inst_queue_impl.hh revision 10017:c75015bbbd78
1/*
2 * Copyright (c) 2011-2012 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_INST_QUEUE_IMPL_HH__
46#define __CPU_O3_INST_QUEUE_IMPL_HH__
47
48#include <limits>
49#include <vector>
50
51#include "cpu/o3/fu_pool.hh"
52#include "cpu/o3/inst_queue.hh"
53#include "debug/IQ.hh"
54#include "enums/OpClass.hh"
55#include "params/DerivO3CPU.hh"
56#include "sim/core.hh"
57
58// clang complains about std::set being overloaded with Packet::set if
59// we open up the entire namespace std
60using std::list;
61
62template <class Impl>
63InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
64    int fu_idx, InstructionQueue<Impl> *iq_ptr)
65    : Event(Stat_Event_Pri, AutoDelete),
66      inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
67{
68}
69
70template <class Impl>
71void
72InstructionQueue<Impl>::FUCompletion::process()
73{
74    iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
75    inst = NULL;
76}
77
78
79template <class Impl>
80const char *
81InstructionQueue<Impl>::FUCompletion::description() const
82{
83    return "Functional unit completion";
84}
85
86template <class Impl>
87InstructionQueue<Impl>::InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr,
88                                         DerivO3CPUParams *params)
89    : cpu(cpu_ptr),
90      iewStage(iew_ptr),
91      fuPool(params->fuPool),
92      numEntries(params->numIQEntries),
93      totalWidth(params->issueWidth),
94      commitToIEWDelay(params->commitToIEWDelay)
95{
96    assert(fuPool);
97
98    numThreads = params->numThreads;
99
100    // Set the number of total physical registers
101    numPhysRegs = params->numPhysIntRegs + params->numPhysFloatRegs +
102        params->numPhysCCRegs;
103
104    //Create an entry for each physical register within the
105    //dependency graph.
106    dependGraph.resize(numPhysRegs);
107
108    // Resize the register scoreboard.
109    regScoreboard.resize(numPhysRegs);
110
111    //Initialize Mem Dependence Units
112    for (ThreadID tid = 0; tid < numThreads; tid++) {
113        memDepUnit[tid].init(params, tid);
114        memDepUnit[tid].setIQ(this);
115    }
116
117    resetState();
118
119    std::string policy = params->smtIQPolicy;
120
121    //Convert string to lowercase
122    std::transform(policy.begin(), policy.end(), policy.begin(),
123                   (int(*)(int)) tolower);
124
125    //Figure out resource sharing policy
126    if (policy == "dynamic") {
127        iqPolicy = Dynamic;
128
129        //Set Max Entries to Total ROB Capacity
130        for (ThreadID tid = 0; tid < numThreads; tid++) {
131            maxEntries[tid] = numEntries;
132        }
133
134    } else if (policy == "partitioned") {
135        iqPolicy = Partitioned;
136
137        //@todo:make work if part_amt doesnt divide evenly.
138        int part_amt = numEntries / numThreads;
139
140        //Divide ROB up evenly
141        for (ThreadID tid = 0; tid < numThreads; tid++) {
142            maxEntries[tid] = part_amt;
143        }
144
145        DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
146                "%i entries per thread.\n",part_amt);
147    } else if (policy == "threshold") {
148        iqPolicy = Threshold;
149
150        double threshold =  (double)params->smtIQThreshold / 100;
151
152        int thresholdIQ = (int)((double)threshold * numEntries);
153
154        //Divide up by threshold amount
155        for (ThreadID tid = 0; tid < numThreads; tid++) {
156            maxEntries[tid] = thresholdIQ;
157        }
158
159        DPRINTF(IQ, "IQ sharing policy set to Threshold:"
160                "%i entries per thread.\n",thresholdIQ);
161   } else {
162       assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
163              "Partitioned, Threshold}");
164   }
165}
166
167template <class Impl>
168InstructionQueue<Impl>::~InstructionQueue()
169{
170    dependGraph.reset();
171#ifdef DEBUG
172    cprintf("Nodes traversed: %i, removed: %i\n",
173            dependGraph.nodesTraversed, dependGraph.nodesRemoved);
174#endif
175}
176
177template <class Impl>
178std::string
179InstructionQueue<Impl>::name() const
180{
181    return cpu->name() + ".iq";
182}
183
184template <class Impl>
185void
186InstructionQueue<Impl>::regStats()
187{
188    using namespace Stats;
189    iqInstsAdded
190        .name(name() + ".iqInstsAdded")
191        .desc("Number of instructions added to the IQ (excludes non-spec)")
192        .prereq(iqInstsAdded);
193
194    iqNonSpecInstsAdded
195        .name(name() + ".iqNonSpecInstsAdded")
196        .desc("Number of non-speculative instructions added to the IQ")
197        .prereq(iqNonSpecInstsAdded);
198
199    iqInstsIssued
200        .name(name() + ".iqInstsIssued")
201        .desc("Number of instructions issued")
202        .prereq(iqInstsIssued);
203
204    iqIntInstsIssued
205        .name(name() + ".iqIntInstsIssued")
206        .desc("Number of integer instructions issued")
207        .prereq(iqIntInstsIssued);
208
209    iqFloatInstsIssued
210        .name(name() + ".iqFloatInstsIssued")
211        .desc("Number of float instructions issued")
212        .prereq(iqFloatInstsIssued);
213
214    iqBranchInstsIssued
215        .name(name() + ".iqBranchInstsIssued")
216        .desc("Number of branch instructions issued")
217        .prereq(iqBranchInstsIssued);
218
219    iqMemInstsIssued
220        .name(name() + ".iqMemInstsIssued")
221        .desc("Number of memory instructions issued")
