iew_impl.hh revision 7897
1/* 2 * Copyright (c) 2010 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Kevin Lim 41 */ 42 43// @todo: Fix the instantaneous communication among all the stages within 44// iew. There's a clear delay between issue and execute, yet backwards 45// communication happens simultaneously. 46 47#include <queue> 48 49#include "cpu/timebuf.hh" 50#include "config/the_isa.hh" 51#include "cpu/o3/fu_pool.hh" 52#include "cpu/o3/iew.hh" 53#include "params/DerivO3CPU.hh" 54 55using namespace std; 56 57template<class Impl> 58DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params) 59 : issueToExecQueue(params->backComSize, params->forwardComSize), 60 cpu(_cpu), 61 instQueue(_cpu, this, params), 62 ldstQueue(_cpu, this, params), 63 fuPool(params->fuPool), 64 commitToIEWDelay(params->commitToIEWDelay), 65 renameToIEWDelay(params->renameToIEWDelay), 66 issueToExecuteDelay(params->issueToExecuteDelay), 67 dispatchWidth(params->dispatchWidth), 68 issueWidth(params->issueWidth), 69 wbOutstanding(0), 70 wbWidth(params->wbWidth), 71 numThreads(params->numThreads), 72 switchedOut(false) 73{ 74 _status = Active; 75 exeStatus = Running; 76 wbStatus = Idle; 77 78 // Setup wire to read instructions coming from issue. 79 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay); 80 81 // Instruction queue needs the queue between issue and execute. 82 instQueue.setIssueToExecuteQueue(&issueToExecQueue); 83 84 for (ThreadID tid = 0; tid < numThreads; tid++) { 85 dispatchStatus[tid] = Running; 86 stalls[tid].commit = false; 87 fetchRedirect[tid] = false; 88 } 89 90 wbMax = wbWidth * params->wbDepth; 91 92 updateLSQNextCycle = false; 93 94 ableToIssue = true; 95 96 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth; 97} 98 99template <class Impl> 100std::string 101DefaultIEW<Impl>::name() const 102{ 103 return cpu->name() + ".iew"; 104} 105 106template <class Impl> 107void 108DefaultIEW<Impl>::regStats() 109{ 110 using namespace Stats; 111 112 instQueue.regStats(); 113 ldstQueue.regStats(); 114 115 iewIdleCycles 116 .name(name() + ".iewIdleCycles") 117 .desc("Number of cycles IEW is idle"); 118 119 iewSquashCycles 120 .name(name() + ".iewSquashCycles") 121 .desc("Number of cycles IEW is squashing"); 122 123 iewBlockCycles 124 .name(name() + ".iewBlockCycles") 125 .desc("Number of cycles IEW is blocking"); 126 127 iewUnblockCycles 128 .name(name() + ".iewUnblockCycles") 129 .desc("Number of cycles IEW is unblocking"); 130 131 iewDispatchedInsts 132 .name(name() + ".iewDispatchedInsts") 133 .desc("Number of instructions dispatched to IQ"); 134 135 iewDispSquashedInsts 136 .name(name() + ".iewDispSquashedInsts") 137 .desc("Number of squashed instructions skipped by dispatch"); 138 139 iewDispLoadInsts 140 .name(name() + ".iewDispLoadInsts") 141 .desc("Number of dispatched load instructions"); 142 143 iewDispStoreInsts 144 .name(name() + ".iewDispStoreInsts") 145 .desc("Number of dispatched store instructions"); 146 147 iewDispNonSpecInsts 148 .name(name() + ".iewDispNonSpecInsts") 149 .desc("Number of dispatched non-speculative instructions"); 150 151 iewIQFullEvents 152 .name(name() + ".iewIQFullEvents") 153 .desc("Number of times the IQ has become full, causing a stall"); 154 155 iewLSQFullEvents 156 .name(name() + ".iewLSQFullEvents") 157 .desc("Number of times the LSQ has become full, causing a stall"); 158 159 memOrderViolationEvents 160 .name(name() + ".memOrderViolationEvents") 161 .desc("Number of memory order violations"); 162 163 predictedTakenIncorrect 164 .name(name() + ".predictedTakenIncorrect") 165 .desc("Number of branches that were predicted taken incorrectly"); 166 167 predictedNotTakenIncorrect 168 .name(name() + ".predictedNotTakenIncorrect") 169 .desc("Number of branches that were predicted not taken incorrectly"); 170 171 branchMispredicts 172 .name(name() + ".branchMispredicts") 173 .desc("Number of branch mispredicts detected at execute"); 174 175 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect; 176 177 iewExecutedInsts 178 .name(name() + ".iewExecutedInsts") 179 .desc("Number of executed instructions"); 180 181 iewExecLoadInsts 182 .init(cpu->numThreads) 183 .name(name() + ".iewExecLoadInsts") 184 .desc("Number of load instructions executed") 185 .flags(total); 186 187 iewExecSquashedInsts 188 .name(name() + ".iewExecSquashedInsts") 189 .desc("Number of squashed instructions skipped in execute"); 