inst_queue.hh revision 8229:78bf55f23338
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_O3_INST_QUEUE_HH__
44#define __CPU_O3_INST_QUEUE_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49#include <vector>
50
51#include "base/statistics.hh"
52#include "base/types.hh"
53#include "cpu/o3/dep_graph.hh"
54#include "cpu/inst_seq.hh"
55#include "cpu/op_class.hh"
56#include "cpu/timebuf.hh"
57#include "sim/eventq.hh"
58
59class DerivO3CPUParams;
60class FUPool;
61class MemInterface;
62
63/**
64 * A standard instruction queue class.  It holds ready instructions, in
65 * order, in seperate priority queues to facilitate the scheduling of
66 * instructions.  The IQ uses a separate linked list to track dependencies.
67 * Similar to the rename map and the free list, it expects that
68 * floating point registers have their indices start after the integer
69 * registers (ie with 96 int and 96 fp registers, regs 0-95 are integer
70 * and 96-191 are fp).  This remains true even for both logical and
71 * physical register indices. The IQ depends on the memory dependence unit to
72 * track when memory operations are ready in terms of ordering; register
73 * dependencies are tracked normally. Right now the IQ also handles the
74 * execution timing; this is mainly to allow back-to-back scheduling without
75 * requiring IEW to be able to peek into the IQ. At the end of the execution
76 * latency, the instruction is put into the queue to execute, where it will
77 * have the execute() function called on it.
78 * @todo: Make IQ able to handle multiple FU pools.
79 */
80template <class Impl>
81class InstructionQueue
82{
83  public:
84    //Typedefs from the Impl.
85    typedef typename Impl::O3CPU O3CPU;
86    typedef typename Impl::DynInstPtr DynInstPtr;
87
88    typedef typename Impl::CPUPol::IEW IEW;
89    typedef typename Impl::CPUPol::MemDepUnit MemDepUnit;
90    typedef typename Impl::CPUPol::IssueStruct IssueStruct;
91    typedef typename Impl::CPUPol::TimeStruct TimeStruct;
92
93    // Typedef of iterator through the list of instructions.
94    typedef typename std::list<DynInstPtr>::iterator ListIt;
95
96    friend class Impl::O3CPU;
97
98    /** FU completion event class. */
99    class FUCompletion : public Event {
100      private:
101        /** Executing instruction. */
102        DynInstPtr inst;
103
104        /** Index of the FU used for executing. */
105        int fuIdx;
106
107        /** Pointer back to the instruction queue. */
108        InstructionQueue<Impl> *iqPtr;
109
110        /** Should the FU be added to the list to be freed upon
111         * completing this event.
112         */
113        bool freeFU;
114
115      public:
116        /** Construct a FU completion event. */
117        FUCompletion(DynInstPtr &_inst, int fu_idx,
118                     InstructionQueue<Impl> *iq_ptr);
119
120        virtual void process();
121        virtual const char *description() const;
122        void setFreeFU() { freeFU = true; }
123    };
124
125    /** Constructs an IQ. */
126    InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params);
127
128    /** Destructs the IQ. */
129    ~InstructionQueue();
130
131    /** Returns the name of the IQ. */
132    std::string name() const;
133
134    /** Registers statistics. */
135    void regStats();
136
137    /** Resets all instruction queue state. */
138    void resetState();
139
140    /** Sets active threads list. */
141    void setActiveThreads(std::list<ThreadID> *at_ptr);
142
143    /** Sets the timer buffer between issue and execute. */
144    void setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2eQueue);
145
146    /** Sets the global time buffer. */
147    void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
148
149    /** Switches out the instruction queue. */
150    void switchOut();
151
152    /** Takes over execution from another CPU's thread. */
153    void takeOverFrom();
154
155    /** Returns if the IQ is switched out. */
156    bool isSwitchedOut() { return switchedOut; }
157
158    /** Number of entries needed for given amount of threads. */
159    int entryAmount(ThreadID num_threads);
160
161    /** Resets max entries for all threads. */
162    void resetEntries();
163
164    /** Returns total number of free entries. */
165    unsigned numFreeEntries();
166
167    /** Returns number of free entries for a thread. */
168    unsigned numFreeEntries(ThreadID tid);
169
170    /** Returns whether or not the IQ is full. */
171    bool isFull();
172
173    /** Returns whether or not the IQ is full for a specific thread. */
174    bool isFull(ThreadID tid);
175
176    /** Returns if there are any ready instructions in the IQ. */
177    bool hasReadyInsts();
178
179    /** Inserts a new instruction into the IQ. */
180    void insert(DynInstPtr &new_inst);
181
182    /** Inserts a new, non-speculative instruction into the IQ. */
183    void insertNonSpec(DynInstPtr &new_inst);
184
185    /** Inserts a memory or write barrier into the IQ to make sure
186     *  loads and stores are ordered properly.
