inst_queue_impl.hh revision 1060
1#ifndef __INST_QUEUE_IMPL_HH__ 2#define __INST_QUEUE_IMPL_HH__ 3 4// Todo: Fix up consistency errors about back of the ready list being 5// the oldest instructions in the queue. When woken up from the dependency 6// graph they will be the oldest, but when they are immediately executable 7// newer instructions will mistakenly get inserted onto the back. Also 8// current ordering allows for 0 cycle added-to-scheduled. Could maybe fake 9// it; either do in reverse order, or have added instructions put into a 10// different ready queue that, in scheduleRreadyInsts(), gets put onto the 11// normal ready queue. This would however give only a one cycle delay, 12// but probably is more flexible to actually add in a delay parameter than 13// just running it backwards. 14 15#include <vector> 16 17#include "sim/universe.hh" 18#include "cpu/beta_cpu/inst_queue.hh" 19 20// Either compile error or max int due to sign extension. 21// Blatant hack to avoid compile warnings. 22const InstSeqNum MaxInstSeqNum = 0 - 1; 23 24template<class Impl> 25InstructionQueue<Impl>::InstructionQueue(Params ¶ms) 26 : numEntries(params.numIQEntries), 27 intWidth(params.executeIntWidth), 28 floatWidth(params.executeFloatWidth), 29 numPhysIntRegs(params.numPhysIntRegs), 30 numPhysFloatRegs(params.numPhysFloatRegs), 31 commitToIEWDelay(params.commitToIEWDelay) 32{ 33 // HACK: HARDCODED NUMBER. REMOVE LATER AND ADD TO PARAMETER. 34 totalWidth = 1; 35 branchWidth = 1; 36 DPRINTF(IQ, "IQ: Int width is %i.\n", params.executeIntWidth); 37 38 // Initialize the number of free IQ entries. 39 freeEntries = numEntries; 40 41 // Set the number of physical registers as the number of int + float 42 numPhysRegs = numPhysIntRegs + numPhysFloatRegs; 43 44 DPRINTF(IQ, "IQ: There are %i physical registers.\n", numPhysRegs); 45 46 //Create an entry for each physical register within the 47 //dependency graph. 48 dependGraph = new DependencyEntry[numPhysRegs]; 49 50 // Resize the register scoreboard. 51 regScoreboard.resize(numPhysRegs); 52 53 // Initialize all the head pointers to point to NULL, and all the 54 // entries as unready. 55 // Note that in actuality, the registers corresponding to the logical 56 // registers start off as ready. However this doesn't matter for the 57 // IQ as the instruction should have been correctly told if those 58 // registers are ready in rename. Thus it can all be initialized as 59 // unready. 60 for (int i = 0; i < numPhysRegs; ++i) 61 { 62 dependGraph[i].next = NULL; 63 dependGraph[i].inst = NULL; 64 regScoreboard[i] = false; 65 } 66 67} 68 69template<class Impl> 70void 71InstructionQueue<Impl>::setCPU(FullCPU *cpu_ptr) 72{ 73 cpu = cpu_ptr; 74 75 tail = cpu->instList.begin(); 76} 77 78template<class Impl> 79void 80InstructionQueue<Impl>::setIssueToExecuteQueue( 81 TimeBuffer<IssueStruct> *i2e_ptr) 82{ 83 DPRINTF(IQ, "IQ: Set the issue to execute queue.\n"); 84 issueToExecuteQueue = i2e_ptr; 85} 86 87template<class Impl> 88void 89InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 90{ 91 DPRINTF(IQ, "IQ: Set the time buffer.\n"); 92 timeBuffer = tb_ptr; 93 94 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 95} 96 97// Might want to do something more complex if it knows how many instructions 98// will be issued this cycle. 99template<class Impl> 100bool 101InstructionQueue<Impl>::isFull() 102{ 103 if (freeEntries == 0) { 104 return(true); 105 } else { 106 return(false); 107 } 108} 109 110template<class Impl> 111unsigned 112InstructionQueue<Impl>::numFreeEntries() 113{ 114 return freeEntries; 115} 116 117template<class Impl> 118void 119InstructionQueue<Impl>::insert(DynInst *new_inst) 120{ 121 // Make sure the instruction is valid 122 assert(new_inst); 123 124 DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n", 125 new_inst->readPC()); 126 127 // Check if there are any free entries. Panic if there are none. 128 // Might want to have this return a fault in the future instead of 129 // panicing. 