we 1232 // can just remove these squashed instructions 1233 // either at issue time, or when the register is 1234 // overwritten. The only downside to this is it 1235 // leaves more room for error. 1236 1237 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) && 1238 !src_reg->isFixedMapping()) { 1239 dependGraph.remove(src_reg->flatIndex(), 1240 squashed_inst); 1241 } 1242 1243 1244 ++iqSquashedOperandsExamined; 1245 } 1246 } else if (!squashed_inst->isStoreConditional() || 1247 !squashed_inst->isCompleted()) { 1248 NonSpecMapIt ns_inst_it = 1249 nonSpecInsts.find(squashed_inst->seqNum); 1250 1251 // we remove non-speculative instructions from 1252 // nonSpecInsts already when they are ready, and so we 1253 // cannot always expect to find them 1254 if (ns_inst_it == nonSpecInsts.end()) { 1255 // loads that became ready but stalled on a 1256 // blocked cache are alreayd removed from 1257 // nonSpecInsts, and have not faulted 1258 assert(squashed_inst->getFault() != NoFault || 1259 squashed_inst->isMemRef()); 1260 } else { 1261 1262 (*ns_inst_it).second = NULL; 1263 1264 nonSpecInsts.erase(ns_inst_it); 1265 1266 ++iqSquashedNonSpecRemoved; 1267 } 1268 } 1269 1270 // Might want to also clear out the head of the dependency graph. 1271 1272 // Mark it as squashed within the IQ. 1273 squashed_inst->setSquashedInIQ(); 1274 1275 // @todo: Remove this hack where several statuses are set so the 1276 // inst will flow through the rest of the pipeline. 1277 squashed_inst->setIssued(); 1278 squashed_inst->setCanCommit(); 1279 squashed_inst->clearInIQ(); 1280 1281 //Update Thread IQ Count 1282 count[squashed_inst->threadNumber]--; 1283 1284 ++freeEntries; 1285 } 1286 1287 instList[tid].erase(squash_it--); 1288 ++iqSquashedInstsExamined; 1289 } 1290} 1291 1292template <class Impl> 1293bool 1294InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst) 1295{ 1296 // Loop through the instruction's source registers, adding 1297 // them to the dependency list if they are not ready. 1298 int8_t total_src_regs = new_inst->numSrcRegs(); 1299 bool return_val = false; 1300 1301 for (int src_reg_idx = 0; 1302 src_reg_idx < total_src_regs; 1303 src_reg_idx++) 1304 { 1305 // Only add it to the dependency graph if it's not ready. 1306 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 1307 PhysRegIdPtr src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 1308 1309 // Check the IQ's scoreboard to make sure the register 1310 // hasn't become ready while the instruction was in flight 1311 // between stages. Only if it really isn't ready should 1312 // it be added to the dependency graph. 1313 if (src_reg->isFixedMapping()) { 1314 continue; 1315 } else if (!regScoreboard[src_reg->flatIndex()]) { 1316 DPRINTF(IQ, "Instruction PC %s has src reg %i (%s) that " 1317 "is being added to the dependency chain.\n", 1318 new_inst->pcState(), src_reg->index(), 1319 src_reg->className()); 1320 1321 dependGraph.insert(src_reg->flatIndex(), new_inst); 1322 1323 // Change the return value to indicate that something 1324 // was added to the dependency graph. 1325 return_val = true; 1326 } else { 1327 DPRINTF(IQ, "Instruction PC %s has src reg %i (%s) that " 1328 "became ready before it reached the IQ.\n", 1329 new_inst->pcState(), src_reg->index(), 1330 src_reg->className()); 1331 // Mark a register ready within the instruction. 