inst_queue.hh revision 9920
1/* 2 * Copyright (c) 2011-2012 ARM Limited 3 * Copyright (c) 2013 Advanced Micro Devices, Inc. 4 * All rights reserved. 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2004-2006 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Kevin Lim 42 */ 43 44#ifndef __CPU_O3_INST_QUEUE_HH__ 45#define __CPU_O3_INST_QUEUE_HH__ 46 47#include <list> 48#include <map> 49#include <queue> 50#include <vector> 51 52#include "base/statistics.hh" 53#include "base/types.hh" 54#include "cpu/o3/dep_graph.hh" 55#include "cpu/inst_seq.hh" 56#include "cpu/op_class.hh" 57#include "cpu/timebuf.hh" 58#include "sim/eventq.hh" 59 60struct DerivO3CPUParams; 61class FUPool; 62class MemInterface; 63 64/** 65 * A standard instruction queue class. It holds ready instructions, in 66 * order, in seperate priority queues to facilitate the scheduling of 67 * instructions. The IQ uses a separate linked list to track dependencies. 68 * Similar to the rename map and the free list, it expects that 69 * floating point registers have their indices start after the integer 70 * registers (ie with 96 int and 96 fp registers, regs 0-95 are integer 71 * and 96-191 are fp). This remains true even for both logical and 72 * physical register indices. The IQ depends on the memory dependence unit to 73 * track when memory operations are ready in terms of ordering; register 74 * dependencies are tracked normally. Right now the IQ also handles the 75 * execution timing; this is mainly to allow back-to-back scheduling without 76 * requiring IEW to be able to peek into the IQ. At the end of the execution 77 * latency, the instruction is put into the queue to execute, where it will 78 * have the execute() function called on it. 79 * @todo: Make IQ able to handle multiple FU pools. 80 */ 81template <class Impl> 82class InstructionQueue 83{ 84 public: 85 //Typedefs from the Impl. 86 typedef typename Impl::O3CPU O3CPU; 87 typedef typename Impl::DynInstPtr DynInstPtr; 88 89 typedef typename Impl::CPUPol::IEW IEW; 90 typedef typename Impl::CPUPol::MemDepUnit MemDepUnit; 91 typedef typename Impl::CPUPol::IssueStruct IssueStruct; 92 typedef typename Impl::CPUPol::TimeStruct TimeStruct; 93 94 // Typedef of iterator through the list of instructions. 95 typedef typename std::list<DynInstPtr>::iterator ListIt; 96 97 /** FU completion event class. */ 98 class FUCompletion : public Event { 99 private: 100 /** Executing instruction. */ 101 DynInstPtr inst; 102 103 /** Index of the FU used for executing. */ 104 int fuIdx; 105 106 /** Pointer back to the instruction queue. */ 107 InstructionQueue<Impl> *iqPtr; 108 109 /** Should the FU be added to the list to be freed upon 110 * completing this event. 111 */ 112 bool freeFU; 113 114 public: 115 /** Construct a FU completion event. */ 116 FUCompletion(DynInstPtr &_inst, int fu_idx, 117 InstructionQueue<Impl> *iq_ptr); 118 119 virtual void process(); 120 virtual const char *description() const; 121 void setFreeFU() { freeFU = true; } 122 }; 123 124 /** Constructs an IQ. */ 125 InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params); 126 127 /** Destructs the IQ. */ 128 ~InstructionQueue(); 129 130 /** Returns the name of the IQ. */ 131 std::string name() const; 132 133 /** Registers statistics. */ 134 void regStats(); 135 136 /** Resets all instruction queue state. */ 137 void resetState(); 138 139 /** Sets active threads list. */ 140 void setActiveThreads(std::list<ThreadID> *at_ptr); 141 142 /** Sets the timer buffer between issue and execute. */ 143 void setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2eQueue); 144 145 /** Sets the global time buffer. */ 146 void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr); 147 148 /** Perform sanity checks after a drain. */ 149 void drainSanityCheck() const; 150 151 /** Takes over execution from another CPU's thread. */ 152 void takeOverFrom(); 153 154 /** Number of entries needed for given amount of threads. */ 155 int entryAmount(ThreadID num_threads); 156 157 /** Resets max entries for all threads. */ 158 void resetEntries(); 159 160 /** Returns total number of free entries. */ 161 unsigned