iew_impl.hh revision 8137
1/* 2 * Copyright (c) 2010 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Kevin Lim 41 */ 42 43// @todo: Fix the instantaneous communication among all the stages within 44// iew. There's a clear delay between issue and execute, yet backwards 45// communication happens simultaneously. 46 47#include <queue> 48 49#include "cpu/timebuf.hh" 50#include "config/the_isa.hh" 51#include "cpu/o3/fu_pool.hh" 52#include "cpu/o3/iew.hh" 53#include "params/DerivO3CPU.hh" 54 55using namespace std; 56 57template<class Impl> 58DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params) 59 : issueToExecQueue(params->backComSize, params->forwardComSize), 60 cpu(_cpu), 61 instQueue(_cpu, this, params), 62 ldstQueue(_cpu, this, params), 63 fuPool(params->fuPool), 64 commitToIEWDelay(params->commitToIEWDelay), 65 renameToIEWDelay(params->renameToIEWDelay), 66 issueToExecuteDelay(params->issueToExecuteDelay), 67 dispatchWidth(params->dispatchWidth), 68 issueWidth(params->issueWidth), 69 wbOutstanding(0), 70 wbWidth(params->wbWidth), 71 numThreads(params->numThreads), 72 switchedOut(false) 73{ 74 _status = Active; 75 exeStatus = Running; 76 wbStatus = Idle; 77 78 // Setup wire to read instructions coming from issue. 79 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay); 80 81 // Instruction queue needs the queue between issue and execute. 82 instQueue.setIssueToExecuteQueue(&issueToExecQueue); 83 84 for (ThreadID tid = 0; tid < numThreads; tid++) { 85 dispatchStatus[tid] = Running; 86 stalls[tid].commit = false; 87 fetchRedirect[tid] = false; 88 } 89 90 wbMax = wbWidth * params->wbDepth; 91 92 updateLSQNextCycle = false; 93 94 ableToIssue = true; 95 96 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth; 97} 98 99template <class Impl> 100std::string 101DefaultIEW<Impl>::name() const 102{ 103 return cpu->name() + ".iew"; 104} 105 106template <class Impl> 107void 108DefaultIEW<Impl>::regStats() 109{ 110 using namespace Stats; 111 112 instQueue.regStats(); 113 ldstQueue.regStats(); 114 115 iewIdleCycles 116 .name(name() + ".iewIdleCycles") 117 .desc("Number of cycles IEW is idle"); 118 119 iewSquashCycles 120 .name(name() + ".iewSquashCycles") 121 .desc("Number of cycles IEW is squashing"); 122 123 iewBlockCycles 124 .name(name() + ".iewBlockCycles") 125 .desc("Number of cycles IEW is blocking"); 126 127 iewUnblockCycles 128 .name(name() + ".iewUnblockCycles") 129 .desc("Number of cycles IEW is unblocking"); 130 131 iewDispatchedInsts 132 .name(name() + ".iewDispatchedInsts") 133 .desc("Number of instructions dispatched to IQ"); 134 135 iewDispSquashedInsts 136 .name(name() + ".iewDispSquashedInsts") 137 .desc("Number of squashed instructions skipped by dispatch"); 138 139 iewDispLoadInsts 140 .name(name() + ".iewDispLoadInsts") 141 .desc("Number of dispatched load instructions"); 142 143 iewDispStoreInsts 144 .name(name() + ".iewDispStoreInsts") 145 .desc("Number of dispatched store instructions"); 146 147 iewDispNonSpecInsts 148 .name(name() + ".iewDispNonSpecInsts") 149 .desc("Number of dispatched non-speculative instructions"); 150 151 iewIQFullEvents 152 .name(name() + ".iewIQFullEvents") 153 .desc("Number of times the IQ has become full, causing a stall"); 154 155 iewLSQFullEvents 156 .name(name() + ".iewLSQFullEvents") 157 .desc("Number of times the LSQ has become full, causing a stall"); 158 159 memOrderViolationEvents 160 .name(name() + ".memOrderViolationEvents") 161 .desc("Number of memory order violations"); 162 163 predictedTakenIncorrect 164 .name(name() + ".predictedTakenIncorrect") 165 .desc("Number of branches that were predicted taken incorrectly"); 166 167 predictedNotTakenIncorrect 168 .name(name() + ".predictedNotTakenIncorrect") 169 .desc("Number of branches that were predicted not taken incorrectly"); 170 171 branchMispredicts 172 .name(name() + ".branchMispredicts") 173 .desc("Number of branch mispredicts detected at execute"); 174 175 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect; 176 177 iewExecutedInsts 178 .name(name() + ".iewExecutedInsts") 179 .desc("Number of executed instructions"); 180 181 iewExecLoadInsts 182 .init(cpu->numThreads) 183 .name(name() + ".iewExecLoadInsts") 184 .desc("Number of load instructions executed") 185 .flags(total); 186 187 iewExecSquashedInsts 188 .name(name() + ".iewExecSquashedInsts") 189 .desc("Number of squashed instructions skipped in execute"); 190 191 iewExecutedSwp 192 .init(cpu->numThreads) 193 .name(name() + ".EXEC:swp") 194 .desc("number of swp insts executed") 195 .flags(total); 196 197 iewExecutedNop 198 .init(cpu->numThreads) 199 .name(name() + ".EXEC:nop") 200 .desc("number of nop insts executed") 201 .flags(total); 202 203 iewExecutedRefs 204 .init(cpu->numThreads) 205 .name(name() + ".EXEC:refs") 206 .desc("number of memory reference insts executed") 207 .flags(total); 208 209 iewExecutedBranches 210 .init(cpu->numThreads) 211 .name(name() + ".EXEC:branches") 212 .desc("Number of branches executed") 213 .flags(total); 214 215 iewExecStoreInsts 216 .name(name() + ".EXEC:stores") 217 .desc("Number of stores executed") 218 .flags(total); 219 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts; 220 221 iewExecRate 222 .name(name() + ".EXEC:rate") 223 .desc("Inst execution rate") 224 .flags(total); 225 226 iewExecRate = iewExecutedInsts / cpu->numCycles; 227 228 iewInstsToCommit 229 .init(cpu->numThreads) 230 .name(name() + ".WB:sent") 231 .desc("cumulative count of insts sent to commit") 232 .flags(total); 233 234 writebackCount 235 .init(cpu->numThreads) 