130 assert(freeEntries != 0); 131 132 // If the IQ currently has nothing in it, then there's a possibility 133 // that the tail iterator is invalid (might have been pointing at an 134 // instruction that was retired). Reset the tail iterator. 135 if (freeEntries == numEntries) { 136 tail = cpu->instList.begin(); 137 } 138 139 // Move the tail iterator. Instructions may not have been issued 140 // to the IQ, so we may have to increment the iterator more than once. 141 while ((*tail) != new_inst) { 142 tail++; 143 144 // Make sure the tail iterator points at something legal. 145 assert(tail != cpu->instList.end()); 146 } 147 148 149 // Decrease the number of free entries. 150 --freeEntries; 151 152 // Look through its source registers (physical regs), and mark any 153 // dependencies. 154 addToDependents(new_inst); 155 156 // Have this instruction set itself as the producer of its destination 157 // register(s). 158 createDependency(new_inst); 159 160 // If the instruction is ready then add it to the ready list. 161 addIfReady(new_inst); 162 163 assert(freeEntries == (numEntries - countInsts())); 164} 165 166// Slightly hack function to advance the tail iterator in the case that 167// the IEW stage issues an instruction that is not added to the IQ. This 168// is needed in case a long chain of such instructions occurs. 169template<class Impl> 170void 171InstructionQueue<Impl>::advanceTail(DynInst *inst) 172{ 173 // Make sure the instruction is valid 174 assert(inst); 175 176 DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n", 177 inst->readPC()); 178 179 // Check if there are any free entries. Panic if there are none. 180 // Might want to have this return a fault in the future instead of 181 // panicing. 182 assert(freeEntries != 0); 183 184 // If the IQ currently has nothing in it, then there's a possibility 185 // that the tail iterator is invalid (might have been pointing at an 186 // instruction that was retired). Reset the tail iterator. 187 if (freeEntries == numEntries) { 188 tail = cpu->instList.begin(); 189 } 190 191 // Move the tail iterator. Instructions may not have been issued 192 // to the IQ, so we may have to increment the iterator more than once. 193 while ((*tail) != inst) { 194 tail++; 195 196 // Make sure the tail iterator points at something legal. 197 assert(tail != cpu->instList.end()); 198 } 199 200 assert(freeEntries <= numEntries); 201 202 // Have this instruction set itself as the producer of its destination 203 // register(s). 204 createDependency(inst); 205} 206 207// Need to make sure the number of float and integer instructions 208// issued does not exceed the total issue bandwidth. Probably should 209// have some sort of limit of total number of branches that can be issued 210// as well. 211template<class Impl> 212void 213InstructionQueue<Impl>::scheduleReadyInsts() 214{ 215 DPRINTF(IQ, "IQ: Attempting to schedule ready instructions from " 216 "the IQ.\n"); 217 218 int int_issued = 0; 219 int float_issued = 0; 220 int branch_issued = 0; 221 int squashed_issued = 0; 222 int total_issued = 0; 223 224 IssueStruct *i2e_info = issueToExecuteQueue->access(0); 225 226 bool insts_available = !readyBranchInsts.empty() || 227 !readyIntInsts.empty() || 228 !readyFloatInsts.empty() || 229 !squashedInsts.empty(); 230 231 // Note: Requires a globally defined constant. 232 InstSeqNum oldest_inst = MaxInstSeqNum; 233 InstList list_with_oldest = None; 234 235 // Temporary values. 236 DynInst *int_head_inst; 237 DynInst *float_head_inst; 238 DynInst *branch_head_inst; 239 DynInst *squashed_head_inst; 240 241 // Somewhat nasty code to look at all of the lists where issuable 242 // instructions are located, and choose the oldest instruction among 243 // those lists. Consider a rewrite in the future. 244 while (insts_available && total_issued < totalWidth) 245 { 246 // Set this to false. Each if-block is required to set it to true 247 // if there were instructions available this check. This will cause 248 // this loop to run once more than necessary, but avoids extra calls. 