numFreeEntries(); 162 163 /** Returns number of free entries for a thread. */ 164 unsigned numFreeEntries(ThreadID tid); 165 166 /** Returns whether or not the IQ is full. */ 167 bool isFull(); 168 169 /** Returns whether or not the IQ is full for a specific thread. */ 170 bool isFull(ThreadID tid); 171 172 /** Returns if there are any ready instructions in the IQ. */ 173 bool hasReadyInsts(); 174 175 /** Inserts a new instruction into the IQ. */ 176 void insert(DynInstPtr &new_inst); 177 178 /** Inserts a new, non-speculative instruction into the IQ. */ 179 void insertNonSpec(DynInstPtr &new_inst); 180 181 /** Inserts a memory or write barrier into the IQ to make sure 182 * loads and stores are ordered properly. 183 */ 184 void insertBarrier(DynInstPtr &barr_inst); 185 186 /** Returns the oldest scheduled instruction, and removes it from 187 * the list of instructions waiting to execute. 188 */ 189 DynInstPtr getInstToExecute(); 190 191 /** Returns a memory instruction that was referred due to a delayed DTB 192 * translation if it is now ready to execute. 193 */ 194 DynInstPtr getDeferredMemInstToExecute(); 195 196 /** 197 * Records the instruction as the producer of a register without 198 * adding it to the rest of the IQ. 199 */ 200 void recordProducer(DynInstPtr &inst) 201 { addToProducers(inst); } 202 203 /** Process FU completion event. */ 204 void processFUCompletion(DynInstPtr &inst, int fu_idx); 205 206 /** 207 * Schedules ready instructions, adding the ready ones (oldest first) to 208 * the queue to execute. 209 */ 210 void scheduleReadyInsts(); 211 212 /** Schedules a single specific non-speculative instruction. */ 213 void scheduleNonSpec(const InstSeqNum &inst); 214 215 /** 216 * Commits all instructions up to and including the given sequence number, 217 * for a specific thread. 218 */ 219 void commit(const InstSeqNum &inst, ThreadID tid = 0); 220 221 /** Wakes all dependents of a completed instruction. */ 222 int wakeDependents(DynInstPtr &completed_inst); 223 224 /** Adds a ready memory instruction to the ready list. */ 225 void addReadyMemInst(DynInstPtr &ready_inst); 226 227 /** 228 * Reschedules a memory instruction. It will be ready to issue once 229 * replayMemInst() is called. 230 */ 231 void rescheduleMemInst(DynInstPtr &resched_inst); 232 233 /** Replays a memory instruction. It must be rescheduled first. */ 234 void replayMemInst(DynInstPtr &replay_inst); 235 236 /** Completes a memory operation. */ 237 void completeMemInst(DynInstPtr &completed_inst); 238 239 /** 240 * Defers a memory instruction when its DTB translation incurs a hw 241 * page table walk. 242 */ 243 void deferMemInst(DynInstPtr &deferred_inst); 244 245 /** Indicates an ordering violation between a store and a load. */ 246 void violation(DynInstPtr &store, DynInstPtr &faulting_load); 247 248 /** 249 * Squashes instructions for a thread. Squashing information is obtained 250 * from the time buffer. 251 */ 252 void squash(ThreadID tid); 253 254 /** Returns the number of used entries for a thread. */ 255 unsigned getCount(ThreadID tid) { return count[tid]; }; 256 257 /** Debug function to print all instructions. */ 258 void printInsts(); 259 260 private: 261 /** Does the actual squashing. */ 262 void doSquash(ThreadID tid); 263 264 ///////////////////////// 265 // Various pointers 266 ///////////////////////// 267 268 /** Pointer to the CPU. */ 269 O3CPU *cpu; 270 271 /** Cache interface. */ 272 MemInterface *dcacheInterface; 273 274 /** Pointer to IEW stage. */ 275 IEW *iewStage; 276 277 /** The memory dependence unit, which tracks/predicts memory dependences 278 * between instructions. 279 */ 280 MemDepUnit memDepUnit[Impl::MaxThreads]; 281 282 /** The queue to the execute stage. Issued instructions will be written 283 * into it. 284 */ 285 TimeBuffer<IssueStruct> *issueToExecuteQueue; 286 287 /** The backwards time buffer. */ 288 TimeBuffer<TimeStruct> *timeBuffer; 289 290 /** Wire to read information from timebuffer. */ 291 typename TimeBuffer<TimeStruct>::wire fromCommit; 292 293 /** Function unit pool. */ 294 FUPool *fuPool; 295 296 ////////////////////////////////////// 297 // Instruction lists, ready queues, and ordering 298 ////////////////////////////////////// 299 300 /** List of all the instructions in the IQ (some of which may be issued). */ 301 std::list<DynInstPtr> instList[Impl::MaxThreads]; 302 303 /** List of instructions that are ready to be executed. */ 304 std::list<DynInstPtr> instsToExecute; 305 306 /** List of instructions waiting for their DTB translation to 307 * complete (hw page table walk in progress). 