236 .name(name() + ".WB:count") 237 .desc("cumulative count of insts written-back") 238 .flags(total); 239 240 producerInst 241 .init(cpu->numThreads) 242 .name(name() + ".WB:producers") 243 .desc("num instructions producing a value") 244 .flags(total); 245 246 consumerInst 247 .init(cpu->numThreads) 248 .name(name() + ".WB:consumers") 249 .desc("num instructions consuming a value") 250 .flags(total); 251 252 wbPenalized 253 .init(cpu->numThreads) 254 .name(name() + ".WB:penalized") 255 .desc("number of instrctions required to write to 'other' IQ") 256 .flags(total); 257 258 wbPenalizedRate 259 .name(name() + ".WB:penalized_rate") 260 .desc ("fraction of instructions written-back that wrote to 'other' IQ") 261 .flags(total); 262 263 wbPenalizedRate = wbPenalized / writebackCount; 264 265 wbFanout 266 .name(name() + ".WB:fanout") 267 .desc("average fanout of values written-back") 268 .flags(total); 269 270 wbFanout = producerInst / consumerInst; 271 272 wbRate 273 .name(name() + ".WB:rate") 274 .desc("insts written-back per cycle") 275 .flags(total); 276 wbRate = writebackCount / cpu->numCycles; 277} 278 279template<class Impl> 280void 281DefaultIEW<Impl>::initStage() 282{ 283 for (ThreadID tid = 0; tid < numThreads; tid++) { 284 toRename->iewInfo[tid].usedIQ = true; 285 toRename->iewInfo[tid].freeIQEntries = 286 instQueue.numFreeEntries(tid); 287 288 toRename->iewInfo[tid].usedLSQ = true; 289 toRename->iewInfo[tid].freeLSQEntries = 290 ldstQueue.numFreeEntries(tid); 291 } 292 293 cpu->activateStage(O3CPU::IEWIdx); 294} 295 296template<class Impl> 297void 298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 299{ 300 timeBuffer = tb_ptr; 301 302 // Setup wire to read information from time buffer, from commit. 303 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 304 305 // Setup wire to write information back to previous stages. 306 toRename = timeBuffer->getWire(0); 307 308 toFetch = timeBuffer->getWire(0); 309 310 // Instruction queue also needs main time buffer. 311 instQueue.setTimeBuffer(tb_ptr); 312} 313 314template<class Impl> 315void 316DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr) 317{ 318 renameQueue = rq_ptr; 319 320 // Setup wire to read information from rename queue. 321 fromRename = renameQueue->getWire(-renameToIEWDelay); 322} 323 324template<class Impl> 325void 326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr) 327{ 328 iewQueue = iq_ptr; 329 330 // Setup wire to write instructions to commit. 331 toCommit = iewQueue->getWire(0); 332} 333 334template<class Impl> 335void 336DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr) 337{ 338 activeThreads = at_ptr; 339 340 ldstQueue.setActiveThreads(at_ptr); 341 instQueue.setActiveThreads(at_ptr); 342} 343 344template<class Impl> 345void 346DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr) 347{ 348 scoreboard = sb_ptr; 349} 350 351template <class Impl> 352bool 353DefaultIEW<Impl>::drain() 354{ 355 // IEW is ready to drain at any time. 356 cpu->signalDrained(); 357 return true; 358} 359 360template <class Impl> 361void 362DefaultIEW<Impl>::resume() 363{ 364} 365 366template <class Impl> 367void 368DefaultIEW<Impl>::switchOut() 369{ 370 // Clear any state. 371 switchedOut = true; 372 assert(insts[0].empty()); 373 assert(skidBuffer[0].empty()); 374 375 instQueue.switchOut(); 376 ldstQueue.switchOut(); 377 fuPool->switchOut(); 378 379 for (ThreadID tid = 0; tid < numThreads; tid++) { 380 while (!insts[tid].empty()) 381 insts[tid].pop(); 382 while (!skidBuffer[tid].empty()) 383 skidBuffer[tid].pop(); 384 } 385} 386 387template <class Impl> 388void 389DefaultIEW<Impl>::takeOverFrom() 390{ 391 // Reset all state. 392 _status = Active; 393 exeStatus = Running; 394 wbStatus = Idle; 395 switchedOut = false; 396 397 instQueue.takeOverFrom(); 398 ldstQueue.takeOverFrom(); 399 fuPool->takeOverFrom(); 400 401 initStage(); 402 cpu->activityThisCycle(); 403 404 for (ThreadID tid = 0; tid < numThreads; tid++) { 405 dispatchStatus[tid] = Running; 406 stalls[tid].commit = false; 407 fetchRedirect[tid] = false; 408 } 409 410 updateLSQNextCycle = false; 411 412 for (int i = 0; i < issueToExecQueue.getSize(); ++i) { 413 issueToExecQueue.advance(); 414 } 415} 416 417template<class Impl> 418void 419DefaultIEW<Impl>::squash(ThreadID tid) 420{ 421 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid); 422 423 // Tell the IQ to start squashing. 424 instQueue.squash(tid); 425 426 // Tell the LDSTQ to start squashing. 427 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid); 428 updatedQueues = true; 429 430 // Clear the skid buffer in case it has any data in it. 431 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n", 432 tid, fromCommit->commitInfo[tid].doneSeqNum); 433 434 while (!skidBuffer[tid].empty()) { 435 if (skidBuffer[tid].front()->isLoad() || 436 skidBuffer[tid].front()->isStore() ) { 437 toRename->iewInfo[tid].dispatchedToLSQ++; 438 } 439 440 toRename->iewInfo[tid].dispatched++; 441 442 skidBuffer[tid].pop(); 443 } 444 445 emptyRenameInsts(tid); 446} 447 448template<class Impl> 449void 450DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid) 451{ 452 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s " 453 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum); 454 455 if (toCommit->squash[tid] == false || 456 inst->seqNum < toCommit->squashedSeqNum[tid]) { 457 toCommit->squash[tid] = true; 458 toCommit->squashedSeqNum[tid] = inst->seqNum; 459 toCommit->branchTaken[tid] = inst->pcState().branching(); 460 461 TheISA::PCState pc = inst->pcState(); 462 