1332 new_inst->markSrcRegReady(src_reg_idx); 1333 } 1334 } 1335 } 1336 1337 return return_val; 1338} 1339 1340template <class Impl> 1341void 1342InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst) 1343{ 1344 // Nothing really needs to be marked when an instruction becomes 1345 // the producer of a register's value, but for convenience a ptr 1346 // to the producing instruction will be placed in the head node of 1347 // the dependency links. 1348 int8_t total_dest_regs = new_inst->numDestRegs(); 1349 1350 for (int dest_reg_idx = 0; 1351 dest_reg_idx < total_dest_regs; 1352 dest_reg_idx++) 1353 { 1354 PhysRegIdPtr dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 1355 1356 // Some registers have fixed mapping, and there is no need to track 1357 // dependencies as these instructions must be executed at commit. 1358 if (dest_reg->isFixedMapping()) { 1359 continue; 1360 } 1361 1362 if (!dependGraph.empty(dest_reg->flatIndex())) { 1363 dependGraph.dump(); 1364 panic("Dependency graph %i (%s) (flat: %i) not empty!", 1365 dest_reg->index(), dest_reg->className(), 1366 dest_reg->flatIndex()); 1367 } 1368 1369 dependGraph.setInst(dest_reg->flatIndex(), new_inst); 1370 1371 // Mark the scoreboard to say it's not yet ready. 1372 regScoreboard[dest_reg->flatIndex()] = false; 1373 } 1374} 1375 1376template <class Impl> 1377void 1378InstructionQueue<Impl>::addIfReady(DynInstPtr &inst) 1379{ 1380 // If the instruction now has all of its source registers 1381 // available, then add it to the list of ready instructions. 1382 if (inst->readyToIssue()) { 1383 1384 //Add the instruction to the proper ready list. 1385 if (inst->isMemRef()) { 1386 1387 DPRINTF(IQ, "Checking if memory instruction can issue.\n"); 1388 1389 // Message to the mem dependence unit that this instruction has 1390 // its registers ready. 1391 memDepUnit[inst->threadNumber].regsReady(inst); 1392 1393 return; 1394 } 1395 1396 OpClass op_class = inst->opClass(); 1397 1398 DPRINTF(IQ, "Instruction is ready to issue, putting it onto " 1399 "the ready list, PC %s opclass:%i [sn:%lli].\n", 1400 inst->pcState(), op_class, inst->seqNum); 1401 1402 readyInsts[op_class].push(inst); 1403 1404 // Will need to reorder the list if either a queue is not on the list, 1405 // or it has an older instruction than last time. 1406 if (!queueOnList[op_class]) { 1407 addToOrderList(op_class); 1408 } else if (readyInsts[op_class].top()->seqNum < 1409 (*readyIt[op_class]).oldestInst) { 1410 listOrder.erase(readyIt[op_class]); 1411 addToOrderList(op_class); 1412 } 1413 } 1414} 1415 1416template <class Impl> 1417int 1418InstructionQueue<Impl>::countInsts() 1419{ 1420#if 0 1421 //ksewell:This works but definitely could use a cleaner write 1422 //with a more intuitive way of counting. Right now it's 1423 //just brute force .... 1424 // Change the #if if you want to use this method. 1425 int total_insts = 0; 1426 1427 for (ThreadID tid = 0; tid < numThreads; ++tid) { 1428 ListIt count_it = instList[tid].begin(); 1429 1430 while (count_it != instList[tid].end()) { 1431 if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) { 1432 if (!(*count_it)->isIssued()) { 1433 ++total_insts; 1434 } else if ((*count_it)->isMemRef() && 1435 !(*count_it)->memOpDone) { 1436 // Loads that have not been marked as executed still count 1437 // towards the total instructions. 