308 */ 309 std::list<DynInstPtr> deferredMemInsts; 310 311 /** 312 * Struct for comparing entries to be added to the priority queue. 313 * This gives reverse ordering to the instructions in terms of 314 * sequence numbers: the instructions with smaller sequence 315 * numbers (and hence are older) will be at the top of the 316 * priority queue. 317 */ 318 struct pqCompare { 319 bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const 320 { 321 return lhs->seqNum > rhs->seqNum; 322 } 323 }; 324 325 typedef std::priority_queue<DynInstPtr, std::vector<DynInstPtr>, pqCompare> 326 ReadyInstQueue; 327 328 /** List of ready instructions, per op class. They are separated by op 329 * class to allow for easy mapping to FUs. 330 */ 331 ReadyInstQueue readyInsts[Num_OpClasses]; 332 333 /** List of non-speculative instructions that will be scheduled 334 * once the IQ gets a signal from commit. While it's redundant to 335 * have the key be a part of the value (the sequence number is stored 336 * inside of DynInst), when these instructions are woken up only 337 * the sequence number will be available. Thus it is most efficient to be 338 * able to search by the sequence number alone. 339 */ 340 std::map<InstSeqNum, DynInstPtr> nonSpecInsts; 341 342 typedef typename std::map<InstSeqNum, DynInstPtr>::iterator NonSpecMapIt; 343 344 /** Entry for the list age ordering by op class. */ 345 struct ListOrderEntry { 346 OpClass queueType; 347 InstSeqNum oldestInst; 348 }; 349 350 /** List that contains the age order of the oldest instruction of each 351 * ready queue. Used to select the oldest instruction available 352 * among op classes. 353 * @todo: Might be better to just move these entries around instead 354 * of creating new ones every time the position changes due to an 355 * instruction issuing. Not sure std::list supports this. 356 */ 357 std::list<ListOrderEntry> listOrder; 358 359 typedef typename std::list<ListOrderEntry>::iterator ListOrderIt; 360 361 /** Tracks if each ready queue is on the age order list. */ 362 bool queueOnList[Num_OpClasses]; 363 364 /** Iterators of each ready queue. Points to their spot in the age order 365 * list. 366 */ 367 ListOrderIt readyIt[Num_OpClasses]; 368 369 /** Add an op class to the age order list. */ 370 void addToOrderList(OpClass op_class); 371 372 /** 373 * Called when the oldest instruction has been removed from a ready queue; 374 * this places that ready queue into the proper spot in the age order list. 375 */ 376 void moveToYoungerInst(ListOrderIt age_order_it); 377 378 DependencyGraph<DynInstPtr> dependGraph; 379 380 ////////////////////////////////////// 381 // Various parameters 382 ////////////////////////////////////// 383 384 /** IQ Resource Sharing Policy */ 385 enum IQPolicy { 386 Dynamic, 387 Partitioned, 388 Threshold 389 }; 390 391 /** IQ sharing policy for SMT. */ 392 IQPolicy iqPolicy; 393 394 /** Number of Total Threads*/ 395 ThreadID numThreads; 396 397 /** Pointer to list of active threads. */ 398 std::list<ThreadID> *activeThreads; 399 400 /** Per Thread IQ count */ 401 unsigned count[Impl::MaxThreads]; 402 403 /** Max IQ Entries Per Thread */ 404 unsigned maxEntries[Impl::MaxThreads]; 405 406 /** Number of free IQ entries left. */ 407 unsigned freeEntries; 408 409 /** The number of entries in the instruction queue. */ 410 unsigned numEntries; 411 412 /** The total number of instructions that can be issued in one cycle. */ 413 unsigned totalWidth; 414 415 /** The number of physical registers in the CPU. */ 416 unsigned numPhysRegs; 417 418 /** Delay between commit stage and the IQ. 419 * @todo: Make there be a distinction between the delays within IEW. 420 */ 421 Cycles