190 191 iewExecutedSwp 192 .init(cpu->numThreads) 193 .name(name() + ".EXEC:swp") 194 .desc("number of swp insts executed") 195 .flags(total); 196 197 iewExecutedNop 198 .init(cpu->numThreads) 199 .name(name() + ".EXEC:nop") 200 .desc("number of nop insts executed") 201 .flags(total); 202 203 iewExecutedRefs 204 .init(cpu->numThreads) 205 .name(name() + ".EXEC:refs") 206 .desc("number of memory reference insts executed") 207 .flags(total); 208 209 iewExecutedBranches 210 .init(cpu->numThreads) 211 .name(name() + ".EXEC:branches") 212 .desc("Number of branches executed") 213 .flags(total); 214 215 iewExecStoreInsts 216 .name(name() + ".EXEC:stores") 217 .desc("Number of stores executed") 218 .flags(total); 219 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts; 220 221 iewExecRate 222 .name(name() + ".EXEC:rate") 223 .desc("Inst execution rate") 224 .flags(total); 225 226 iewExecRate = iewExecutedInsts / cpu->numCycles; 227 228 iewInstsToCommit 229 .init(cpu->numThreads) 230 .name(name() + ".WB:sent") 231 .desc("cumulative count of insts sent to commit") 232 .flags(total); 233 234 writebackCount 235 .init(cpu->numThreads) 236 .name(name() + ".WB:count") 237 .desc("cumulative count of insts written-back") 238 .flags(total); 239 240 producerInst 241 .init(cpu->numThreads) 242 .name(name() + ".WB:producers") 243 .desc("num instructions producing a value") 244 .flags(total); 245 246 consumerInst 247 .init(cpu->numThreads) 248 .name(name() + ".WB:consumers") 249 .desc("num instructions consuming a value") 250 .flags(total); 251 252 wbPenalized 253 .init(cpu->numThreads) 254 .name(name() + ".WB:penalized") 255 .desc("number of instrctions required to write to 'other' IQ") 256 .flags(total); 257 258 wbPenalizedRate 259 .name(name() + ".WB:penalized_rate") 260 .desc ("fraction of instructions written-back that wrote to 'other' IQ") 261 .flags(total); 262 263 wbPenalizedRate = wbPenalized / writebackCount; 264 265 wbFanout 266 .name(name() + ".WB:fanout") 267 .desc("average fanout of values written-back") 268 .flags(total); 269 270 wbFanout = producerInst / consumerInst; 271 272 wbRate 273 .name(name() + ".WB:rate") 274 .desc("insts written-back per cycle") 275 .flags(total); 276 wbRate = writebackCount / cpu->numCycles; 277} 278 279template<class Impl> 280void 281DefaultIEW<Impl>::initStage() 282{ 283 for (ThreadID tid = 0; tid < numThreads; tid++) { 284 toRename->iewInfo[tid].usedIQ = true; 285 toRename->iewInfo[tid].freeIQEntries = 286 instQueue.numFreeEntries(tid); 287 288 toRename->iewInfo[tid].usedLSQ = true; 289 toRename->iewInfo[tid].freeLSQEntries = 290 ldstQueue.numFreeEntries(tid); 291 } 292 293 cpu->activateStage(O3CPU::IEWIdx); 294} 295 296template<class Impl> 297void 298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 299{ 300 timeBuffer = tb_ptr; 301 302 // Setup wire to read information from time buffer, from commit. 303 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 304 305 // Setup wire to write information back to previous stages. 306 toRename = timeBuffer->getWire(0); 307 308 toFetch = timeBuffer->getWire(0); 309 310 // Instruction queue also needs main time buffer. 311 instQueue.setTimeBuffer(tb_ptr); 312} 313 314template<class Impl> 315void 316DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr) 317{ 318 renameQueue = rq_ptr; 319 320 // Setup wire to read information from rename queue. 321 fromRename = renameQueue->getWire(-renameToIEWDelay); 322} 323 324template<class Impl> 325void 326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr) 327{ 328 iewQueue = iq_ptr; 329 330 // Setup wire to write instructions to commit. 331 toCommit = iewQueue->getWire(0); 332} 333 334template<class Impl> 335void 336DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr) 337{ 338 activeThreads = at_ptr; 339 340 ldstQueue.setActiveThreads(at_ptr); 341 instQueue.setActiveThreads(at_ptr); 342} 343 344template<class Impl> 345void 346DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr) 347{ 348 scoreboard = sb_ptr; 349} 350 351template <class Impl> 352bool 353DefaultIEW<Impl>::drain() 354{ 355 // IEW is ready to drain at any time. 356 cpu->signalDrained(); 357 return true; 358} 359 360template <class Impl> 361void 362DefaultIEW<Impl>::resume() 363{ 364} 365 366template <class Impl> 367void 368DefaultIEW<Impl>::switchOut() 369{ 370 // Clear any state. 