249 insts_available = false; 250 251 oldest_inst = MaxInstSeqNum; 252 253 list_with_oldest = None; 254 255 if (!readyIntInsts.empty() && 256 int_issued < intWidth) { 257 258 insts_available = true; 259 260 int_head_inst = readyIntInsts.top().inst; 261 262 if (int_head_inst->isSquashed()) { 263 readyIntInsts.pop(); 264 continue; 265 } 266 267 oldest_inst = int_head_inst->seqNum; 268 269 list_with_oldest = Int; 270 } 271 272 if (!readyFloatInsts.empty() && 273 float_issued < floatWidth) { 274 275 insts_available = true; 276 277 float_head_inst = readyFloatInsts.top().inst; 278 279 if (float_head_inst->isSquashed()) { 280 readyFloatInsts.pop(); 281 continue; 282 } else if (float_head_inst->seqNum < oldest_inst) { 283 oldest_inst = float_head_inst->seqNum; 284 285 list_with_oldest = Float; 286 } 287 } 288 289 if (!readyBranchInsts.empty() && 290 branch_issued < branchWidth) { 291 292 insts_available = true; 293 294 branch_head_inst = readyBranchInsts.top().inst; 295 296 if (branch_head_inst->isSquashed()) { 297 readyBranchInsts.pop(); 298 continue; 299 } else if (branch_head_inst->seqNum < oldest_inst) { 300 oldest_inst = branch_head_inst->seqNum; 301 302 list_with_oldest = Branch; 303 } 304 305 } 306 307 if (!squashedInsts.empty()) { 308 309 insts_available = true; 310 311 squashed_head_inst = squashedInsts.top().inst; 312 313 if (squashed_head_inst->seqNum < oldest_inst) { 314 list_with_oldest = Squashed; 315 } 316 317 } 318 319 DynInst *issuing_inst = NULL; 320 321 switch (list_with_oldest) { 322 case None: 323 DPRINTF(IQ, "IQ: Not able to schedule any instructions. Issuing " 324 "inst is %#x.\n", issuing_inst); 325 break; 326 case Int: 327 issuing_inst = int_head_inst; 328 readyIntInsts.pop(); 329 ++int_issued; 330 DPRINTF(IQ, "IQ: Issuing integer instruction PC %#x.\n", 331 issuing_inst->readPC()); 332 break; 333 case Float: 334 issuing_inst = float_head_inst; 335 readyFloatInsts.pop(); 336 ++float_issued; 337 DPRINTF(IQ, "IQ: Issuing float instruction PC %#x.\n", 338 issuing_inst->readPC()); 339 break; 340 case Branch: 341 issuing_inst = branch_head_inst; 342 readyBranchInsts.pop(); 343 ++branch_issued; 344 DPRINTF(IQ, "IQ: Issuing branch instruction PC %#x.\n", 345 issuing_inst->readPC()); 346 break; 347 case Squashed: 348 issuing_inst = squashed_head_inst; 349 squashedInsts.pop(); 350 ++squashed_issued; 351 DPRINTF(IQ, "IQ: Issuing squashed instruction PC %#x.\n", 352 issuing_inst->readPC()); 353 break; 354 } 355 356 if (list_with_oldest != None) { 357 i2e_info->insts[total_issued] = issuing_inst; 358 359 issuing_inst->setIssued(); 360 361 ++freeEntries; 362 ++total_issued; 363 } 364 365 assert(freeEntries == (numEntries - countInsts())); 366 } 367} 368 369template<class Impl> 370void 371InstructionQueue<Impl>::doSquash() 372{ 373 // Make sure the squash iterator isn't pointing to nothing. 374 assert(squashIt != cpu->instList.end()); 375 // Make sure the squashed sequence number is valid. 376 assert(squashedSeqNum != 0); 377 378 DPRINTF(IQ, "IQ: Squashing instructions in the IQ.\n"); 379 380 // Squash any instructions younger than the squashed sequence number 381 // given. 382 while ((*squashIt)->seqNum > squashedSeqNum) { 383 DynInst *squashed_inst = (*squashIt); 384 385 // Only handle the instruction if it actually is in the IQ and 386 // hasn't already been squashed in the IQ. 387 if (!squashed_inst->isIssued() && 388 !squashed_inst->isSquashedInIQ()) { 389 // Remove the instruction from the dependency list. 390 int8_t total_src_regs = squashed_inst->numSrcRegs(); 391 392 for (int src_reg_idx = 0; 393 src_reg_idx < total_src_regs; 394 src_reg_idx++) 395 { 396 // Only remove it from the dependency graph if it was 397 // placed there in the first place. 398 // HACK: This assumes that instructions woken up from the 399 // dependency chain aren't informed that a specific src 400 // register has become ready. This may not always be true 401 // in the future. 