222        .prereq(iqMemInstsIssued);
223
224    iqMiscInstsIssued
225        .name(name() + ".iqMiscInstsIssued")
226        .desc("Number of miscellaneous instructions issued")
227        .prereq(iqMiscInstsIssued);
228
229    iqSquashedInstsIssued
230        .name(name() + ".iqSquashedInstsIssued")
231        .desc("Number of squashed instructions issued")
232        .prereq(iqSquashedInstsIssued);
233
234    iqSquashedInstsExamined
235        .name(name() + ".iqSquashedInstsExamined")
236        .desc("Number of squashed instructions iterated over during squash;"
237              " mainly for profiling")
238        .prereq(iqSquashedInstsExamined);
239
240    iqSquashedOperandsExamined
241        .name(name() + ".iqSquashedOperandsExamined")
242        .desc("Number of squashed operands that are examined and possibly "
243              "removed from graph")
244        .prereq(iqSquashedOperandsExamined);
245
246    iqSquashedNonSpecRemoved
247        .name(name() + ".iqSquashedNonSpecRemoved")
248        .desc("Number of squashed non-spec instructions that were removed")
249        .prereq(iqSquashedNonSpecRemoved);
250/*
251    queueResDist
252        .init(Num_OpClasses, 0, 99, 2)
253        .name(name() + ".IQ:residence:")
254        .desc("cycles from dispatch to issue")
255        .flags(total | pdf | cdf )
256        ;
257    for (int i = 0; i < Num_OpClasses; ++i) {
258        queueResDist.subname(i, opClassStrings[i]);
259    }
260*/
261    numIssuedDist
262        .init(0,totalWidth,1)
263        .name(name() + ".issued_per_cycle")
264        .desc("Number of insts issued each cycle")
265        .flags(pdf)
266        ;
267/*
268    dist_unissued
269        .init(Num_OpClasses+2)
270        .name(name() + ".unissued_cause")
271        .desc("Reason ready instruction not issued")
272        .flags(pdf | dist)
273        ;
274    for (int i=0; i < (Num_OpClasses + 2); ++i) {
275        dist_unissued.subname(i, unissued_names[i]);
276    }
277*/
278    statIssuedInstType
279        .init(numThreads,Enums::Num_OpClass)
280        .name(name() + ".FU_type")
281        .desc("Type of FU issued")
282        .flags(total | pdf | dist)
283        ;
284    statIssuedInstType.ysubnames(Enums::OpClassStrings);
285
286    //
287    //  How long did instructions for a particular FU type wait prior to issue
288    //
289/*
290    issueDelayDist
291        .init(Num_OpClasses,0,99,2)
292        .name(name() + ".")
293        .desc("cycles from operands ready to issue")
294        .flags(pdf | cdf)
295        ;
296
297    for (int i=0; i<Num_OpClasses; ++i) {
298        std::stringstream subname;
299        subname << opClassStrings[i] << "_delay";
300        issueDelayDist.subname(i, subname.str());
301    }
302*/
303    issueRate
304        .name(name() + ".rate")
305        .desc("Inst issue rate")
306        .flags(total)
307        ;
308    issueRate = iqInstsIssued / cpu->numCycles;
309
310    statFuBusy
311        .init(Num_OpClasses)
312        .name(name() + ".fu_full")
313        .desc("attempts to use FU when none available")
314        .flags(pdf | dist)
315        ;
316    for (int i=0; i < Num_OpClasses; ++i) {
317        statFuBusy.subname(i, Enums::OpClassStrings[i]);
318    }
319
320    fuBusy
321        .init(numThreads)
322        .name(name() + ".fu_busy_cnt")
323        .desc("FU busy when requested")
324        .flags(total)
325        ;
326
327    fuBusyRate
328        .name(name() + ".fu_busy_rate")
329        .desc("FU busy rate (busy events/executed inst)")
330        .flags(total)
331        ;
332    fuBusyRate = fuBusy / iqInstsIssued;
333
334    for (ThreadID tid = 0; tid < numThreads; tid++) {
335        // Tell mem dependence unit to reg stats as well.
336        memDepUnit[tid].regStats();
337    }
338
339    intInstQueueReads
340        .name(name() + ".int_inst_queue_reads")
341        .desc("Number of integer instruction queue reads")
342        .flags(total);
343
344    intInstQueueWrites
345        .name(name() + ".int_inst_queue_writes")
346        .desc("Number of integer instruction queue writes")
347        .flags(total);
348
349    intInstQueueWakeupAccesses
350        .name(name() + ".int_inst_queue_wakeup_accesses")
351        .desc("Number of integer instruction queue wakeup accesses")
352        .flags(total);
353
354    fpInstQueueReads
355        .name(name() + ".fp_inst_queue_reads")
356        .desc("Number of floating instruction queue reads")
357        .flags(total);
358
359    fpInstQueueWrites
360        .name(name() + ".fp_inst_queue_writes")
361        .desc("Number of floating instruction queue writes")
362        .flags(total);
363
364    fpInstQueueWakeupQccesses
365        .name(name() + ".fp_inst_queue_wakeup_accesses")
366        .desc("Number of floating instruction queue wakeup accesses")
367        .flags(total);
368
369    intAluAccesses
370        .name(name() + ".int_alu_accesses")
371        .desc("Number of integer alu accesses")
372        .flags(total);
373
374    fpAluAccesses
375        .name(name() + ".fp_alu_accesses")
376        .desc("Number of floating point alu accesses")
377        .flags(total);
378
379}
380
381template <class Impl>
382void
383InstructionQueue<Impl>::resetState()
384{
385    //Initialize thread IQ counts
386    for (ThreadID tid = 0; tid <numThreads; tid++) {
387        count[tid] = 0;
388        instList[tid].clear();
389    }
390
391    // Initialize the number of free IQ entries.