371 switchedOut = true; 372 assert(insts[0].empty()); 373 assert(skidBuffer[0].empty()); 374 375 instQueue.switchOut(); 376 ldstQueue.switchOut(); 377 fuPool->switchOut(); 378 379 for (ThreadID tid = 0; tid < numThreads; tid++) { 380 while (!insts[tid].empty()) 381 insts[tid].pop(); 382 while (!skidBuffer[tid].empty()) 383 skidBuffer[tid].pop(); 384 } 385} 386 387template <class Impl> 388void 389DefaultIEW<Impl>::takeOverFrom() 390{ 391 // Reset all state. 392 _status = Active; 393 exeStatus = Running; 394 wbStatus = Idle; 395 switchedOut = false; 396 397 instQueue.takeOverFrom(); 398 ldstQueue.takeOverFrom(); 399 fuPool->takeOverFrom(); 400 401 initStage(); 402 cpu->activityThisCycle(); 403 404 for (ThreadID tid = 0; tid < numThreads; tid++) { 405 dispatchStatus[tid] = Running; 406 stalls[tid].commit = false; 407 fetchRedirect[tid] = false; 408 } 409 410 updateLSQNextCycle = false; 411 412 for (int i = 0; i < issueToExecQueue.getSize(); ++i) { 413 issueToExecQueue.advance(); 414 } 415} 416 417template<class Impl> 418void 419DefaultIEW<Impl>::squash(ThreadID tid) 420{ 421 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid); 422 423 // Tell the IQ to start squashing. 424 instQueue.squash(tid); 425 426 // Tell the LDSTQ to start squashing. 427 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid); 428 updatedQueues = true; 429 430 // Clear the skid buffer in case it has any data in it. 431 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n", 432 tid, fromCommit->commitInfo[tid].doneSeqNum); 433 434 while (!skidBuffer[tid].empty()) { 435 if (skidBuffer[tid].front()->isLoad() || 436 skidBuffer[tid].front()->isStore() ) { 437 toRename->iewInfo[tid].dispatchedToLSQ++; 438 } 439 440 toRename->iewInfo[tid].dispatched++; 441 442 skidBuffer[tid].pop(); 443 } 444 445 emptyRenameInsts(tid); 446} 447 448template<class Impl> 449void 450DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid) 451{ 452 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s " 453 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum); 454 455 if (toCommit->squash[tid] == false || 456 inst->seqNum < toCommit->squashedSeqNum[tid]) { 457 toCommit->squash[tid] = true; 458 toCommit->squashedSeqNum[tid] = inst->seqNum; 459 toCommit->mispredPC[tid] = inst->instAddr(); 460 toCommit->branchMispredict[tid] = true; 461 toCommit->branchTaken[tid] = inst->pcState().branching(); 462 463 TheISA::PCState pc = inst->pcState(); 464 TheISA::advancePC(pc, inst->staticInst); 465 466 toCommit->pc[tid] = pc; 467 toCommit->mispredictInst[tid] = inst; 468 toCommit->includeSquashInst[tid] = false; 469 470 wroteToTimeBuffer = true; 471 } 472 473} 474 475template<class Impl> 476void 477DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid) 478{ 479 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, " 480 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum); 481 482 if (toCommit->squash[tid] == false || 483 inst->seqNum < toCommit->squashedSeqNum[tid]) { 484 toCommit->squash[tid] = true; 485 toCommit->squashedSeqNum[tid] = inst->seqNum; 486 TheISA::PCState pc = inst->pcState(); 487 TheISA::advancePC(pc, inst->staticInst); 488 toCommit->pc[tid] = pc; 489 toCommit->branchMispredict[tid] = false; 490 491 toCommit->includeSquashInst[tid] = false; 492 493 wroteToTimeBuffer = true; 494 } 495} 496 497template<class Impl> 498void 499DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid) 500{ 501 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, " 502 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum); 503 if (toCommit->squash[tid] == false || 504 inst->seqNum < toCommit->squashedSeqNum[tid]) { 505 toCommit->squash[tid] = true; 506 507 toCommit->squashedSeqNum[tid] = inst->seqNum; 508 toCommit->pc[tid] = inst->pcState(); 509 toCommit->branchMispredict[tid] = false; 510 511 // Must include the broadcasted SN in the squash. 512 toCommit->includeSquashInst[tid] = true; 513 514 ldstQueue.setLoadBlockedHandled(tid); 515 516 wroteToTimeBuffer = true; 517 } 518} 519 520template<class Impl> 521void 522DefaultIEW<Impl>::block(ThreadID tid) 523{ 524 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid); 525 526 if (dispatchStatus[tid] != Blocked && 527 dispatchStatus[tid] != Unblocking) { 528 toRename->iewBlock[tid] = true; 529 wroteToTimeBuffer = true; 530 } 531 532 // Add the current inputs to the skid buffer so they can be 533 // reprocessed when this stage unblocks. 