TheISA::advancePC(pc, inst->staticInst); 463 464 toCommit->pc[tid] = pc; 465 toCommit->mispredictInst[tid] = inst; 466 toCommit->includeSquashInst[tid] = false; 467 468 wroteToTimeBuffer = true; 469 } 470 471} 472 473template<class Impl> 474void 475DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid) 476{ 477 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, " 478 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum); 479 480 if (toCommit->squash[tid] == false || 481 inst->seqNum < toCommit->squashedSeqNum[tid]) { 482 toCommit->squash[tid] = true; 483 toCommit->squashedSeqNum[tid] = inst->seqNum; 484 TheISA::PCState pc = inst->pcState(); 485 TheISA::advancePC(pc, inst->staticInst); 486 toCommit->pc[tid] = pc; 487 toCommit->mispredictInst[tid] = NULL; 488 489 toCommit->includeSquashInst[tid] = false; 490 491 wroteToTimeBuffer = true; 492 } 493} 494 495template<class Impl> 496void 497DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid) 498{ 499 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, " 500 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum); 501 if (toCommit->squash[tid] == false || 502 inst->seqNum < toCommit->squashedSeqNum[tid]) { 503 toCommit->squash[tid] = true; 504 505 toCommit->squashedSeqNum[tid] = inst->seqNum; 506 toCommit->pc[tid] = inst->pcState(); 507 toCommit->mispredictInst[tid] = NULL; 508 509 // Must include the broadcasted SN in the squash. 510 toCommit->includeSquashInst[tid] = true; 511 512 ldstQueue.setLoadBlockedHandled(tid); 513 514 wroteToTimeBuffer = true; 515 } 516} 517 518template<class Impl> 519void 520DefaultIEW<Impl>::block(ThreadID tid) 521{ 522 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid); 523 524 if (dispatchStatus[tid] != Blocked && 525 dispatchStatus[tid] != Unblocking) { 526 toRename->iewBlock[tid] = true; 527 wroteToTimeBuffer = true; 528 } 529 530 // Add the current inputs to the skid buffer so they can be 531 // reprocessed when this stage unblocks. 532 skidInsert(tid); 533 534 dispatchStatus[tid] = Blocked; 535} 536 537template<class Impl> 538void 539DefaultIEW<Impl>::unblock(ThreadID tid) 540{ 541 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid " 542 "buffer %u.\n",tid, tid); 543 544 // If the skid bufffer is empty, signal back to previous stages to unblock. 545 // Also switch status to running. 546 if (skidBuffer[tid].empty()) { 547 toRename->iewUnblock[tid] = true; 548 wroteToTimeBuffer = true; 549 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid); 550 dispatchStatus[tid] = Running; 551 } 552} 553 554template<class Impl> 555void 556DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst) 557{ 558 instQueue.wakeDependents(inst); 559} 560 561template<class Impl> 562void 563DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst) 564{ 565 instQueue.rescheduleMemInst(inst); 566} 567 568template<class Impl> 569void 570DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst) 571{ 572 instQueue.replayMemInst(inst); 573} 574 575template<class Impl> 576void 577DefaultIEW<Impl>::instToCommit(DynInstPtr &inst) 578{ 579 // This function should not be called after writebackInsts in a 580 // single cycle. That will cause problems with an instruction 581 // being added to the queue to commit without being processed by 582 // writebackInsts prior to being sent to commit. 583 584 // First check the time slot that this instruction will write 585 // to. If there are free write ports at the time, then go ahead 586 // and write the instruction to that time. If there are not, 587 // keep looking back to see where's the first time there's a 588 // free slot. 589 while ((*iewQueue)[wbCycle].insts[wbNumInst]) { 590 ++wbNumInst; 591 if (wbNumInst == wbWidth) { 592 ++wbCycle; 593 wbNumInst = 0; 594 } 595 596 assert((wbCycle * wbWidth + wbNumInst) <= wbMax); 597 } 598 599 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n", 600 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst); 601 // Add finished instruction to queue to commit. 602 (*iewQueue)[wbCycle].insts[wbNumInst] = inst; 603 (*iewQueue)[wbCycle].size++; 604} 605 606template <class Impl> 607unsigned 608DefaultIEW<Impl>::validInstsFromRename() 609{ 610 unsigned inst_count = 0; 611 612 for (int i=0; i<fromRename->size; i++) { 613 if (!fromRename->insts[i]->isSquashed()) 614 inst_count++; 615 } 616 617 return inst_count; 618} 619 620template<class Impl> 621void 622DefaultIEW<Impl>::skidInsert(ThreadID tid) 623{ 624 DynInstPtr inst = NULL; 625 626 while (!insts[tid].empty()) { 627 inst = insts[tid].front(); 628 629 insts[tid].pop(); 630 631 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into " 632 "dispatch skidBuffer %i\n",tid, inst->seqNum, 633 inst->pcState(),tid); 634 635 skidBuffer[tid].push(inst); 636 } 637 638 assert(skidBuffer[tid].size() <= skidBufferMax && 639 "Skidbuffer Exceeded Max Size"); 640} 641 642template<class Impl> 643int 644DefaultIEW<Impl>::skidCount() 645{ 646 int max=0; 647 648 list<ThreadID>::iterator threads = activeThreads->begin(); 649 list<ThreadID>::iterator end = activeThreads->end(); 650 651 while (threads != end) { 652 ThreadID tid = *threads++; 653 unsigned thread_count = skidBuffer[tid].size(); 654 if (max < thread_count) 655 max = thread_count; 656 } 657 658 return max; 659} 660 661template<class Impl> 662bool 663DefaultIEW<Impl>::skidsEmpty() 664{ 665 list<ThreadID>::iterator threads = activeThreads->begin(); 666 list<ThreadID>::iterator end = activeThreads->end(); 667 668 while (threads != end) { 669 ThreadID tid = *threads++; 670 671 if (!skidBuffer[tid].empty()) 672 return false; 673 } 674 675 return true; 676} 677 678template <class Impl> 679void 680DefaultIEW<Impl>::updateStatus() 681{ 682 bool any_unblocking = false; 683 684 list<ThreadID>::iterator threads = activeThreads->begin(); 685 list<ThreadID>::iterator end = activeThreads->end(); 686 687 while (threads != end) { 688 ThreadID tid = *threads++; 689 690 if (dispatchStatus[tid] == Unblocking) { 691 any_unblocking = true; 692 break; 693 } 694 } 695 696 // If there are no ready instructions waiting to be scheduled by the IQ, 697 // and there's no stores waiting to write back, and dispatch is not 698 // unblocking, then there is no internal activity for the IEW stage. 