392    freeEntries = numEntries;
393
394    // Note that in actuality, the registers corresponding to the logical
395    // registers start off as ready.  However this doesn't matter for the
396    // IQ as the instruction should have been correctly told if those
397    // registers are ready in rename.  Thus it can all be initialized as
398    // unready.
399    for (int i = 0; i < numPhysRegs; ++i) {
400        regScoreboard[i] = false;
401    }
402
403    for (ThreadID tid = 0; tid < numThreads; ++tid) {
404        squashedSeqNum[tid] = 0;
405    }
406
407    for (int i = 0; i < Num_OpClasses; ++i) {
408        while (!readyInsts[i].empty())
409            readyInsts[i].pop();
410        queueOnList[i] = false;
411        readyIt[i] = listOrder.end();
412    }
413    nonSpecInsts.clear();
414    listOrder.clear();
415    deferredMemInsts.clear();
416}
417
418template <class Impl>
419void
420InstructionQueue<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
421{
422    activeThreads = at_ptr;
423}
424
425template <class Impl>
426void
427InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
428{
429      issueToExecuteQueue = i2e_ptr;
430}
431
432template <class Impl>
433void
434InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
435{
436    timeBuffer = tb_ptr;
437
438    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
439}
440
441template <class Impl>
442void
443InstructionQueue<Impl>::drainSanityCheck() const
444{
445    assert(dependGraph.empty());
446    assert(instsToExecute.empty());
447    for (ThreadID tid = 0; tid < numThreads; ++tid)
448        memDepUnit[tid].drainSanityCheck();
449}
450
451template <class Impl>
452void
453InstructionQueue<Impl>::takeOverFrom()
454{
455    resetState();
456}
457
458template <class Impl>
459int
460InstructionQueue<Impl>::entryAmount(ThreadID num_threads)
461{
462    if (iqPolicy == Partitioned) {
463        return numEntries / num_threads;
464    } else {
465        return 0;
466    }
467}
468
469
470template <class Impl>
471void
472InstructionQueue<Impl>::resetEntries()
473{
474    if (iqPolicy != Dynamic || numThreads > 1) {
475        int active_threads = activeThreads->size();
476
477        list<ThreadID>::iterator threads = activeThreads->begin();
478        list<ThreadID>::iterator end = activeThreads->end();
479
480        while (threads != end) {
481            ThreadID tid = *threads++;
482
483            if (iqPolicy == Partitioned) {
484                maxEntries[tid] = numEntries / active_threads;
485            } else if(iqPolicy == Threshold && active_threads == 1) {
486                maxEntries[tid] = numEntries;
487            }
488        }
489    }
490}
491
492template <class Impl>
493unsigned
494InstructionQueue<Impl>::numFreeEntries()
495{
496    return freeEntries;
497}
498
499template <class Impl>
500unsigned
501InstructionQueue<Impl>::numFreeEntries(ThreadID tid)
502{
503    return maxEntries[tid] - count[tid];
504}
505
506// Might want to do something more complex if it knows how many instructions
507// will be issued this cycle.
508template <class Impl>
509bool
510InstructionQueue<Impl>::isFull()
511{
512    if (freeEntries == 0) {
513        return(true);
514    } else {
515        return(false);
516    }
517}
518
519template <class Impl>
520bool
521InstructionQueue<Impl>::isFull(ThreadID tid)
522{
523    if (numFreeEntries(tid) == 0) {
524        return(true);
525    } else {
526        return(false);
527    }
528}
529
530template <class Impl>
531bool
532InstructionQueue<Impl>::hasReadyInsts()
533{
534    if (!listOrder.empty()) {
535        return true;
536    }
537
538    for (int i = 0; i < Num_OpClasses; ++i) {
539        if (!readyInsts[i].empty()) {
540            return true;
541        }
542    }
543
544    return false;
545}
546
547template <class Impl>
548void
549InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
550{
551    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
552    // Make sure the instruction is valid
553    assert(new_inst);
554
555    DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
556            new_inst->seqNum, new_inst->pcState());
557
558    assert(freeEntries != 0);
559
560    instList[new_inst->threadNumber].push_back(new_inst);
561
562    --freeEntries;
563
564    new_inst->setInIQ();
565
566    // Look through its source registers (physical regs), and mark any
567    // dependencies.
568    addToDependents(new_inst);
569
570    // Have this instruction set itself as the producer of its destination
571    // register(s).
572    addToProducers(new_inst);
573
574    if (new_inst->isMemRef()) {
575        memDepUnit[new_inst->threadNumber].insert(new_inst);
576    } else {
577        addIfReady(new_inst);
578    }
579
580    ++iqInstsAdded;
581
582    count[new_inst->threadNumber]++;
583
584    assert(freeEntries == (numEntries - countInsts()));
585}
586
587template <class Impl>
588void
589InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
590{
591    // @todo: Clean up this code; can do it by setting inst as unable
592    // to issue, then calling normal insert on the inst.
593    new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
594
595    assert(new_inst);
596
597    nonSpecInsts[new_inst->seqNum] = new_inst;
598
599    DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
600            "to the IQ.\n",
601            new_inst->seqNum, new_inst->pcState());
602
603    assert(freeEntries != 0);
604
605    instList[new_inst->threadNumber].push_back(new_inst);
606
607    --freeEntries;
608
609    new_inst->setInIQ();
610
611    // Have this instruction set itself as the producer of its destination
612    // register(s).