534 skidInsert(tid); 535 536 dispatchStatus[tid] = Blocked; 537} 538 539template<class Impl> 540void 541DefaultIEW<Impl>::unblock(ThreadID tid) 542{ 543 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid " 544 "buffer %u.\n",tid, tid); 545 546 // If the skid bufffer is empty, signal back to previous stages to unblock. 547 // Also switch status to running. 548 if (skidBuffer[tid].empty()) { 549 toRename->iewUnblock[tid] = true; 550 wroteToTimeBuffer = true; 551 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid); 552 dispatchStatus[tid] = Running; 553 } 554} 555 556template<class Impl> 557void 558DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst) 559{ 560 instQueue.wakeDependents(inst); 561} 562 563template<class Impl> 564void 565DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst) 566{ 567 instQueue.rescheduleMemInst(inst); 568} 569 570template<class Impl> 571void 572DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst) 573{ 574 instQueue.replayMemInst(inst); 575} 576 577template<class Impl> 578void 579DefaultIEW<Impl>::instToCommit(DynInstPtr &inst) 580{ 581 // This function should not be called after writebackInsts in a 582 // single cycle. That will cause problems with an instruction 583 // being added to the queue to commit without being processed by 584 // writebackInsts prior to being sent to commit. 585 586 // First check the time slot that this instruction will write 587 // to. If there are free write ports at the time, then go ahead 588 // and write the instruction to that time. If there are not, 589 // keep looking back to see where's the first time there's a 590 // free slot. 591 while ((*iewQueue)[wbCycle].insts[wbNumInst]) { 592 ++wbNumInst; 593 if (wbNumInst == wbWidth) { 594 ++wbCycle; 595 wbNumInst = 0; 596 } 597 598 assert((wbCycle * wbWidth + wbNumInst) <= wbMax); 599 } 600 601 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n", 602 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst); 603 // Add finished instruction to queue to commit. 604 (*iewQueue)[wbCycle].insts[wbNumInst] = inst; 605 (*iewQueue)[wbCycle].size++; 606} 607 608template <class Impl> 609unsigned 610DefaultIEW<Impl>::validInstsFromRename() 611{ 612 unsigned inst_count = 0; 613 614 for (int i=0; i<fromRename->size; i++) { 615 if (!fromRename->insts[i]->isSquashed()) 616 inst_count++; 617 } 618 619 return inst_count; 620} 621 622template<class Impl> 623void 624DefaultIEW<Impl>::skidInsert(ThreadID tid) 625{ 626 DynInstPtr inst = NULL; 627 628 while (!insts[tid].empty()) { 629 inst = insts[tid].front(); 630 631 insts[tid].pop(); 632 633 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into " 634 "dispatch skidBuffer %i\n",tid, inst->seqNum, 635 inst->pcState(),tid); 636 637 skidBuffer[tid].push(inst); 638 } 639 640 assert(skidBuffer[tid].size() <= skidBufferMax && 641 "Skidbuffer Exceeded Max Size"); 642} 643 644template<class Impl> 645int 646DefaultIEW<Impl>::skidCount() 647{ 648 int max=0; 649 650 list<ThreadID>::iterator threads = activeThreads->begin(); 651 list<ThreadID>::iterator end = activeThreads->end(); 652 653 while (threads != end) { 654 ThreadID tid = *threads++; 655 unsigned thread_count = skidBuffer[tid].size(); 656 if (max < thread_count) 657 max = thread_count; 658 } 659 660 return max; 661} 662 663template<class Impl> 664bool 665DefaultIEW<Impl>::skidsEmpty() 666{ 667 list<ThreadID>::iterator threads = activeThreads->begin(); 668 list<ThreadID>::iterator end = activeThreads->end(); 669 670 while (threads != end) { 671 ThreadID tid = *threads++; 672 673 if (!skidBuffer[tid].empty()) 674 return false; 675 } 676 677 return true; 678} 679 680template <class Impl> 681void 682DefaultIEW<Impl>::updateStatus() 683{ 684 bool any_unblocking = false; 685 686 list<ThreadID>::iterator threads = activeThreads->begin(); 687 list<ThreadID>::iterator end = activeThreads->end(); 688 689 while (threads != end) { 690 ThreadID tid = *threads++; 691 692 if (dispatchStatus[tid] == Unblocking) { 693 any_unblocking = true; 694 break; 695 } 696 } 697 698 // If there are no ready instructions waiting to be scheduled by the IQ, 699 // and there's no stores waiting to write back, and dispatch is not 700 // unblocking, then there is no internal activity for the IEW stage. 701 instQueue.intInstQueueReads++; 702 if (_status == Active && !instQueue.hasReadyInsts() && 703 !ldstQueue.willWB() && !any_unblocking) { 704 DPRINTF(IEW, "IEW switching to idle\n"); 705 706 deactivateStage(); 707 708 _status = Inactive; 709 } else if (_status == Inactive && (instQueue.hasReadyInsts() || 710 ldstQueue.willWB() || 711 any_unblocking)) { 712 // Otherwise there is internal activity. Set to active. 