699 instQueue.intInstQueueReads++; 700 if (_status == Active && !instQueue.hasReadyInsts() && 701 !ldstQueue.willWB() && !any_unblocking) { 702 DPRINTF(IEW, "IEW switching to idle\n"); 703 704 deactivateStage(); 705 706 _status = Inactive; 707 } else if (_status == Inactive && (instQueue.hasReadyInsts() || 708 ldstQueue.willWB() || 709 any_unblocking)) { 710 // Otherwise there is internal activity. Set to active. 711 DPRINTF(IEW, "IEW switching to active\n"); 712 713 activateStage(); 714 715 _status = Active; 716 } 717} 718 719template <class Impl> 720void 721DefaultIEW<Impl>::resetEntries() 722{ 723 instQueue.resetEntries(); 724 ldstQueue.resetEntries(); 725} 726 727template <class Impl> 728void 729DefaultIEW<Impl>::readStallSignals(ThreadID tid) 730{ 731 if (fromCommit->commitBlock[tid]) { 732 stalls[tid].commit = true; 733 } 734 735 if (fromCommit->commitUnblock[tid]) { 736 assert(stalls[tid].commit); 737 stalls[tid].commit = false; 738 } 739} 740 741template <class Impl> 742bool 743DefaultIEW<Impl>::checkStall(ThreadID tid) 744{ 745 bool ret_val(false); 746 747 if (stalls[tid].commit) { 748 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid); 749 ret_val = true; 750 } else if (instQueue.isFull(tid)) { 751 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid); 752 ret_val = true; 753 } else if (ldstQueue.isFull(tid)) { 754 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid); 755 756 if (ldstQueue.numLoads(tid) > 0 ) { 757 758 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n", 759 tid,ldstQueue.getLoadHeadSeqNum(tid)); 760 } 761 762 if (ldstQueue.numStores(tid) > 0) { 763 764 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n", 765 tid,ldstQueue.getStoreHeadSeqNum(tid)); 766 } 767 768 ret_val = true; 769 } else if (ldstQueue.isStalled(tid)) { 770 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid); 771 ret_val = true; 772 } 773 774 return ret_val; 775} 776 777template <class Impl> 778void 779DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid) 780{ 781 // Check if there's a squash signal, squash if there is 782 // Check stall signals, block if there is. 783 // If status was Blocked 784 // if so then go to unblocking 785 // If status was Squashing 786 // check if squashing is not high. Switch to running this cycle. 787 788 readStallSignals(tid); 789 790 if (fromCommit->commitInfo[tid].squash) { 791 squash(tid); 792 793 if (dispatchStatus[tid] == Blocked || 794 dispatchStatus[tid] == Unblocking) { 795 toRename->iewUnblock[tid] = true; 796 wroteToTimeBuffer = true; 797 } 798 799 dispatchStatus[tid] = Squashing; 800 fetchRedirect[tid] = false; 801 return; 802 } 803 804 if (fromCommit->commitInfo[tid].robSquashing) { 805 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid); 806 807 dispatchStatus[tid] = Squashing; 808 emptyRenameInsts(tid); 809 wroteToTimeBuffer = true; 810 return; 811 } 812 813 if (checkStall(tid)) { 814 block(tid); 815 dispatchStatus[tid] = Blocked; 816 return; 817 } 818 819 if (dispatchStatus[tid] == Blocked) { 820 // Status from previous cycle was blocked, but there are no more stall 821 // conditions. Switch over to unblocking. 822 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n", 823 tid); 824 825 dispatchStatus[tid] = Unblocking; 826 827 unblock(tid); 828 829 return; 830 } 831 832 if (dispatchStatus[tid] == Squashing) { 833 // Switch status to running if rename isn't being told to block or 834 // squash this cycle. 835 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n", 836 tid); 837 838 dispatchStatus[tid] = Running; 839 840 return; 841 } 842} 843 844template <class Impl> 845void 846DefaultIEW<Impl>::sortInsts() 847{ 848 int insts_from_rename = fromRename->size; 849#ifdef DEBUG 850 for (ThreadID tid = 0; tid < numThreads; tid++) 851 assert(insts[tid].empty()); 852#endif 853 for (int i = 0; i < insts_from_rename; ++i) { 854 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]); 855 } 856} 857 858template <class Impl> 859void 860DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid) 861{ 862 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid); 863 864 while (!insts[tid].empty()) { 865 866 if (insts[tid].front()->isLoad() || 867 insts[tid].front()->isStore() ) { 868 toRename->iewInfo[tid].dispatchedToLSQ++; 869 } 870 871 toRename->iewInfo[tid].dispatched++; 872 873 insts[tid].pop(); 874 } 875} 876 877template <class Impl> 878void 879DefaultIEW<Impl>::wakeCPU() 880{ 881 cpu->wakeCPU(); 882} 883 884template <class Impl> 885void 886DefaultIEW<Impl>::activityThisCycle() 887{ 888 DPRINTF(Activity, "Activity this cycle.\n"); 889 cpu->activityThisCycle(); 890} 891 892template <class Impl> 893inline void 894DefaultIEW<Impl>::activateStage() 895{ 896 DPRINTF(Activity, "Activating stage.\n"); 897 cpu->activateStage(O3CPU::IEWIdx); 898} 899 900template <class Impl> 901inline void 902DefaultIEW<Impl>::deactivateStage() 903{ 904 DPRINTF(Activity, "Deactivating stage.