187     */
188    void insertBarrier(DynInstPtr &barr_inst);
189
190    /** Returns the oldest scheduled instruction, and removes it from
191     * the list of instructions waiting to execute.
192     */
193    DynInstPtr getInstToExecute();
194
195    /** Returns a memory instruction that was referred due to a delayed DTB
196     *  translation if it is now ready to execute.
197     */
198    DynInstPtr getDeferredMemInstToExecute();
199
200    /**
201     * Records the instruction as the producer of a register without
202     * adding it to the rest of the IQ.
203     */
204    void recordProducer(DynInstPtr &inst)
205    { addToProducers(inst); }
206
207    /** Process FU completion event. */
208    void processFUCompletion(DynInstPtr &inst, int fu_idx);
209
210    /**
211     * Schedules ready instructions, adding the ready ones (oldest first) to
212     * the queue to execute.
213     */
214    void scheduleReadyInsts();
215
216    /** Schedules a single specific non-speculative instruction. */
217    void scheduleNonSpec(const InstSeqNum &inst);
218
219    /**
220     * Commits all instructions up to and including the given sequence number,
221     * for a specific thread.
222     */
223    void commit(const InstSeqNum &inst, ThreadID tid = 0);
224
225    /** Wakes all dependents of a completed instruction. */
226    int wakeDependents(DynInstPtr &completed_inst);
227
228    /** Adds a ready memory instruction to the ready list. */
229    void addReadyMemInst(DynInstPtr &ready_inst);
230
231    /**
232     * Reschedules a memory instruction. It will be ready to issue once
233     * replayMemInst() is called.
234     */
235    void rescheduleMemInst(DynInstPtr &resched_inst);
236
237    /** Replays a memory instruction. It must be rescheduled first. */
238    void replayMemInst(DynInstPtr &replay_inst);
239
240    /** Completes a memory operation. */
241    void completeMemInst(DynInstPtr &completed_inst);
242
243    /**
244     * Defers a memory instruction when its DTB translation incurs a hw
245     * page table walk.
246     */
247    void deferMemInst(DynInstPtr &deferred_inst);
248
249    /** Indicates an ordering violation between a store and a load. */
250    void violation(DynInstPtr &store, DynInstPtr &faulting_load);
251
252    /**
253     * Squashes instructions for a thread. Squashing information is obtained
254     * from the time buffer.
255     */
256    void squash(ThreadID tid);
257
258    /** Returns the number of used entries for a thread. */
259    unsigned getCount(ThreadID tid) { return count[tid]; };
260
261    /** Debug function to print all instructions. */
262    void printInsts();
263
264  private:
265    /** Does the actual squashing. */
266    void doSquash(ThreadID tid);
267
268    /////////////////////////
269    // Various pointers
270    /////////////////////////
271
272    /** Pointer to the CPU. */
273    O3CPU *cpu;
274
275    /** Cache interface. */
276    MemInterface *dcacheInterface;
277
278    /** Pointer to IEW stage. */
279    IEW *iewStage;
280
281    /** The memory dependence unit, which tracks/predicts memory dependences
282     *  between instructions.
283     */
284    MemDepUnit memDepUnit[Impl::MaxThreads];
285
286    /** The queue to the execute stage.  Issued instructions will be written
287     *  into it.
288     */
289    TimeBuffer<IssueStruct> *issueToExecuteQueue;
290
291    /** The backwards time buffer. */
292    TimeBuffer<TimeStruct> *timeBuffer;
293
294    /** Wire to read information from timebuffer. */
295    typename TimeBuffer<TimeStruct>::wire fromCommit;
296
297    /** Function unit pool. */
298    FUPool *fuPool;
299
300    //////////////////////////////////////
301    // Instruction lists, ready queues, and ordering
302    //////////////////////////////////////
303
304    /** List of all the instructions in the IQ (some of which may be issued). */
305    std::list<DynInstPtr> instList[Impl::MaxThreads];
306
307    /** List of instructions that are ready to be executed. */
308    std::list<DynInstPtr> instsToExecute;
309
310    /** List of instructions waiting for their DTB translation to
311     *  complete (hw page table walk in progress).