713 DPRINTF(IEW, "IEW switching to active\n"); 714 715 activateStage(); 716 717 _status = Active; 718 } 719} 720 721template <class Impl> 722void 723DefaultIEW<Impl>::resetEntries() 724{ 725 instQueue.resetEntries(); 726 ldstQueue.resetEntries(); 727} 728 729template <class Impl> 730void 731DefaultIEW<Impl>::readStallSignals(ThreadID tid) 732{ 733 if (fromCommit->commitBlock[tid]) { 734 stalls[tid].commit = true; 735 } 736 737 if (fromCommit->commitUnblock[tid]) { 738 assert(stalls[tid].commit); 739 stalls[tid].commit = false; 740 } 741} 742 743template <class Impl> 744bool 745DefaultIEW<Impl>::checkStall(ThreadID tid) 746{ 747 bool ret_val(false); 748 749 if (stalls[tid].commit) { 750 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid); 751 ret_val = true; 752 } else if (instQueue.isFull(tid)) { 753 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid); 754 ret_val = true; 755 } else if (ldstQueue.isFull(tid)) { 756 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid); 757 758 if (ldstQueue.numLoads(tid) > 0 ) { 759 760 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n", 761 tid,ldstQueue.getLoadHeadSeqNum(tid)); 762 } 763 764 if (ldstQueue.numStores(tid) > 0) { 765 766 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n", 767 tid,ldstQueue.getStoreHeadSeqNum(tid)); 768 } 769 770 ret_val = true; 771 } else if (ldstQueue.isStalled(tid)) { 772 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid); 773 ret_val = true; 774 } 775 776 return ret_val; 777} 778 779template <class Impl> 780void 781DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid) 782{ 783 // Check if there's a squash signal, squash if there is 784 // Check stall signals, block if there is. 785 // If status was Blocked 786 // if so then go to unblocking 787 // If status was Squashing 788 // check if squashing is not high. Switch to running this cycle. 789 790 readStallSignals(tid); 791 792 if (fromCommit->commitInfo[tid].squash) { 793 squash(tid); 794 795 if (dispatchStatus[tid] == Blocked || 796 dispatchStatus[tid] == Unblocking) { 797 toRename->iewUnblock[tid] = true; 798 wroteToTimeBuffer = true; 799 } 800 801 dispatchStatus[tid] = Squashing; 802 fetchRedirect[tid] = false; 803 return; 804 } 805 806 if (fromCommit->commitInfo[tid].robSquashing) { 807 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid); 808 809 dispatchStatus[tid] = Squashing; 810 emptyRenameInsts(tid); 811 wroteToTimeBuffer = true; 812 return; 813 } 814 815 if (checkStall(tid)) { 816 block(tid); 817 dispatchStatus[tid] = Blocked; 818 return; 819 } 820 821 if (dispatchStatus[tid] == Blocked) { 822 // Status from previous cycle was blocked, but there are no more stall 823 // conditions. Switch over to unblocking. 824 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n", 825 tid); 826 827 dispatchStatus[tid] = Unblocking; 828 829 unblock(tid); 830 831 return; 832 } 833 834 if (dispatchStatus[tid] == Squashing) { 835 // Switch status to running if rename isn't being told to block or 836 // squash this cycle. 837 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n", 838 tid); 839 840 dispatchStatus[tid] = Running; 841 842 return; 843 } 844} 845 846template <class Impl> 847void 848DefaultIEW<Impl>::sortInsts() 849{ 850 int insts_from_rename = fromRename->size; 851#ifdef DEBUG 852 for (ThreadID tid = 0; tid < numThreads; tid++) 853 assert(insts[tid].empty()); 854#endif 855 for (int i = 0; i < insts_from_rename; ++i) { 856 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]); 857 } 858} 859 860template <class Impl> 861void 862DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid) 863{ 864 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid); 865 866 while (!insts[tid].empty()) { 867 868 if (insts[tid].front()->isLoad() || 869 insts[tid].front()->isStore() ) { 870 toRename->iewInfo[tid].dispatchedToLSQ++; 871 } 872 873 toRename->iewInfo[tid].dispatched++; 874 875 insts[tid].pop(); 876 } 877} 878 879template <class Impl> 880void 881DefaultIEW<Impl>::wakeCPU() 882{ 883 cpu->wakeCPU(); 884} 885 886template <class Impl> 887void 888DefaultIEW<Impl>::activityThisCycle() 889{ 890 DPRINTF(Activity, "Activity this cycle.