613    addToProducers(new_inst);
614
615    // If it's a memory instruction, add it to the memory dependency
616    // unit.
617    if (new_inst->isMemRef()) {
618        memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
619    }
620
621    ++iqNonSpecInstsAdded;
622
623    count[new_inst->threadNumber]++;
624
625    assert(freeEntries == (numEntries - countInsts()));
626}
627
628template <class Impl>
629void
630InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
631{
632    memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
633
634    insertNonSpec(barr_inst);
635}
636
637template <class Impl>
638typename Impl::DynInstPtr
639InstructionQueue<Impl>::getInstToExecute()
640{
641    assert(!instsToExecute.empty());
642    DynInstPtr inst = instsToExecute.front();
643    instsToExecute.pop_front();
644    if (inst->isFloating()){
645        fpInstQueueReads++;
646    } else {
647        intInstQueueReads++;
648    }
649    return inst;
650}
651
652template <class Impl>
653void
654InstructionQueue<Impl>::addToOrderList(OpClass op_class)
655{
656    assert(!readyInsts[op_class].empty());
657
658    ListOrderEntry queue_entry;
659
660    queue_entry.queueType = op_class;
661
662    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
663
664    ListOrderIt list_it = listOrder.begin();
665    ListOrderIt list_end_it = listOrder.end();
666
667    while (list_it != list_end_it) {
668        if ((*list_it).oldestInst > queue_entry.oldestInst) {
669            break;
670        }
671
672        list_it++;
673    }
674
675    readyIt[op_class] = listOrder.insert(list_it, queue_entry);
676    queueOnList[op_class] = true;
677}
678
679template <class Impl>
680void
681InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
682{
683    // Get iterator of next item on the list
684    // Delete the original iterator
685    // Determine if the next item is either the end of the list or younger
686    // than the new instruction.  If so, then add in a new iterator right here.
687    // If not, then move along.
688    ListOrderEntry queue_entry;
689    OpClass op_class = (*list_order_it).queueType;
690    ListOrderIt next_it = list_order_it;
691
692    ++next_it;
693
694    queue_entry.queueType = op_class;
695    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
696
697    while (next_it != listOrder.end() &&
698           (*next_it).oldestInst < queue_entry.oldestInst) {
699        ++next_it;
700    }
701
702    readyIt[op_class] = listOrder.insert(next_it, queue_entry);
703}
704
705template <class Impl>
706void
707InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
708{
709    DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
710    assert(!cpu->switchedOut());
711    // The CPU could have been sleeping until this op completed (*extremely*
712    // long latency op).  Wake it if it was.  This may be overkill.
713    iewStage->wakeCPU();
714
715    if (fu_idx > -1)
716        fuPool->freeUnitNextCycle(fu_idx);
717
718    // @todo: Ensure that these FU Completions happen at the beginning
719    // of a cycle, otherwise they could add too many instructions to
720    // the queue.
721    issueToExecuteQueue->access(-1)->size++;
722    instsToExecute.push_back(inst);
723}
724
725// @todo: Figure out a better way to remove the squashed items from the
726// lists.  Checking the top item of each list to see if it's squashed
727// wastes time and forces jumps.
728template <class Impl>
729void
730InstructionQueue<Impl>::scheduleReadyInsts()
731{
732    DPRINTF(IQ, "Attempting to schedule ready instructions from "
733            "the IQ.\n");
734
735    IssueStruct *i2e_info = issueToExecuteQueue->access(0);
736
737    DynInstPtr deferred_mem_inst;
738    int total_deferred_mem_issued = 0;
739    while (total_deferred_mem_issued < totalWidth &&
740           (deferred_mem_inst = getDeferredMemInstToExecute()) != 0) {
741        issueToExecuteQueue->access(0)->size++;
742        instsToExecute.push_back(deferred_mem_inst);
743        total_deferred_mem_issued++;
744    }
745
746    // Have iterator to head of the list
747    // While I haven't exceeded bandwidth or reached the end of the list,
748    // Try to get a FU that can do what this op needs.
749    // If successful, change the oldestInst to the new top of the list, put
750    // the queue in the proper place in the list.
751    // Increment the iterator.
752    // This will avoid trying to schedule a certain op class if there are no
753    // FUs that handle it.
754    ListOrderIt order_it = listOrder.begin();
755    ListOrderIt order_end_it = listOrder.end();
756    int total_issued = 0;
757
758    while (total_issued < (totalWidth - total_deferred_mem_issued) &&
759           iewStage->canIssue() &&
760           order_it != order_end_it) {
761        OpClass op_class = (*order_it).queueType;
762
763        assert(!readyInsts[op_class].empty());
764
765        DynInstPtr issuing_inst = readyInsts[op_class].top();
766
767        issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
768
769        assert(issuing_inst->seqNum == (*order_it).oldestInst);
770
771        if (issuing_inst->isSquashed()) {
772            readyInsts[op_class].pop();
773
774            if (!readyInsts[op_class].empty()) {
775                moveToYoungerInst(order_it);
776            } else {
777                readyIt[op_class] = listOrder.end();
778                queueOnList[op_class] = false;
779            }
780
781            listOrder.erase(order_it++);
782
783            ++iqSquashedInstsIssued;
784
785            continue;
786        }
787
788        int idx = -2;
789        Cycles op_latency = Cycles(1);
790        ThreadID tid = issuing_inst->threadNumber;
791
792        if (op_class != No_OpClass) {
793            idx = fuPool->getUnit(op_class);
794            issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
795            if (idx > -1) {
796                op_latency = fuPool->getOpLatency(op_class);
797            }
798        }
799
800        // If we have an instruction that doesn't require a FU, or a
801        // valid FU, then schedule for execution.