\n"); 905 cpu->deactivateStage(O3CPU::IEWIdx); 906} 907 908template<class Impl> 909void 910DefaultIEW<Impl>::dispatch(ThreadID tid) 911{ 912 // If status is Running or idle, 913 // call dispatchInsts() 914 // If status is Unblocking, 915 // buffer any instructions coming from rename 916 // continue trying to empty skid buffer 917 // check if stall conditions have passed 918 919 if (dispatchStatus[tid] == Blocked) { 920 ++iewBlockCycles; 921 922 } else if (dispatchStatus[tid] == Squashing) { 923 ++iewSquashCycles; 924 } 925 926 // Dispatch should try to dispatch as many instructions as its bandwidth 927 // will allow, as long as it is not currently blocked. 928 if (dispatchStatus[tid] == Running || 929 dispatchStatus[tid] == Idle) { 930 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run " 931 "dispatch.\n", tid); 932 933 dispatchInsts(tid); 934 } else if (dispatchStatus[tid] == Unblocking) { 935 // Make sure that the skid buffer has something in it if the 936 // status is unblocking. 937 assert(!skidsEmpty()); 938 939 // If the status was unblocking, then instructions from the skid 940 // buffer were used. Remove those instructions and handle 941 // the rest of unblocking. 942 dispatchInsts(tid); 943 944 ++iewUnblockCycles; 945 946 if (validInstsFromRename()) { 947 // Add the current inputs to the skid buffer so they can be 948 // reprocessed when this stage unblocks. 949 skidInsert(tid); 950 } 951 952 unblock(tid); 953 } 954} 955 956template <class Impl> 957void 958DefaultIEW<Impl>::dispatchInsts(ThreadID tid) 959{ 960 // Obtain instructions from skid buffer if unblocking, or queue from rename 961 // otherwise. 962 std::queue<DynInstPtr> &insts_to_dispatch = 963 dispatchStatus[tid] == Unblocking ? 964 skidBuffer[tid] : insts[tid]; 965 966 int insts_to_add = insts_to_dispatch.size(); 967 968 DynInstPtr inst; 969 bool add_to_iq = false; 970 int dis_num_inst = 0; 971 972 // Loop through the instructions, putting them in the instruction 973 // queue. 974 for ( ; dis_num_inst < insts_to_add && 975 dis_num_inst < dispatchWidth; 976 ++dis_num_inst) 977 { 978 inst = insts_to_dispatch.front(); 979 980 if (dispatchStatus[tid] == Unblocking) { 981 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid " 982 "buffer\n", tid); 983 } 984 985 // Make sure there's a valid instruction there. 986 assert(inst); 987 988 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to " 989 "IQ.\n", 990 tid, inst->pcState(), inst->seqNum, inst->threadNumber); 991 992 // Be sure to mark these instructions as ready so that the 993 // commit stage can go ahead and execute them, and mark 994 // them as issued so the IQ doesn't reprocess them. 995 996 // Check for squashed instructions. 997 if (inst->isSquashed()) { 998 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, " 999 "not adding to IQ.\n", tid); 1000 1001 ++iewDispSquashedInsts; 1002 1003 insts_to_dispatch.pop(); 1004 1005 //Tell Rename That An Instruction has been processed 1006 if (inst->isLoad() || inst->isStore()) { 1007 toRename->iewInfo[tid].dispatchedToLSQ++; 1008 } 1009 toRename->iewInfo[tid].dispatched++; 1010 1011 continue; 1012 } 1013 1014 // Check for full conditions. 1015 if (instQueue.isFull(tid)) { 1016 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid); 1017 1018 // Call function to start blocking. 1019 block(tid); 1020 1021 // Set unblock to false. Special case where we are using 1022 // skidbuffer (unblocking) instructions but then we still 1023 // get full in the IQ. 1024 toRename->iewUnblock[tid] = false; 1025 1026 ++iewIQFullEvents; 1027 break; 1028 } else if (ldstQueue.isFull(tid)) { 1029 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid); 1030 1031 // Call function to start blocking. 1032 block(tid); 1033 1034 // Set unblock to false. Special case where we are using 1035 // skidbuffer (unblocking) instructions but then we still 1036 // get full in the IQ. 1037 toRename->iewUnblock[tid] = false; 1038 1039 ++iewLSQFullEvents; 1040 break; 1041 } 1042 1043 // Otherwise issue the instruction just fine. 1044 if (inst->isLoad()) { 1045 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1046 "encountered, adding to LSQ.\n", tid); 1047 1048 // Reserve a spot in the load store queue for this 1049 // memory access. 1050 ldstQueue.insertLoad(inst); 1051 1052 ++iewDispLoadInsts; 1053 1054 add_to_iq = true; 1055 1056 toRename->iewInfo[tid].dispatchedToLSQ++; 1057 } else if (inst->isStore()) { 1058 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1059 "encountered, adding to LSQ.\n", tid); 1060 1061 ldstQueue.insertStore(inst); 1062 1063 ++iewDispStoreInsts; 1064 1065 if (inst->isStoreConditional()) { 1066 // Store conditionals need to be set as "canCommit()" 1067 // so that commit can process them when they reach the 1068 // head of commit. 1069 // @todo: This is somewhat specific to Alpha. 1070 inst->setCanCommit(); 1071 instQueue.insertNonSpec(inst); 1072 add_to_iq = false; 1073 1074 ++iewDispNonSpecInsts; 1075 } else { 1076 add_to_iq = true; 1077 } 1078 1079 toRename->iewInfo[tid].dispatchedToLSQ++; 1080 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) { 1081 // Same as non-speculative stores. 1082 inst->setCanCommit(); 1083 instQueue.insertBarrier(inst); 1084 add_to_iq = false; 1085 } else if (inst->isNop()) { 1086 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, " 1087 "skipping.\n", tid); 1088 1089 inst->setIssued(); 1090 inst->setExecuted(); 1091 inst->setCanCommit(); 1092 1093 instQueue.recordProducer(inst); 1094 1095 iewExecutedNop[tid]++; 1096 1097 add_to_iq = false; 1098 } else if (inst->isExecuted()) { 1099 assert(0 && "Instruction shouldn't be executed.