312     */
313    std::list<DynInstPtr> deferredMemInsts;
314
315    /**
316     * Struct for comparing entries to be added to the priority queue.
317     * This gives reverse ordering to the instructions in terms of
318     * sequence numbers: the instructions with smaller sequence
319     * numbers (and hence are older) will be at the top of the
320     * priority queue.
321     */
322    struct pqCompare {
323        bool operator() (const DynInstPtr &lhs, const DynInstPtr &rhs) const
324        {
325            return lhs->seqNum > rhs->seqNum;
326        }
327    };
328
329    typedef std::priority_queue<DynInstPtr, std::vector<DynInstPtr>, pqCompare>
330    ReadyInstQueue;
331
332    /** List of ready instructions, per op class.  They are separated by op
333     *  class to allow for easy mapping to FUs.
334     */
335    ReadyInstQueue readyInsts[Num_OpClasses];
336
337    /** List of non-speculative instructions that will be scheduled
338     *  once the IQ gets a signal from commit.  While it's redundant to
339     *  have the key be a part of the value (the sequence number is stored
340     *  inside of DynInst), when these instructions are woken up only
341     *  the sequence number will be available.  Thus it is most efficient to be
342     *  able to search by the sequence number alone.
343     */
344    std::map<InstSeqNum, DynInstPtr> nonSpecInsts;
345
346    typedef typename std::map<InstSeqNum, DynInstPtr>::iterator NonSpecMapIt;
347
348    /** Entry for the list age ordering by op class. */
349    struct ListOrderEntry {
350        OpClass queueType;
351        InstSeqNum oldestInst;
352    };
353
354    /** List that contains the age order of the oldest instruction of each
355     *  ready queue.  Used to select the oldest instruction available
356     *  among op classes.
357     *  @todo: Might be better to just move these entries around instead
358     *  of creating new ones every time the position changes due to an
359     *  instruction issuing.  Not sure std::list supports this.
360     */
361    std::list<ListOrderEntry> listOrder;
362
363    typedef typename std::list<ListOrderEntry>::iterator ListOrderIt;
364
365    /** Tracks if each ready queue is on the age order list. */
366    bool queueOnList[Num_OpClasses];
367
368    /** Iterators of each ready queue.  Points to their spot in the age order
369     *  list.
370     */
371    ListOrderIt readyIt[Num_OpClasses];
372
373    /** Add an op class to the age order list. */
374    void addToOrderList(OpClass op_class);
375
376    /**
377     * Called when the oldest instruction has been removed from a ready queue;
378     * this places that ready queue into the proper spot in the age order list.
379     */
380    void moveToYoungerInst(ListOrderIt age_order_it);
381
382    DependencyGraph<DynInstPtr> dependGraph;
383
384    //////////////////////////////////////
385    // Various parameters
386    //////////////////////////////////////
387
388    /** IQ Resource Sharing Policy */
389    enum IQPolicy {
390        Dynamic,
391        Partitioned,
392        Threshold
393    };
394
395    /** IQ sharing policy for SMT. */
396    IQPolicy iqPolicy;
397
398    /** Number of Total Threads*/
399    ThreadID numThreads;
400
401    /** Pointer to list of active threads. */
402    std::list<ThreadID> *activeThreads;
403
404    /** Per Thread IQ count */
405    unsigned count[Impl::MaxThreads];
406
407    /** Max IQ Entries Per Thread */
408    unsigned maxEntries[Impl::MaxThreads];
409
410    /** Number of free IQ entries left. */
411    unsigned freeEntries;
412
413    /** The number of entries in the instruction queue. */
414    unsigned numEntries;
415
416    /** The total number of instructions that can be issued in one cycle. */
417    unsigned totalWidth;
418
419    /** The number of physical registers in the CPU. */
420    unsigned numPhysRegs;
421
422    /** The number of physical integer registers in the CPU. */
423    unsigned numPhysIntRegs;
424
425    /** The number of floating point registers in the CPU. */
426    unsigned numPhysFloatRegs;
427
428    /** Delay between commit stage and the IQ.
429     *  @todo: Make there be a distinction between the delays within IEW.