802        if (idx == -2 || idx != -1) {
803            if (op_latency == Cycles(1)) {
804                i2e_info->size++;
805                instsToExecute.push_back(issuing_inst);
806
807                // Add the FU onto the list of FU's to be freed next
808                // cycle if we used one.
809                if (idx >= 0)
810                    fuPool->freeUnitNextCycle(idx);
811            } else {
812                Cycles issue_latency = fuPool->getIssueLatency(op_class);
813                // Generate completion event for the FU
814                FUCompletion *execution = new FUCompletion(issuing_inst,
815                                                           idx, this);
816
817                cpu->schedule(execution,
818                              cpu->clockEdge(Cycles(op_latency - 1)));
819
820                // @todo: Enforce that issue_latency == 1 or op_latency
821                if (issue_latency > Cycles(1)) {
822                    // If FU isn't pipelined, then it must be freed
823                    // upon the execution completing.
824                    execution->setFreeFU();
825                } else {
826                    // Add the FU onto the list of FU's to be freed next cycle.
827                    fuPool->freeUnitNextCycle(idx);
828                }
829            }
830
831            DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
832                    "[sn:%lli]\n",
833                    tid, issuing_inst->pcState(),
834                    issuing_inst->seqNum);
835
836            readyInsts[op_class].pop();
837
838            if (!readyInsts[op_class].empty()) {
839                moveToYoungerInst(order_it);
840            } else {
841                readyIt[op_class] = listOrder.end();
842                queueOnList[op_class] = false;
843            }
844
845            issuing_inst->setIssued();
846            ++total_issued;
847
848#if TRACING_ON
849            issuing_inst->issueTick = curTick() - issuing_inst->fetchTick;
850#endif
851
852            if (!issuing_inst->isMemRef()) {
853                // Memory instructions can not be freed from the IQ until they
854                // complete.
855                ++freeEntries;
856                count[tid]--;
857                issuing_inst->clearInIQ();
858            } else {
859                memDepUnit[tid].issue(issuing_inst);
860            }
861
862            listOrder.erase(order_it++);
863            statIssuedInstType[tid][op_class]++;
864            iewStage->incrWb(issuing_inst->seqNum);
865        } else {
866            statFuBusy[op_class]++;
867            fuBusy[tid]++;
868            ++order_it;
869        }
870    }
871
872    numIssuedDist.sample(total_issued);
873    iqInstsIssued+= total_issued;
874
875    // If we issued any instructions, tell the CPU we had activity.
876    // @todo If the way deferred memory instructions are handeled due to
877    // translation changes then the deferredMemInsts condition should be removed
878    // from the code below.
879    if (total_issued || total_deferred_mem_issued || deferredMemInsts.size()) {
880        cpu->activityThisCycle();
881    } else {
882        DPRINTF(IQ, "Not able to schedule any instructions.\n");
883    }
884}
885
886template <class Impl>
887void
888InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
889{
890    DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
891            "to execute.\n", inst);
892
893    NonSpecMapIt inst_it = nonSpecInsts.find(inst);
894
895    assert(inst_it != nonSpecInsts.end());
896
897    ThreadID tid = (*inst_it).second->threadNumber;
898
899    (*inst_it).second->setAtCommit();
900
901    (*inst_it).second->setCanIssue();
902
903    if (!(*inst_it).second->isMemRef()) {
904        addIfReady((*inst_it).second);
905    } else {
906        memDepUnit[tid].nonSpecInstReady((*inst_it).second);
907    }
908
909    (*inst_it).second = NULL;
910
911    nonSpecInsts.erase(inst_it);
912}
913
914template <class Impl>
915void
916InstructionQueue<Impl>::commit(const InstSeqNum &inst, ThreadID tid)
917{
918    DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
919            tid,inst);
920
921    ListIt iq_it = instList[tid].begin();
922
923    while (iq_it != instList[tid].end() &&
924           (*iq_it)->seqNum <= inst) {
925        ++iq_it;
926        instList[tid].pop_front();
927    }
928
929    assert(freeEntries == (numEntries - countInsts()));
930}
931
932template <class Impl>
933int
934InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
935{
936    int dependents = 0;
937
938    // The instruction queue here takes care of both floating and int ops
939    if (completed_inst->isFloating()) {
940        fpInstQueueWakeupQccesses++;
941    } else {
942        intInstQueueWakeupAccesses++;
943    }
944
945    DPRINTF(IQ, "Waking dependents of completed instruction.\n");
946
947    assert(!completed_inst->isSquashed());
948
949    // Tell the memory dependence unit to wake any dependents on this
950    // instruction if it is a memory instruction.  Also complete the memory
951    // instruction at this point since we know it executed without issues.
952    // @todo: Might want to rename "completeMemInst" to something that
953    // indicates that it won't need to be replayed, and call this
954    // earlier.  Might not be a big deal.
955    if (completed_inst->isMemRef()) {
956        memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
957        completeMemInst(completed_inst);
958    } else if (completed_inst->isMemBarrier() ||
959               completed_inst->isWriteBarrier()) {
960        memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
961    }
962
963    for (int dest_reg_idx = 0;
964         dest_reg_idx < completed_inst->numDestRegs();
965         dest_reg_idx++)
966    {
967        PhysRegIndex dest_reg =
968            completed_inst->renamedDestRegIdx(dest_reg_idx);
969
970        // Special case of uniq or control registers.  They are not
971        // handled by the IQ and thus have no dependency graph entry.
972        // @todo Figure out a cleaner way to handle this.