\n"); 1100 DPRINTF(IEW, "Issue: Executed branch encountered, " 1101 "skipping.\n"); 1102 1103 inst->setIssued(); 1104 inst->setCanCommit(); 1105 1106 instQueue.recordProducer(inst); 1107 1108 add_to_iq = false; 1109 } else { 1110 add_to_iq = true; 1111 } 1112 if (inst->isNonSpeculative()) { 1113 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction " 1114 "encountered, skipping.\n", tid); 1115 1116 // Same as non-speculative stores. 1117 inst->setCanCommit(); 1118 1119 // Specifically insert it as nonspeculative. 1120 instQueue.insertNonSpec(inst); 1121 1122 ++iewDispNonSpecInsts; 1123 1124 add_to_iq = false; 1125 } 1126 1127 // If the instruction queue is not full, then add the 1128 // instruction. 1129 if (add_to_iq) { 1130 instQueue.insert(inst); 1131 } 1132 1133 insts_to_dispatch.pop(); 1134 1135 toRename->iewInfo[tid].dispatched++; 1136 1137 ++iewDispatchedInsts; 1138 } 1139 1140 if (!insts_to_dispatch.empty()) { 1141 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid); 1142 block(tid); 1143 toRename->iewUnblock[tid] = false; 1144 } 1145 1146 if (dispatchStatus[tid] == Idle && dis_num_inst) { 1147 dispatchStatus[tid] = Running; 1148 1149 updatedQueues = true; 1150 } 1151 1152 dis_num_inst = 0; 1153} 1154 1155template <class Impl> 1156void 1157DefaultIEW<Impl>::printAvailableInsts() 1158{ 1159 int inst = 0; 1160 1161 std::cout << "Available Instructions: "; 1162 1163 while (fromIssue->insts[inst]) { 1164 1165 if (inst%3==0) std::cout << "\n\t"; 1166 1167 std::cout << "PC: " << fromIssue->insts[inst]->pcState() 1168 << " TN: " << fromIssue->insts[inst]->threadNumber 1169 << " SN: " << fromIssue->insts[inst]->seqNum << " | "; 1170 1171 inst++; 1172 1173 } 1174 1175 std::cout << "\n"; 1176} 1177 1178template <class Impl> 1179void 1180DefaultIEW<Impl>::executeInsts() 1181{ 1182 wbNumInst = 0; 1183 wbCycle = 0; 1184 1185 list<ThreadID>::iterator threads = activeThreads->begin(); 1186 list<ThreadID>::iterator end = activeThreads->end(); 1187 1188 while (threads != end) { 1189 ThreadID tid = *threads++; 1190 fetchRedirect[tid] = false; 1191 } 1192 1193 // Uncomment this if you want to see all available instructions. 1194 // @todo This doesn't actually work anymore, we should fix it. 1195// printAvailableInsts(); 1196 1197 // Execute/writeback any instructions that are available. 1198 int insts_to_execute = fromIssue->size; 1199 int inst_num = 0; 1200 for (; inst_num < insts_to_execute; 1201 ++inst_num) { 1202 1203 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n"); 1204 1205 DynInstPtr inst = instQueue.getInstToExecute(); 1206 1207 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n", 1208 inst->pcState(), inst->threadNumber,inst->seqNum); 1209 1210 // Check if the instruction is squashed; if so then skip it 1211 if (inst->isSquashed()) { 1212 DPRINTF(IEW, "Execute: Instruction was squashed.\n"); 1213 1214 // Consider this instruction executed so that commit can go 1215 // ahead and retire the instruction. 1216 inst->setExecuted(); 1217 1218 // Not sure if I should set this here or just let commit try to 1219 // commit any squashed instructions. I like the latter a bit more. 1220 inst->setCanCommit(); 1221 1222 ++iewExecSquashedInsts; 1223 1224 decrWb(inst->seqNum); 1225 continue; 1226 } 1227 1228 Fault fault = NoFault; 1229 1230 // Execute instruction. 1231 // Note that if the instruction faults, it will be handled 1232 // at the commit stage. 1233 if (inst->isMemRef()) { 1234 DPRINTF(IEW, "Execute: Calculating address for memory " 1235 "reference.\n"); 1236 1237 // Tell the LDSTQ to execute this instruction (if it is a load). 1238 if (inst->isLoad()) { 1239 // Loads will mark themselves as executed, and their writeback 1240 // event adds the instruction to the queue to commit 1241 fault = ldstQueue.executeLoad(inst); 1242 1243 if (inst->isTranslationDelayed() && 1244 fault == NoFault) { 1245 // A hw page table walk is currently going on; the 1246 // instruction must be deferred. 1247 DPRINTF(IEW, "Execute: Delayed translation, deferring " 1248 "load.\n"); 1249 instQueue.deferMemInst(inst); 1250 continue; 1251 } 1252 1253 if (inst->isDataPrefetch() || inst->isInstPrefetch()) { 1254 inst->fault = NoFault; 1255 } 1256 } else if (inst->isStore()) { 1257 fault = ldstQueue.executeStore(inst); 1258 1259 if (inst->isTranslationDelayed() && 1260 fault == NoFault) { 1261 // A hw page table walk is currently going on; the 1262 // instruction must be deferred. 1263 DPRINTF(IEW, "Execute: Delayed translation, deferring " 1264 "store.\n"); 1265 instQueue.deferMemInst(inst); 1266 continue; 1267 } 1268 1269 // If the store had a fault then it may not have a mem req 1270 if (fault != NoFault || inst->readPredicate() == false || 1271 !inst->isStoreConditional()) { 1272 // If the instruction faulted, then we need to send it along 1273 // to commit without the instruction completing. 1274 // Send this instruction to commit, also make sure iew stage 1275 // realizes there is activity. 1276 inst->setExecuted(); 1277 instToCommit(inst); 1278 activityThisCycle(); 1279 } 1280 1281 // Store conditionals will mark themselves as 1282 // executed, and their writeback event will add the 1283 // instruction to the queue to commit. 1284 } else { 1285 panic("Unexpected memory type!\n"); 1286 } 1287 1288 } else { 1289 // If the instruction has already faulted, then skip executing it. 1290 // Such case can happen when it faulted during ITLB translation. 