402 if (!squashed_inst->isReadySrcRegIdx(src_reg_idx)) { 403 int8_t src_reg = 404 squashed_inst->renamedSrcRegIdx(src_reg_idx); 405 dependGraph[src_reg].remove(squashed_inst); 406 } 407 } 408 409 // Mark it as squashed within the IQ. 410 squashed_inst->setSquashedInIQ(); 411 412 ReadyEntry temp(squashed_inst); 413 414 squashedInsts.push(temp); 415 416 DPRINTF(IQ, "IQ: Instruction PC %#x squashed.\n", 417 squashed_inst->readPC()); 418 } 419 squashIt--; 420 } 421} 422 423template<class Impl> 424void 425InstructionQueue<Impl>::squash() 426{ 427 DPRINTF(IQ, "IQ: Starting to squash instructions in the IQ.\n"); 428 429 // Read instruction sequence number of last instruction out of the 430 // time buffer. 431 squashedSeqNum = fromCommit->commitInfo.doneSeqNum; 432 433 // Setup the squash iterator to point to the tail. 434 squashIt = tail; 435 436 // Call doSquash. 437 doSquash(); 438} 439 440template<class Impl> 441void 442InstructionQueue<Impl>::stopSquash() 443{ 444 // Clear up the squash variables to ensure that squashing doesn't 445 // get called improperly. 446 squashedSeqNum = 0; 447 448 squashIt = cpu->instList.end(); 449} 450 451template<class Impl> 452int 453InstructionQueue<Impl>::countInsts() 454{ 455 ListIt count_it = cpu->instList.begin(); 456 int total_insts = 0; 457 458 while (count_it != tail) { 459 if (!(*count_it)->isIssued()) { 460 ++total_insts; 461 } 462 463 count_it++; 464 465 assert(count_it != cpu->instList.end()); 466 } 467 468 // Need to count the tail iterator as well. 469 if (count_it != cpu->instList.end() && 470 (*count_it) != NULL && 471 !(*count_it)->isIssued()) { 472 ++total_insts; 473 } 474 475 return total_insts; 476} 477 478template<class Impl> 479void 480InstructionQueue<Impl>::wakeDependents(DynInst *completed_inst) 481{ 482 DPRINTF(IQ, "IQ: Waking dependents of completed instruction.\n"); 483 //Look at the physical destination register of the DynInst 484 //and look it up on the dependency graph. Then mark as ready 485 //any instructions within the instruction queue. 486 int8_t total_dest_regs = completed_inst->numDestRegs(); 487 488 DependencyEntry *curr; 489 490 for (int dest_reg_idx = 0; 491 dest_reg_idx < total_dest_regs; 492 dest_reg_idx++) 493 { 494 PhysRegIndex dest_reg = 495 completed_inst->renamedDestRegIdx(dest_reg_idx); 496 497 // Special case of uniq or control registers. They are not 498 // handled by the IQ and thus have no dependency graph entry. 499 // @todo Figure out a cleaner way to handle thie. 500 if (dest_reg >= numPhysRegs) { 501 continue; 502 } 503 504 DPRINTF(IQ, "IQ: Waking any dependents on register %i.\n", 505 (int) dest_reg); 506 507 //Maybe abstract this part into a function. 508 //Go through the dependency chain, marking the registers as ready 509 //within the waiting instructions. 510 while (dependGraph[dest_reg].next != NULL) { 511 512 curr = dependGraph[dest_reg].next; 513 514 DPRINTF(IQ, "IQ: Waking up a dependent instruction, PC%#x.\n", 515 curr->inst->readPC()); 516 517 // Might want to give more information to the instruction 518 // so that it knows which of its source registers is ready. 519 // However that would mean that the dependency graph entries 520 // would need to hold the src_reg_idx. 521 curr->inst->markSrcRegReady(); 522 523 addIfReady(curr->inst); 524 525 dependGraph[dest_reg].next = curr->next; 526 527 delete curr; 528 } 529 530 // Reset the head node now that all of its dependents have been woken 531 // up. 532 dependGraph[dest_reg].next = NULL; 533 dependGraph[dest_reg].inst = NULL; 534 535 // Mark the scoreboard as having that register ready. 536 regScoreboard[dest_reg] = true; 537 } 538} 539 540template<class Impl> 541bool 542InstructionQueue<Impl>::addToDependents(DynInst *new_inst) 543{ 544 // Loop through the instruction's source registers, adding 545 // them to the dependency list if they are not ready. 546 int8_t total_src_regs = new_inst->numSrcRegs(); 547 bool return_val = false; 548 549 for (int src_reg_idx = 0; 550 src_reg_idx < total_src_regs; 551 src_reg_idx++) 552 { 553 // Only add it to the dependency graph if it's not ready. 