973        if (dest_reg >= numPhysRegs) {
974            DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
975                    numPhysRegs);
976            continue;
977        }
978
979        DPRINTF(IQ, "Waking any dependents on register %i.\n",
980                (int) dest_reg);
981
982        //Go through the dependency chain, marking the registers as
983        //ready within the waiting instructions.
984        DynInstPtr dep_inst = dependGraph.pop(dest_reg);
985
986        while (dep_inst) {
987            DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
988                    "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
989
990            // Might want to give more information to the instruction
991            // so that it knows which of its source registers is
992            // ready.  However that would mean that the dependency
993            // graph entries would need to hold the src_reg_idx.
994            dep_inst->markSrcRegReady();
995
996            addIfReady(dep_inst);
997
998            dep_inst = dependGraph.pop(dest_reg);
999
1000            ++dependents;
1001        }
1002
1003        // Reset the head node now that all of its dependents have
1004        // been woken up.
1005        assert(dependGraph.empty(dest_reg));
1006        dependGraph.clearInst(dest_reg);
1007
1008        // Mark the scoreboard as having that register ready.
1009        regScoreboard[dest_reg] = true;
1010    }
1011    return dependents;
1012}
1013
1014template <class Impl>
1015void
1016InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
1017{
1018    OpClass op_class = ready_inst->opClass();
1019
1020    readyInsts[op_class].push(ready_inst);
1021
1022    // Will need to reorder the list if either a queue is not on the list,
1023    // or it has an older instruction than last time.
1024    if (!queueOnList[op_class]) {
1025        addToOrderList(op_class);
1026    } else if (readyInsts[op_class].top()->seqNum  <
1027               (*readyIt[op_class]).oldestInst) {
1028        listOrder.erase(readyIt[op_class]);
1029        addToOrderList(op_class);
1030    }
1031
1032    DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1033            "the ready list, PC %s opclass:%i [sn:%lli].\n",
1034            ready_inst->pcState(), op_class, ready_inst->seqNum);
1035}
1036
1037template <class Impl>
1038void
1039InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
1040{
1041    DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1042
1043    // Reset DTB translation state
1044    resched_inst->translationStarted(false);
1045    resched_inst->translationCompleted(false);
1046
1047    resched_inst->clearCanIssue();
1048    memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1049}
1050
1051template <class Impl>
1052void
1053InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
1054{
1055    memDepUnit[replay_inst->threadNumber].replay(replay_inst);
1056}
1057
1058template <class Impl>
1059void
1060InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
1061{
1062    ThreadID tid = completed_inst->threadNumber;
1063
1064    DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1065            completed_inst->pcState(), completed_inst->seqNum);
1066
1067    ++freeEntries;
1068
1069    completed_inst->memOpDone(true);
1070
1071    memDepUnit[tid].completed(completed_inst);
1072    count[tid]--;
1073}
1074
1075template <class Impl>
1076void
1077InstructionQueue<Impl>::deferMemInst(DynInstPtr &deferred_inst)
1078{
1079    deferredMemInsts.push_back(deferred_inst);
1080}
1081
1082template <class Impl>
1083typename Impl::DynInstPtr
1084InstructionQueue<Impl>::getDeferredMemInstToExecute()
1085{
1086    for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1087         ++it) {
1088        if ((*it)->translationCompleted() || (*it)->isSquashed()) {
1089            DynInstPtr ret = *it;
1090            deferredMemInsts.erase(it);
1091            return ret;
1092        }
1093    }
1094    return NULL;
1095}
1096
1097template <class Impl>
1098void
1099InstructionQueue<Impl>::violation(DynInstPtr &store,
1100                                  DynInstPtr &faulting_load)
1101{
1102    intInstQueueWrites++;
1103    memDepUnit[store->threadNumber].violation(store, faulting_load);
1104}
1105
1106template <class Impl>
1107void
1108InstructionQueue<Impl>::squash(ThreadID tid)
1109{
1110    DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1111            "the IQ.\n", tid);
1112
1113    // Read instruction sequence number of last instruction out of the
1114    // time buffer.
1115    squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1116
1117    // Call doSquash if there are insts in the IQ
1118    if (count[tid] > 0) {
1119        doSquash(tid);
1120    }
1121
1122    // Also tell the memory dependence unit to squash.
1123    memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1124}
1125
1126template <class Impl>
1127void
1128InstructionQueue<Impl>::doSquash(ThreadID tid)
1129{
1130    // Start at the tail.
1131    ListIt squash_it = instList[tid].end();
1132    --squash_it;
1133
1134    DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1135            tid, squashedSeqNum[tid]);
1136
1137    // Squash any instructions younger than the squashed sequence number
1138    // given.
1139    while (squash_it != instList[tid].end() &&
1140           (*squash_it)->seqNum > squashedSeqNum[tid]) {
1141
1142        DynInstPtr squashed_inst = (*squash_it);
1143        squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1144
1145        // Only handle the instruction if it actually is in the IQ and
1146        // hasn't already been squashed in the IQ.
1147        if (squashed_inst->threadNumber != tid ||
1148            squashed_inst->isSquashedInIQ()) {
1149            --squash_it;
1150            continue;
1151        }
1152
1153        if (!squashed_inst->isIssued() ||
1154            (squashed_inst->isMemRef() &&
1155             !squashed_inst->memOpDone())) {
1156
1157            DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1158                    tid, squashed_inst->seqNum, squashed_inst->pcState());
1159
1160            // Remove the instruction from the dependency list.