1291 // If we execute the instruction (even if it's a nop) the fault 1292 // will be replaced and we will lose it. 1293 if (inst->getFault() == NoFault) { 1294 inst->execute(); 1295 if (inst->readPredicate() == false) 1296 inst->forwardOldRegs(); 1297 } 1298 1299 inst->setExecuted(); 1300 1301 instToCommit(inst); 1302 } 1303 1304 updateExeInstStats(inst); 1305 1306 // Check if branch prediction was correct, if not then we need 1307 // to tell commit to squash in flight instructions. Only 1308 // handle this if there hasn't already been something that 1309 // redirects fetch in this group of instructions. 1310 1311 // This probably needs to prioritize the redirects if a different 1312 // scheduler is used. Currently the scheduler schedules the oldest 1313 // instruction first, so the branch resolution order will be correct. 1314 ThreadID tid = inst->threadNumber; 1315 1316 if (!fetchRedirect[tid] || 1317 !toCommit->squash[tid] || 1318 toCommit->squashedSeqNum[tid] > inst->seqNum) { 1319 1320 // Prevent testing for misprediction on load instructions, 1321 // that have not been executed. 1322 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad(); 1323 1324 if (inst->mispredicted() && !loadNotExecuted) { 1325 fetchRedirect[tid] = true; 1326 1327 DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); 1328 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", 1329 inst->predInstAddr(), inst->predNextInstAddr()); 1330 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n", 1331 inst->pcState(), inst->nextInstAddr()); 1332 // If incorrect, then signal the ROB that it must be squashed. 1333 squashDueToBranch(inst, tid); 1334 1335 if (inst->readPredTaken()) { 1336 predictedTakenIncorrect++; 1337 } else { 1338 predictedNotTakenIncorrect++; 1339 } 1340 } else if (ldstQueue.violation(tid)) { 1341 assert(inst->isMemRef()); 1342 // If there was an ordering violation, then get the 1343 // DynInst that caused the violation. Note that this 1344 // clears the violation signal. 1345 DynInstPtr violator; 1346 violator = ldstQueue.getMemDepViolator(tid); 1347 1348 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s " 1349 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n", 1350 violator->pcState(), violator->seqNum, 1351 inst->pcState(), inst->seqNum, inst->physEffAddr); 1352 1353 fetchRedirect[tid] = true; 1354 1355 // Tell the instruction queue that a violation has occured. 1356 instQueue.violation(inst, violator); 1357 1358 // Squash. 1359 squashDueToMemOrder(inst,tid); 1360 1361 ++memOrderViolationEvents; 1362 } else if (ldstQueue.loadBlocked(tid) && 1363 !ldstQueue.isLoadBlockedHandled(tid)) { 1364 fetchRedirect[tid] = true; 1365 1366 DPRINTF(IEW, "Load operation couldn't execute because the " 1367 "memory system is blocked. PC: %s [sn:%lli]\n", 1368 inst->pcState(), inst->seqNum); 1369 1370 squashDueToMemBlocked(inst, tid); 1371 } 1372 } else { 1373 // Reset any state associated with redirects that will not 1374 // be used. 1375 if (ldstQueue.violation(tid)) { 1376 assert(inst->isMemRef()); 1377 1378 DynInstPtr violator = ldstQueue.getMemDepViolator(tid); 1379 1380 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: " 1381 "%s, inst PC: %s. Addr is: %#x.\n", 1382 violator->pcState(), inst->pcState(), 1383 inst->physEffAddr); 1384 DPRINTF(IEW, "Violation will not be handled because " 1385 "already squashing\n"); 1386 1387 ++memOrderViolationEvents; 1388 } 1389 if (ldstQueue.loadBlocked(tid) && 1390 !ldstQueue.isLoadBlockedHandled(tid)) { 1391 DPRINTF(IEW, "Load operation couldn't execute because the " 1392 "memory system is blocked. PC: %s [sn:%lli]\n", 1393 inst->pcState(), inst->seqNum); 1394 DPRINTF(IEW, "Blocked load will not be handled because " 1395 "already squashing\n"); 1396 1397 ldstQueue.setLoadBlockedHandled(tid); 1398 } 1399 1400 } 1401 } 1402 1403 // Update and record activity if we processed any instructions. 1404 if (inst_num) { 1405 if (exeStatus == Idle) { 1406 exeStatus = Running; 1407 } 1408 1409 updatedQueues = true; 1410 1411 cpu->activityThisCycle(); 1412 } 1413 1414 // Need to reset this in case a writeback event needs to write into the 1415 // iew queue. That way the writeback event will write into the correct 1416 // spot in the queue. 1417 wbNumInst = 0; 1418 1419} 1420 1421template <class Impl> 1422void 1423DefaultIEW<Impl>::writebackInsts() 1424{ 1425 // Loop through the head of the time buffer and wake any 1426 // dependents. These instructions are about to write back. Also 1427 // mark scoreboard that this instruction is finally complete. 1428 // Either have IEW have direct access to scoreboard, or have this 1429 // as part of backwards communication. 1430 for (int inst_num = 0; inst_num < wbWidth && 1431 toCommit->insts[inst_num]; inst_num++) { 1432 DynInstPtr inst = toCommit->insts[inst_num]; 1433 ThreadID tid = inst->threadNumber; 1434 1435 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n", 1436 inst->seqNum, inst->pcState()); 1437 1438 iewInstsToCommit[tid]++; 1439 1440 // Some instructions will be sent to commit without having 1441 // executed because they need commit to handle them. 1442 // E.g. Uncached loads have not actually executed when they 1443 // are first sent to commit. Instead commit must tell the LSQ 1444 // when it's ready to execute the uncached load. 1445 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) { 1446 int dependents = instQueue.wakeDependents(inst); 1447 1448 for (int i = 0; i < inst->numDestRegs(); i++) { 1449 //mark as Ready 1450 DPRINTF(IEW,"Setting Destination Register %i\n", 1451 inst->renamedDestRegIdx(i)); 1452 scoreboard->setReg(inst->renamedDestRegIdx(i)); 1453 } 1454 1455 if (dependents) { 1456 producerInst[tid]++; 1457 consumerInst[tid]+= dependents; 1458 } 1459 writebackCount[tid]++; 1460 } 1461 1462 decrWb(inst->seqNum); 1463 } 1464} 1465 1466template<class Impl> 1467void 1468DefaultIEW<Impl>::tick() 1469{ 1470 wbNumInst = 0; 1471 wbCycle = 0; 1472 1473 wroteToTimeBuffer = false; 1474 updatedQueues = false; 1475 1476 sortInsts(); 1477 1478 // Free function units marked as being freed this cycle. 