\n"); 891 cpu->activityThisCycle(); 892} 893 894template <class Impl> 895inline void 896DefaultIEW<Impl>::activateStage() 897{ 898 DPRINTF(Activity, "Activating stage.\n"); 899 cpu->activateStage(O3CPU::IEWIdx); 900} 901 902template <class Impl> 903inline void 904DefaultIEW<Impl>::deactivateStage() 905{ 906 DPRINTF(Activity, "Deactivating stage.\n"); 907 cpu->deactivateStage(O3CPU::IEWIdx); 908} 909 910template<class Impl> 911void 912DefaultIEW<Impl>::dispatch(ThreadID tid) 913{ 914 // If status is Running or idle, 915 // call dispatchInsts() 916 // If status is Unblocking, 917 // buffer any instructions coming from rename 918 // continue trying to empty skid buffer 919 // check if stall conditions have passed 920 921 if (dispatchStatus[tid] == Blocked) { 922 ++iewBlockCycles; 923 924 } else if (dispatchStatus[tid] == Squashing) { 925 ++iewSquashCycles; 926 } 927 928 // Dispatch should try to dispatch as many instructions as its bandwidth 929 // will allow, as long as it is not currently blocked. 930 if (dispatchStatus[tid] == Running || 931 dispatchStatus[tid] == Idle) { 932 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run " 933 "dispatch.\n", tid); 934 935 dispatchInsts(tid); 936 } else if (dispatchStatus[tid] == Unblocking) { 937 // Make sure that the skid buffer has something in it if the 938 // status is unblocking. 939 assert(!skidsEmpty()); 940 941 // If the status was unblocking, then instructions from the skid 942 // buffer were used. Remove those instructions and handle 943 // the rest of unblocking. 944 dispatchInsts(tid); 945 946 ++iewUnblockCycles; 947 948 if (validInstsFromRename()) { 949 // Add the current inputs to the skid buffer so they can be 950 // reprocessed when this stage unblocks. 951 skidInsert(tid); 952 } 953 954 unblock(tid); 955 } 956} 957 958template <class Impl> 959void 960DefaultIEW<Impl>::dispatchInsts(ThreadID tid) 961{ 962 // Obtain instructions from skid buffer if unblocking, or queue from rename 963 // otherwise. 964 std::queue<DynInstPtr> &insts_to_dispatch = 965 dispatchStatus[tid] == Unblocking ? 966 skidBuffer[tid] : insts[tid]; 967 968 int insts_to_add = insts_to_dispatch.size(); 969 970 DynInstPtr inst; 971 bool add_to_iq = false; 972 int dis_num_inst = 0; 973 974 // Loop through the instructions, putting them in the instruction 975 // queue. 976 for ( ; dis_num_inst < insts_to_add && 977 dis_num_inst < dispatchWidth; 978 ++dis_num_inst) 979 { 980 inst = insts_to_dispatch.front(); 981 982 if (dispatchStatus[tid] == Unblocking) { 983 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid " 984 "buffer\n", tid); 985 } 986 987 // Make sure there's a valid instruction there. 988 assert(inst); 989 990 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to " 991 "IQ.\n", 992 tid, inst->pcState(), inst->seqNum, inst->threadNumber); 993 994 // Be sure to mark these instructions as ready so that the 995 // commit stage can go ahead and execute them, and mark 996 // them as issued so the IQ doesn't reprocess them. 997 998 // Check for squashed instructions. 999 if (inst->isSquashed()) { 1000 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, " 1001 "not adding to IQ.\n", tid); 1002 1003 ++iewDispSquashedInsts; 1004 1005 insts_to_dispatch.pop(); 1006 1007 //Tell Rename That An Instruction has been processed 1008 if (inst->isLoad() || inst->isStore()) { 1009 toRename->iewInfo[tid].dispatchedToLSQ++; 1010 } 1011 toRename->iewInfo[tid].dispatched++; 1012 1013 continue; 1014 } 1015 1016 // Check for full conditions. 1017 if (instQueue.isFull(tid)) { 1018 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid); 1019 1020 // Call function to start blocking. 1021 block(tid); 1022 1023 // Set unblock to false. Special case where we are using 1024 // skidbuffer (unblocking) instructions but then we still 1025 // get full in the IQ. 1026 toRename->iewUnblock[tid] = false; 1027 1028 ++iewIQFullEvents; 1029 break; 1030 } else if (ldstQueue.isFull(tid)) { 1031 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid); 1032 1033 // Call function to start blocking. 1034 block(tid); 1035 1036 // Set unblock to false. Special case where we are using 1037 // skidbuffer (unblocking) instructions but then we still 1038 // get full in the IQ. 1039 toRename->iewUnblock[tid] = false; 1040 1041 ++iewLSQFullEvents; 1042 break; 1043 } 1044 1045 // Otherwise issue the instruction just fine. 1046 if (inst->isLoad()) { 1047 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1048 "encountered, adding to LSQ.