1161            if (!squashed_inst->isNonSpeculative() &&
1162                !squashed_inst->isStoreConditional() &&
1163                !squashed_inst->isMemBarrier() &&
1164                !squashed_inst->isWriteBarrier()) {
1165
1166                for (int src_reg_idx = 0;
1167                     src_reg_idx < squashed_inst->numSrcRegs();
1168                     src_reg_idx++)
1169                {
1170                    PhysRegIndex src_reg =
1171                        squashed_inst->renamedSrcRegIdx(src_reg_idx);
1172
1173                    // Only remove it from the dependency graph if it
1174                    // was placed there in the first place.
1175
1176                    // Instead of doing a linked list traversal, we
1177                    // can just remove these squashed instructions
1178                    // either at issue time, or when the register is
1179                    // overwritten.  The only downside to this is it
1180                    // leaves more room for error.
1181
1182                    if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1183                        src_reg < numPhysRegs) {
1184                        dependGraph.remove(src_reg, squashed_inst);
1185                    }
1186
1187
1188                    ++iqSquashedOperandsExamined;
1189                }
1190            } else if (!squashed_inst->isStoreConditional() ||
1191                       !squashed_inst->isCompleted()) {
1192                NonSpecMapIt ns_inst_it =
1193                    nonSpecInsts.find(squashed_inst->seqNum);
1194
1195                // we remove non-speculative instructions from
1196                // nonSpecInsts already when they are ready, and so we
1197                // cannot always expect to find them
1198                if (ns_inst_it == nonSpecInsts.end()) {
1199                    // loads that became ready but stalled on a
1200                    // blocked cache are alreayd removed from
1201                    // nonSpecInsts, and have not faulted
1202                    assert(squashed_inst->getFault() != NoFault ||
1203                           squashed_inst->isMemRef());
1204                } else {
1205
1206                    (*ns_inst_it).second = NULL;
1207
1208                    nonSpecInsts.erase(ns_inst_it);
1209
1210                    ++iqSquashedNonSpecRemoved;
1211                }
1212            }
1213
1214            // Might want to also clear out the head of the dependency graph.
1215
1216            // Mark it as squashed within the IQ.
1217            squashed_inst->setSquashedInIQ();
1218
1219            // @todo: Remove this hack where several statuses are set so the
1220            // inst will flow through the rest of the pipeline.
1221            squashed_inst->setIssued();
1222            squashed_inst->setCanCommit();
1223            squashed_inst->clearInIQ();
1224
1225            //Update Thread IQ Count
1226            count[squashed_inst->threadNumber]--;
1227
1228            ++freeEntries;
1229        }
1230
1231        instList[tid].erase(squash_it--);
1232        ++iqSquashedInstsExamined;
1233    }
1234}
1235
1236template <class Impl>
1237bool
1238InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
1239{
1240    // Loop through the instruction's source registers, adding
1241    // them to the dependency list if they are not ready.
1242    int8_t total_src_regs = new_inst->numSrcRegs();
1243    bool return_val = false;
1244
1245    for (int src_reg_idx = 0;
1246         src_reg_idx < total_src_regs;
1247         src_reg_idx++)
1248    {
1249        // Only add it to the dependency graph if it's not ready.
1250        if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1251            PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1252
1253            // Check the IQ's scoreboard to make sure the register
1254            // hasn't become ready while the instruction was in flight
1255            // between stages.  Only if it really isn't ready should
1256            // it be added to the dependency graph.
1257            if (src_reg >= numPhysRegs) {
1258                continue;
1259            } else if (regScoreboard[src_reg] == false) {
1260                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1261                        "is being added to the dependency chain.\n",
1262                        new_inst->pcState(), src_reg);
1263
1264                dependGraph.insert(src_reg, new_inst);
1265
1266                // Change the return value to indicate that something
1267                // was added to the dependency graph.
1268                return_val = true;
1269            } else {
1270                DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1271                        "became ready before it reached the IQ.\n",
1272                        new_inst->pcState(), src_reg);
1273                // Mark a register ready within the instruction.
1274                new_inst->markSrcRegReady(src_reg_idx);
1275            }
1276        }
1277    }
1278
1279    return return_val;
1280}
1281
1282template <class Impl>
1283void
1284InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
1285{
1286    // Nothing really needs to be marked when an instruction becomes
1287    // the producer of a register's value, but for convenience a ptr
1288    // to the producing instruction will be placed in the head node of
1289    // the dependency links.
1290    int8_t total_dest_regs = new_inst->numDestRegs();
1291
1292    for (int dest_reg_idx = 0;
1293         dest_reg_idx < total_dest_regs;
1294         dest_reg_idx++)
1295    {
1296        PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1297
1298        // Instructions that use the misc regs will have a reg number
1299        // higher than the normal physical registers.  In this case these
1300        // registers are not renamed, and there is no need to track
1301        // dependencies as these instructions must be executed at commit.
1302        if (dest_reg >= numPhysRegs) {
1303            continue;
1304        }
1305
1306        if (!dependGraph.empty(dest_reg)) {
1307            dependGraph.dump();
1308            panic("Dependency graph %i not empty!", dest_reg);
1309        }
1310
1311        dependGraph.setInst(dest_reg, new_inst);
1312
1313        // Mark the scoreboard to say it's not yet ready.
1314        regScoreboard[dest_reg] = false;
1315    }
1316}
1317
1318template <class Impl>
1319void
1320InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
1321{
1322    // If the instruction now has all of its source registers
1323    // available, then add it to the list of ready instructions.
1324    if (inst->readyToIssue()) {
1325
1326        //Add the instruction to the proper ready list.
1327        if (inst->isMemRef()) {
1328
1329            DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1330
1331            // Message to the mem dependence unit that this instruction has
1332            // its registers ready.