554 if (!new_inst->isReadySrcRegIdx(src_reg_idx)) { 555 PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx); 556 557 // Check the IQ's scoreboard to make sure the register 558 // hasn't become ready while the instruction was in flight 559 // between stages. Only if it really isn't ready should 560 // it be added to the dependency graph. 561 if (regScoreboard[src_reg] == false) { 562 DPRINTF(IQ, "IQ: Instruction PC %#x has src reg %i that " 563 "is being added to the dependency chain.\n", 564 new_inst->readPC(), src_reg); 565 566 dependGraph[src_reg].insert(new_inst); 567 568 // Change the return value to indicate that something 569 // was added to the dependency graph. 570 return_val = true; 571 } else { 572 DPRINTF(IQ, "IQ: Instruction PC %#x has src reg %i that " 573 "became ready before it reached the IQ.\n", 574 new_inst->readPC(), src_reg); 575 // Mark a register ready within the instruction. 576 new_inst->markSrcRegReady(); 577 } 578 } 579 } 580 581 return return_val; 582} 583 584template<class Impl> 585void 586InstructionQueue<Impl>::createDependency(DynInst *new_inst) 587{ 588 //Actually nothing really needs to be marked when an 589 //instruction becomes the producer of a register's value, 590 //but for convenience a ptr to the producing instruction will 591 //be placed in the head node of the dependency links. 592 int8_t total_dest_regs = new_inst->numDestRegs(); 593 594 for (int dest_reg_idx = 0; 595 dest_reg_idx < total_dest_regs; 596 dest_reg_idx++) 597 { 598 int8_t dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx); 599 dependGraph[dest_reg].inst = new_inst; 600 if (dependGraph[dest_reg].next != NULL) { 601 panic("Dependency chain is not empty.\n"); 602 } 603 604 // Mark the scoreboard to say it's not yet ready. 605 regScoreboard[dest_reg] = false; 606 } 607} 608 609template<class Impl> 610void 611InstructionQueue<Impl>::DependencyEntry::insert(DynInst *new_inst) 612{ 613 //Add this new, dependent instruction at the head of the dependency 614 //chain. 615 616 // First create the entry that will be added to the head of the 617 // dependency chain. 618 DependencyEntry *new_entry = new DependencyEntry; 619 new_entry->next = this->next; 620 new_entry->inst = new_inst; 621 622 // Then actually add it to the chain. 623 this->next = new_entry; 624} 625 626template<class Impl> 627void 628InstructionQueue<Impl>::DependencyEntry::remove(DynInst *inst_to_remove) 629{ 630 DependencyEntry *prev = this; 631 DependencyEntry *curr = this->next; 632 633 // Make sure curr isn't NULL. Because this instruction is being 634 // removed from a dependency list, it must have been placed there at 635 // an earlier time. The dependency chain should not be empty, 636 // unless the instruction dependent upon it is already ready. 637 if (curr == NULL) { 638 return; 639 } 640 641 // Find the instruction to remove within the dependency linked list. 642 while(curr->inst != inst_to_remove) 643 { 644 prev = curr; 645 curr = curr->next; 646 } 647 648 // Now remove this instruction from the list. 649 prev->next = curr->next; 650 651 delete curr; 652} 653 654template<class Impl> 655void 656InstructionQueue<Impl>::addIfReady(DynInst *inst) 657{ 658 //If the instruction now has all of its source registers 659 // available, then add it to the list of ready instructions. 660 if (inst->readyToIssue()) { 661 ReadyEntry to_add(inst); 662 //Add the instruction to the proper ready list. 663 if (inst->isInteger()) { 664 DPRINTF(IQ, "IQ: Integer instruction is ready to issue, " 665 "putting it onto the ready list, PC %#x.\n", 666 inst->readPC()); 667 readyIntInsts.push(to_add); 668 } else if (inst->isFloating()) { 669 DPRINTF(IQ, "IQ: Floating instruction is ready to issue, " 670 "putting it onto the ready list, PC %#x.\n", 671 inst->readPC()); 672 readyFloatInsts.push(to_add); 673 } else if (inst->isControl()) { 674 DPRINTF(IQ, "IQ: Branch instruction is ready to issue, " 675 "putting it onto the ready list, PC %#x.\n", 676 inst->readPC()); 677 readyBranchInsts.push(to_add); 678 } else { 679 panic("IQ: Instruction not an expected type.\n"); 680 } 681 } 682} 683 684#endif // __INST_QUEUE_IMPL_HH__ 685