\n", tid); 1049 1050 // Reserve a spot in the load store queue for this 1051 // memory access. 1052 ldstQueue.insertLoad(inst); 1053 1054 ++iewDispLoadInsts; 1055 1056 add_to_iq = true; 1057 1058 toRename->iewInfo[tid].dispatchedToLSQ++; 1059 } else if (inst->isStore()) { 1060 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1061 "encountered, adding to LSQ.\n", tid); 1062 1063 ldstQueue.insertStore(inst); 1064 1065 ++iewDispStoreInsts; 1066 1067 if (inst->isStoreConditional()) { 1068 // Store conditionals need to be set as "canCommit()" 1069 // so that commit can process them when they reach the 1070 // head of commit. 1071 // @todo: This is somewhat specific to Alpha. 1072 inst->setCanCommit(); 1073 instQueue.insertNonSpec(inst); 1074 add_to_iq = false; 1075 1076 ++iewDispNonSpecInsts; 1077 } else { 1078 add_to_iq = true; 1079 } 1080 1081 toRename->iewInfo[tid].dispatchedToLSQ++; 1082 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) { 1083 // Same as non-speculative stores. 1084 inst->setCanCommit(); 1085 instQueue.insertBarrier(inst); 1086 add_to_iq = false; 1087 } else if (inst->isNop()) { 1088 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, " 1089 "skipping.\n", tid); 1090 1091 inst->setIssued(); 1092 inst->setExecuted(); 1093 inst->setCanCommit(); 1094 1095 instQueue.recordProducer(inst); 1096 1097 iewExecutedNop[tid]++; 1098 1099 add_to_iq = false; 1100 } else if (inst->isExecuted()) { 1101 assert(0 && "Instruction shouldn't be executed.\n"); 1102 DPRINTF(IEW, "Issue: Executed branch encountered, " 1103 "skipping.\n"); 1104 1105 inst->setIssued(); 1106 inst->setCanCommit(); 1107 1108 instQueue.recordProducer(inst); 1109 1110 add_to_iq = false; 1111 } else { 1112 add_to_iq = true; 1113 } 1114 if (inst->isNonSpeculative()) { 1115 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction " 1116 "encountered, skipping.\n", tid); 1117 1118 // Same as non-speculative stores. 1119 inst->setCanCommit(); 1120 1121 // Specifically insert it as nonspeculative. 1122 instQueue.insertNonSpec(inst); 1123 1124 ++iewDispNonSpecInsts; 1125 1126 add_to_iq = false; 1127 } 1128 1129 // If the instruction queue is not full, then add the 1130 // instruction. 1131 if (add_to_iq) { 1132 instQueue.insert(inst); 1133 } 1134 1135 insts_to_dispatch.pop(); 1136 1137 toRename->iewInfo[tid].dispatched++; 1138 1139 ++iewDispatchedInsts; 1140 } 1141 1142 if (!insts_to_dispatch.empty()) { 1143 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid); 1144 block(tid); 1145 toRename->iewUnblock[tid] = false; 1146 } 1147 1148 if (dispatchStatus[tid] == Idle && dis_num_inst) { 1149 dispatchStatus[tid] = Running; 1150 1151 updatedQueues = true; 1152 } 1153 1154 dis_num_inst = 0; 1155} 1156 1157template <class Impl> 1158void 1159DefaultIEW<Impl>::printAvailableInsts() 1160{ 1161 int inst = 0; 1162 1163 std::cout << "Available Instructions: "; 1164 1165 while (fromIssue->insts[inst]) { 1166 1167 if (inst%3==0) std::cout << "\n\t"; 1168 1169 std::cout << "PC: " << fromIssue->insts[inst]->pcState() 1170 << " TN: " << fromIssue->insts[inst]->threadNumber 1171 << " SN: " << fromIssue->insts[inst]->seqNum << " | "; 1172 1173 inst++; 1174 1175 } 1176 1177 std::cout << "\n"; 1178} 1179 1180template <class Impl> 1181void 1182DefaultIEW<Impl>::executeInsts() 1183{ 1184 wbNumInst = 0; 1185 wbCycle = 0; 1186 1187 list<ThreadID>::iterator threads = activeThreads->begin(); 1188 list<ThreadID>::iterator end = activeThreads->end(); 1189 1190 while (threads != end) { 1191 ThreadID tid = *threads++; 1192 fetchRedirect[tid] = false; 1193 } 1194 1195 // Uncomment this if you want to see all available instructions. 1196 // @todo This doesn't actually work anymore, we should fix it. 1197// printAvailableInsts(); 1198 1199 // Execute/writeback any instructions that are available. 1200 int insts_to_execute = fromIssue->size; 1201 int inst_num = 0; 1202 for (; inst_num < insts_to_execute; 1203 ++inst_num) { 1204 1205 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n"); 1206 1207 DynInstPtr inst = instQueue.getInstToExecute(); 1208 1209 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n", 1210 inst->pcState(), inst->threadNumber,inst->seqNum); 1211 1212 // Check if the instruction is squashed; if so then skip it 1213 if (inst->isSquashed()) { 1214 DPRINTF(IEW, "Execute: Instruction was squashed.