commitToIEWDelay; 422 423 /** The sequence number of the squashed instruction. */ 424 InstSeqNum squashedSeqNum[Impl::MaxThreads]; 425 426 /** A cache of the recently woken registers. It is 1 if the register 427 * has been woken up recently, and 0 if the register has been added 428 * to the dependency graph and has not yet received its value. It 429 * is basically a secondary scoreboard, and should pretty much mirror 430 * the scoreboard that exists in the rename map. 431 */ 432 std::vector<bool> regScoreboard; 433 434 /** Adds an instruction to the dependency graph, as a consumer. */ 435 bool addToDependents(DynInstPtr &new_inst); 436 437 /** Adds an instruction to the dependency graph, as a producer. */ 438 void addToProducers(DynInstPtr &new_inst); 439 440 /** Moves an instruction to the ready queue if it is ready. */ 441 void addIfReady(DynInstPtr &inst); 442 443 /** Debugging function to count how many entries are in the IQ. It does 444 * a linear walk through the instructions, so do not call this function 445 * during normal execution. 446 */ 447 int countInsts(); 448 449 /** Debugging function to dump all the list sizes, as well as print 450 * out the list of nonspeculative instructions. Should not be used 451 * in any other capacity, but it has no harmful sideaffects. 452 */ 453 void dumpLists(); 454 455 /** Debugging function to dump out all instructions that are in the 456 * IQ. 457 */ 458 void dumpInsts(); 459 460 /** Stat for number of instructions added. */ 461 Stats::Scalar iqInstsAdded; 462 /** Stat for number of non-speculative instructions added. */ 463 Stats::Scalar iqNonSpecInstsAdded; 464 465 Stats::Scalar iqInstsIssued; 466 /** Stat for number of integer instructions issued. */ 467 Stats::Scalar iqIntInstsIssued; 468 /** Stat for number of floating point instructions issued. */ 469 Stats::Scalar iqFloatInstsIssued; 470 /** Stat for number of branch instructions issued. */ 471 Stats::Scalar iqBranchInstsIssued; 472 /** Stat for number of memory instructions issued. */ 473 Stats::Scalar iqMemInstsIssued; 474 /** Stat for number of miscellaneous instructions issued. */ 475 Stats::Scalar iqMiscInstsIssued; 476 /** Stat for number of squashed instructions that were ready to issue. */ 477 Stats::Scalar iqSquashedInstsIssued; 478 /** Stat for number of squashed instructions examined when squashing. */ 479 Stats::Scalar iqSquashedInstsExamined; 480 /** Stat for number of squashed instruction operands examined when 481 * squashing. 482 */ 483 Stats::Scalar iqSquashedOperandsExamined; 484 /** Stat for number of non-speculative instructions removed due to a squash. 485 */ 486 Stats::Scalar iqSquashedNonSpecRemoved; 487 // Also include number of instructions rescheduled and replayed. 488 489 /** Distribution of number of instructions in the queue. 490 * @todo: Need to create struct to track the entry time for each 491 * instruction. */ 492// Stats::VectorDistribution queueResDist; 493 /** Distribution of the number of instructions issued. */ 494 Stats::Distribution numIssuedDist; 495 /** Distribution of the cycles it takes to issue an instruction. 496 * @todo: Need to create struct to track the ready time for each 497 * instruction. */ 498// Stats::VectorDistribution issueDelayDist; 499 500 /** Number of times an instruction could not be issued because a 501 * FU was busy. 502 */ 503 Stats::Vector statFuBusy; 504// Stats::Vector dist_unissued; 505 /** Stat for total number issued for each instruction type. */ 506 Stats::Vector2d statIssuedInstType; 507 508 /** Number of instructions issued per cycle. */ 509 Stats::Formula issueRate; 510 511 /** Number of times the FU was busy. */ 512 Stats::Vector fuBusy; 513 /** Number of times the FU was busy per instruction issued. */ 514 Stats::Formula fuBusyRate; 515 public: 516 Stats::Scalar intInstQueueReads; 517 Stats::Scalar intInstQueueWrites; 518 Stats::Scalar intInstQueueWakeupAccesses; 519 Stats::Scalar fpInstQueueReads; 520 Stats::Scalar fpInstQueueWrites; 521 Stats::Scalar fpInstQueueWakeupQccesses; 522 523 Stats::Scalar intAluAccesses; 524 Stats::Scalar fpAluAccesses; 525}; 526 527#endif //__CPU_O3_INST_QUEUE_HH__ 528