1333            memDepUnit[inst->threadNumber].regsReady(inst);
1334
1335            return;
1336        }
1337
1338        OpClass op_class = inst->opClass();
1339
1340        DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1341                "the ready list, PC %s opclass:%i [sn:%lli].\n",
1342                inst->pcState(), op_class, inst->seqNum);
1343
1344        readyInsts[op_class].push(inst);
1345
1346        // Will need to reorder the list if either a queue is not on the list,
1347        // or it has an older instruction than last time.
1348        if (!queueOnList[op_class]) {
1349            addToOrderList(op_class);
1350        } else if (readyInsts[op_class].top()->seqNum  <
1351                   (*readyIt[op_class]).oldestInst) {
1352            listOrder.erase(readyIt[op_class]);
1353            addToOrderList(op_class);
1354        }
1355    }
1356}
1357
1358template <class Impl>
1359int
1360InstructionQueue<Impl>::countInsts()
1361{
1362#if 0
1363    //ksewell:This works but definitely could use a cleaner write
1364    //with a more intuitive way of counting. Right now it's
1365    //just brute force ....
1366    // Change the #if if you want to use this method.
1367    int total_insts = 0;
1368
1369    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1370        ListIt count_it = instList[tid].begin();
1371
1372        while (count_it != instList[tid].end()) {
1373            if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1374                if (!(*count_it)->isIssued()) {
1375                    ++total_insts;
1376                } else if ((*count_it)->isMemRef() &&
1377                           !(*count_it)->memOpDone) {
1378                    // Loads that have not been marked as executed still count
1379                    // towards the total instructions.
1380                    ++total_insts;
1381                }
1382            }
1383
1384            ++count_it;
1385        }
1386    }
1387
1388    return total_insts;
1389#else
1390    return numEntries - freeEntries;
1391#endif
1392}
1393
1394template <class Impl>
1395void
1396InstructionQueue<Impl>::dumpLists()
1397{
1398    for (int i = 0; i < Num_OpClasses; ++i) {
1399        cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1400
1401        cprintf("\n");
1402    }
1403
1404    cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1405
1406    NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1407    NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1408
1409    cprintf("Non speculative list: ");
1410
1411    while (non_spec_it != non_spec_end_it) {
1412        cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1413                (*non_spec_it).second->seqNum);
1414        ++non_spec_it;
1415    }
1416
1417    cprintf("\n");
1418
1419    ListOrderIt list_order_it = listOrder.begin();
1420    ListOrderIt list_order_end_it = listOrder.end();
1421    int i = 1;
1422
1423    cprintf("List order: ");
1424
1425    while (list_order_it != list_order_end_it) {
1426        cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1427                (*list_order_it).oldestInst);
1428
1429        ++list_order_it;
1430        ++i;
1431    }
1432
1433    cprintf("\n");
1434}
1435
1436
1437template <class Impl>
1438void
1439InstructionQueue<Impl>::dumpInsts()
1440{
1441    for (ThreadID tid = 0; tid < numThreads; ++tid) {
1442        int num = 0;
1443        int valid_num = 0;
1444        ListIt inst_list_it = instList[tid].begin();
1445
1446        while (inst_list_it != instList[tid].end()) {
1447            cprintf("Instruction:%i\n", num);
1448            if (!(*inst_list_it)->isSquashed()) {
1449                if (!(*inst_list_it)->isIssued()) {
1450                    ++valid_num;
1451                    cprintf("Count:%i\n", valid_num);
1452                } else if ((*inst_list_it)->isMemRef() &&
1453                           !(*inst_list_it)->memOpDone()) {
1454                    // Loads that have not been marked as executed
1455                    // still count towards the total instructions.
1456                    ++valid_num;
1457                    cprintf("Count:%i\n", valid_num);
1458                }
1459            }
1460
1461            cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1462                    "Issued:%i\nSquashed:%i\n",
1463                    (*inst_list_it)->pcState(),
1464                    (*inst_list_it)->seqNum,
1465                    (*inst_list_it)->threadNumber,
1466                    (*inst_list_it)->isIssued(),
1467                    (*inst_list_it)->isSquashed());
1468
1469            if ((*inst_list_it)->isMemRef()) {
1470                cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1471            }
1472
1473            cprintf("\n");
1474
1475            inst_list_it++;
1476            ++num;
1477        }
1478    }
1479
1480    cprintf("Insts to Execute list:\n");
1481
1482    int num = 0;
1483    int valid_num = 0;
1484    ListIt inst_list_it = instsToExecute.begin();
1485
1486    while (inst_list_it != instsToExecute.end())
1487    {
1488        cprintf("Instruction:%i\n",
1489                num);
1490        if (!(*inst_list_it)->isSquashed()) {
1491            if (!(*inst_list_it)->isIssued()) {
1492                ++valid_num;
1493                cprintf("Count:%i\n", valid_num);
1494            } else if ((*inst_list_it)->isMemRef() &&
1495                       !(*inst_list_it)->memOpDone()) {
1496                // Loads that have not been marked as executed
1497                // still count towards the total instructions.
1498                ++valid_num;
1499                cprintf("Count:%i\n", valid_num);
1500            }
1501        }
1502
1503        cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1504                "Issued:%i\nSquashed:%i\n",
1505                (*inst_list_it)->pcState(),
1506                (*inst_list_it)->seqNum,
1507                (*inst_list_it)->threadNumber,
1508                (*inst_list_it)->isIssued(),
1509                (*inst_list_it)->isSquashed());
1510
1511        if ((*inst_list_it)->isMemRef()) {
1512            cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1513        }
1514
1515        cprintf("\n");
1516
1517        inst_list_it++;
1518        ++num;
1519    }
1520}
1521
1522#endif//__CPU_O3_INST_QUEUE_IMPL_HH__
1523