1438 ++total_insts; 1439 } 1440 } 1441 1442 ++count_it; 1443 } 1444 } 1445 1446 return total_insts; 1447#else 1448 return numEntries - freeEntries; 1449#endif 1450} 1451 1452template <class Impl> 1453void 1454InstructionQueue<Impl>::dumpLists() 1455{ 1456 for (int i = 0; i < Num_OpClasses; ++i) { 1457 cprintf("Ready list %i size: %i\n", i, readyInsts[i].size()); 1458 1459 cprintf("\n"); 1460 } 1461 1462 cprintf("Non speculative list size: %i\n", nonSpecInsts.size()); 1463 1464 NonSpecMapIt non_spec_it = nonSpecInsts.begin(); 1465 NonSpecMapIt non_spec_end_it = nonSpecInsts.end(); 1466 1467 cprintf("Non speculative list: "); 1468 1469 while (non_spec_it != non_spec_end_it) { 1470 cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(), 1471 (*non_spec_it).second->seqNum); 1472 ++non_spec_it; 1473 } 1474 1475 cprintf("\n"); 1476 1477 ListOrderIt list_order_it = listOrder.begin(); 1478 ListOrderIt list_order_end_it = listOrder.end(); 1479 int i = 1; 1480 1481 cprintf("List order: "); 1482 1483 while (list_order_it != list_order_end_it) { 1484 cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType, 1485 (*list_order_it).oldestInst); 1486 1487 ++list_order_it; 1488 ++i; 1489 } 1490 1491 cprintf("\n"); 1492} 1493 1494 1495template <class Impl> 1496void 1497InstructionQueue<Impl>::dumpInsts() 1498{ 1499 for (ThreadID tid = 0; tid < numThreads; ++tid) { 1500 int num = 0; 1501 int valid_num = 0; 1502 ListIt inst_list_it = instList[tid].begin(); 1503 1504 while (inst_list_it != instList[tid].end()) { 1505 cprintf("Instruction:%i\n", num); 1506 if (!(*inst_list_it)->isSquashed()) { 1507 if (!(*inst_list_it)->isIssued()) { 1508 ++valid_num; 1509 cprintf("Count:%i\n", valid_num); 1510 } else if ((*inst_list_it)->isMemRef() && 1511 !(*inst_list_it)->memOpDone()) { 1512 // Loads that have not been marked as executed 1513 // still count towards the total instructions. 1514 ++valid_num; 1515 cprintf("Count:%i\n", valid_num); 1516 } 1517 } 1518 1519 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n" 1520 "Issued:%i\nSquashed:%i\n", 1521 (*inst_list_it)->pcState(), 1522 (*inst_list_it)->seqNum, 1523 (*inst_list_it)->threadNumber, 1524 (*inst_list_it)->isIssued(), 1525 (*inst_list_it)->isSquashed()); 1526 1527 if ((*inst_list_it)->isMemRef()) { 1528 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone()); 1529 } 1530 1531 cprintf("\n"); 1532 1533 inst_list_it++; 1534 ++num; 1535 } 1536 } 1537 1538 cprintf("Insts to Execute list:\n"); 1539 1540 int num = 0; 1541 int valid_num = 0; 1542 ListIt inst_list_it = instsToExecute.begin(); 1543 1544 while (inst_list_it != instsToExecute.end()) 1545 { 1546 cprintf("Instruction:%i\n", 1547 num); 1548 if (!(*inst_list_it)->isSquashed()) { 1549 if (!(*inst_list_it)->isIssued()) { 1550 ++valid_num; 1551 cprintf("Count:%i\n", valid_num); 1552 } else if ((*inst_list_it)->isMemRef() && 1553 !(*inst_list_it)->memOpDone()) { 1554 // Loads that have not been marked as executed 1555 // still count towards the total instructions. 1556 ++valid_num; 1557 cprintf("Count:%i\n", valid_num); 1558 } 1559 } 1560 1561 cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n" 1562 "Issued:%i\nSquashed:%i\n", 1563 (*inst_list_it)->pcState(), 1564 (*inst_list_it)->seqNum, 1565 (*inst_list_it)->threadNumber, 1566 (*inst_list_it)->isIssued(), 1567 (*inst_list_it)->isSquashed()); 1568 1569 if ((*inst_list_it)->isMemRef()) { 1570 cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone()); 1571 } 1572 1573 cprintf("\n"); 1574 1575 inst_list_it++; 1576 ++num; 1577 } 1578} 1579 1580#endif//__CPU_O3_INST_QUEUE_IMPL_HH__ 1581