1479 fuPool->processFreeUnits(); 1480 1481 list<ThreadID>::iterator threads = activeThreads->begin(); 1482 list<ThreadID>::iterator end = activeThreads->end(); 1483 1484 // Check stall and squash signals, dispatch any instructions. 1485 while (threads != end) { 1486 ThreadID tid = *threads++; 1487 1488 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid); 1489 1490 checkSignalsAndUpdate(tid); 1491 dispatch(tid); 1492 } 1493 1494 if (exeStatus != Squashing) { 1495 executeInsts(); 1496 1497 writebackInsts(); 1498 1499 // Have the instruction queue try to schedule any ready instructions. 1500 // (In actuality, this scheduling is for instructions that will 1501 // be executed next cycle.) 1502 instQueue.scheduleReadyInsts(); 1503 1504 // Also should advance its own time buffers if the stage ran. 1505 // Not the best place for it, but this works (hopefully). 1506 issueToExecQueue.advance(); 1507 } 1508 1509 bool broadcast_free_entries = false; 1510 1511 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) { 1512 exeStatus = Idle; 1513 updateLSQNextCycle = false; 1514 1515 broadcast_free_entries = true; 1516 } 1517 1518 // Writeback any stores using any leftover bandwidth. 1519 ldstQueue.writebackStores(); 1520 1521 // Check the committed load/store signals to see if there's a load 1522 // or store to commit. Also check if it's being told to execute a 1523 // nonspeculative instruction. 1524 // This is pretty inefficient... 1525 1526 threads = activeThreads->begin(); 1527 while (threads != end) { 1528 ThreadID tid = (*threads++); 1529 1530 DPRINTF(IEW,"Processing [tid:%i]\n",tid); 1531 1532 // Update structures based on instructions committed. 1533 if (fromCommit->commitInfo[tid].doneSeqNum != 0 && 1534 !fromCommit->commitInfo[tid].squash && 1535 !fromCommit->commitInfo[tid].robSquashing) { 1536 1537 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid); 1538 1539 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid); 1540 1541 updateLSQNextCycle = true; 1542 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid); 1543 } 1544 1545 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) { 1546 1547 //DPRINTF(IEW,"NonspecInst from thread %i",tid); 1548 if (fromCommit->commitInfo[tid].uncached) { 1549 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad); 1550 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit(); 1551 } else { 1552 instQueue.scheduleNonSpec( 1553 fromCommit->commitInfo[tid].nonSpecSeqNum); 1554 } 1555 } 1556 1557 if (broadcast_free_entries) { 1558 toFetch->iewInfo[tid].iqCount = 1559 instQueue.getCount(tid); 1560 toFetch->iewInfo[tid].ldstqCount = 1561 ldstQueue.getCount(tid); 1562 1563 toRename->iewInfo[tid].usedIQ = true; 1564 toRename->iewInfo[tid].freeIQEntries = 1565 instQueue.numFreeEntries(); 1566 toRename->iewInfo[tid].usedLSQ = true; 1567 toRename->iewInfo[tid].freeLSQEntries = 1568 ldstQueue.numFreeEntries(tid); 1569 1570 wroteToTimeBuffer = true; 1571 } 1572 1573 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n", 1574 tid, toRename->iewInfo[tid].dispatched); 1575 } 1576 1577 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). " 1578 "LSQ has %i free entries.\n", 1579 instQueue.numFreeEntries(), instQueue.hasReadyInsts(), 1580 ldstQueue.numFreeEntries()); 1581 1582 updateStatus(); 1583 1584 if (wroteToTimeBuffer) { 1585 DPRINTF(Activity, "Activity this cycle.\n"); 1586 cpu->activityThisCycle(); 1587 } 1588} 1589 1590template <class Impl> 1591void 1592DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst) 1593{ 1594 ThreadID tid = inst->threadNumber; 1595 1596 // 1597 // Pick off the software prefetches 1598 // 1599#ifdef TARGET_ALPHA 1600 if (inst->isDataPrefetch()) 1601 iewExecutedSwp[tid]++; 1602 else 1603 iewIewExecutedcutedInsts++; 1604#else 1605 iewExecutedInsts++; 1606#endif 1607 1608 // 1609 // Control operations 1610 // 1611 if (inst->isControl()) 1612 iewExecutedBranches[tid]++; 1613 1614 // 1615 // Memory operations 1616 // 1617 if (inst->isMemRef()) { 1618 iewExecutedRefs[tid]++; 1619 1620 if (inst->isLoad()) { 1621 iewExecLoadInsts[tid]++; 1622 } 1623 } 1624} 1625 1626template <class Impl> 1627void 1628DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst) 1629{ 1630 ThreadID tid = inst->threadNumber; 1631 1632 if (!fetchRedirect[tid] || 1633 !toCommit->squash[tid] || 1634 toCommit->squashedSeqNum[tid] > inst->seqNum) { 1635 1636 if (inst->mispredicted()) { 1637 fetchRedirect[tid] = true; 1638 1639 DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); 1640 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", 1641 inst->predInstAddr(), inst->predNextInstAddr()); 1642 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x," 1643 " NPC: %#x.\n", inst->nextInstAddr(), 1644 inst->nextInstAddr()); 1645 // If incorrect, then signal the ROB that it must be squashed. 1646 squashDueToBranch(inst, tid); 1647 1648 if (inst->readPredTaken()) { 1649 predictedTakenIncorrect++; 1650 } else { 1651 predictedNotTakenIncorrect++; 1652 } 1653 } 1654 } 1655} 1656