430     */
431    unsigned commitToIEWDelay;
432
433    /** Is the IQ switched out. */
434    bool switchedOut;
435
436    /** The sequence number of the squashed instruction. */
437    InstSeqNum squashedSeqNum[Impl::MaxThreads];
438
439    /** A cache of the recently woken registers.  It is 1 if the register
440     *  has been woken up recently, and 0 if the register has been added
441     *  to the dependency graph and has not yet received its value.  It
442     *  is basically a secondary scoreboard, and should pretty much mirror
443     *  the scoreboard that exists in the rename map.
444     */
445    std::vector<bool> regScoreboard;
446
447    /** Adds an instruction to the dependency graph, as a consumer. */
448    bool addToDependents(DynInstPtr &new_inst);
449
450    /** Adds an instruction to the dependency graph, as a producer. */
451    void addToProducers(DynInstPtr &new_inst);
452
453    /** Moves an instruction to the ready queue if it is ready. */
454    void addIfReady(DynInstPtr &inst);
455
456    /** Debugging function to count how many entries are in the IQ.  It does
457     *  a linear walk through the instructions, so do not call this function
458     *  during normal execution.
459     */
460    int countInsts();
461
462    /** Debugging function to dump all the list sizes, as well as print
463     *  out the list of nonspeculative instructions.  Should not be used
464     *  in any other capacity, but it has no harmful sideaffects.
465     */
466    void dumpLists();
467
468    /** Debugging function to dump out all instructions that are in the
469     *  IQ.
470     */
471    void dumpInsts();
472
473    /** Stat for number of instructions added. */
474    Stats::Scalar iqInstsAdded;
475    /** Stat for number of non-speculative instructions added. */
476    Stats::Scalar iqNonSpecInstsAdded;
477
478    Stats::Scalar iqInstsIssued;
479    /** Stat for number of integer instructions issued. */
480    Stats::Scalar iqIntInstsIssued;
481    /** Stat for number of floating point instructions issued. */
482    Stats::Scalar iqFloatInstsIssued;
483    /** Stat for number of branch instructions issued. */
484    Stats::Scalar iqBranchInstsIssued;
485    /** Stat for number of memory instructions issued. */
486    Stats::Scalar iqMemInstsIssued;
487    /** Stat for number of miscellaneous instructions issued. */
488    Stats::Scalar iqMiscInstsIssued;
489    /** Stat for number of squashed instructions that were ready to issue. */
490    Stats::Scalar iqSquashedInstsIssued;
491    /** Stat for number of squashed instructions examined when squashing. */
492    Stats::Scalar iqSquashedInstsExamined;
493    /** Stat for number of squashed instruction operands examined when
494     * squashing.
495     */
496    Stats::Scalar iqSquashedOperandsExamined;
497    /** Stat for number of non-speculative instructions removed due to a squash.
498     */
499    Stats::Scalar iqSquashedNonSpecRemoved;
500    // Also include number of instructions rescheduled and replayed.
501
502    /** Distribution of number of instructions in the queue.
503     * @todo: Need to create struct to track the entry time for each
504     * instruction. */
505//    Stats::VectorDistribution queueResDist;
506    /** Distribution of the number of instructions issued. */
507    Stats::Distribution numIssuedDist;
508    /** Distribution of the cycles it takes to issue an instruction.
509     * @todo: Need to create struct to track the ready time for each
510     * instruction. */
511//    Stats::VectorDistribution issueDelayDist;
512
513    /** Number of times an instruction could not be issued because a
514     * FU was busy.
515     */
516    Stats::Vector statFuBusy;
517//    Stats::Vector dist_unissued;
518    /** Stat for total number issued for each instruction type. */
519    Stats::Vector2d statIssuedInstType;
520
521    /** Number of instructions issued per cycle. */
522    Stats::Formula issueRate;
523
524    /** Number of times the FU was busy. */
525    Stats::Vector fuBusy;
526    /** Number of times the FU was busy per instruction issued. */
527    Stats::Formula fuBusyRate;
528   public:
529    Stats::Scalar intInstQueueReads;
530    Stats::Scalar intInstQueueWrites;
531    Stats::Scalar intInstQueueWakeupAccesses;
532    Stats::Scalar fpInstQueueReads;
533    Stats::Scalar fpInstQueueWrites;
534    Stats::Scalar fpInstQueueWakeupQccesses;
535
536    Stats::Scalar intAluAccesses;
537    Stats::Scalar fpAluAccesses;
538};
539
540#endif //__CPU_O3_INST_QUEUE_HH__
541