\n"); 1215 1216 // Consider this instruction executed so that commit can go 1217 // ahead and retire the instruction. 1218 inst->setExecuted(); 1219 1220 // Not sure if I should set this here or just let commit try to 1221 // commit any squashed instructions. I like the latter a bit more. 1222 inst->setCanCommit(); 1223 1224 ++iewExecSquashedInsts; 1225 1226 decrWb(inst->seqNum); 1227 continue; 1228 } 1229 1230 Fault fault = NoFault; 1231 1232 // Execute instruction. 1233 // Note that if the instruction faults, it will be handled 1234 // at the commit stage. 1235 if (inst->isMemRef()) { 1236 DPRINTF(IEW, "Execute: Calculating address for memory " 1237 "reference.\n"); 1238 1239 // Tell the LDSTQ to execute this instruction (if it is a load). 1240 if (inst->isLoad()) { 1241 // Loads will mark themselves as executed, and their writeback 1242 // event adds the instruction to the queue to commit 1243 fault = ldstQueue.executeLoad(inst); 1244 if (inst->isDataPrefetch() || inst->isInstPrefetch()) { 1245 fault = NoFault; 1246 } 1247 } else if (inst->isStore()) { 1248 fault = ldstQueue.executeStore(inst); 1249 1250 // If the store had a fault then it may not have a mem req 1251 if (fault != NoFault || inst->readPredicate() == false || 1252 !inst->isStoreConditional()) { 1253 // If the instruction faulted, then we need to send it along 1254 // to commit without the instruction completing. 1255 // Send this instruction to commit, also make sure iew stage 1256 // realizes there is activity. 1257 inst->setExecuted(); 1258 instToCommit(inst); 1259 activityThisCycle(); 1260 } 1261 1262 // Store conditionals will mark themselves as 1263 // executed, and their writeback event will add the 1264 // instruction to the queue to commit. 1265 } else { 1266 panic("Unexpected memory type!\n"); 1267 } 1268 1269 } else { 1270 // If the instruction has already faulted, then skip executing it. 1271 // Such case can happen when it faulted during ITLB translation. 1272 // If we execute the instruction (even if it's a nop) the fault 1273 // will be replaced and we will lose it. 1274 if (inst->getFault() == NoFault) { 1275 inst->execute(); 1276 if (inst->readPredicate() == false) 1277 inst->forwardOldRegs(); 1278 } 1279 1280 inst->setExecuted(); 1281 1282 instToCommit(inst); 1283 } 1284 1285 updateExeInstStats(inst); 1286 1287 // Check if branch prediction was correct, if not then we need 1288 // to tell commit to squash in flight instructions. Only 1289 // handle this if there hasn't already been something that 1290 // redirects fetch in this group of instructions. 1291 1292 // This probably needs to prioritize the redirects if a different 1293 // scheduler is used. Currently the scheduler schedules the oldest 1294 // instruction first, so the branch resolution order will be correct. 1295 ThreadID tid = inst->threadNumber; 1296 1297 if (!fetchRedirect[tid] || 1298 !toCommit->squash[tid] || 1299 toCommit->squashedSeqNum[tid] > inst->seqNum) { 1300 1301 // Prevent testing for misprediction on load instructions, 1302 // that have not been executed. 1303 bool loadNotExecuted = !inst->isExecuted() && inst->isLoad(); 1304 1305 if (inst->mispredicted() && !loadNotExecuted) { 1306 fetchRedirect[tid] = true; 1307 1308 DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); 1309 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", 1310 inst->predInstAddr(), inst->predNextInstAddr()); 1311 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n", 1312 inst->pcState(), inst->nextInstAddr()); 1313 // If incorrect, then signal the ROB that it must be squashed. 1314 squashDueToBranch(inst, tid); 1315 1316 if (inst->readPredTaken()) { 1317 predictedTakenIncorrect++; 1318 } else { 1319 predictedNotTakenIncorrect++; 1320 } 1321 } else if (ldstQueue.violation(tid)) { 1322 assert(inst->isMemRef()); 1323 // If there was an ordering violation, then get the 1324 // DynInst that caused the violation. Note that this 1325 // clears the violation signal. 1326 DynInstPtr violator; 1327 violator = ldstQueue.getMemDepViolator(tid); 1328 1329 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s " 1330 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n", 1331 violator->pcState(), violator->seqNum, 1332 inst->pcState(), inst->seqNum, inst->physEffAddr); 1333 1334 fetchRedirect[tid] = true; 1335 1336 // Tell the instruction queue that a violation has occured. 1337 instQueue.violation(inst, violator); 1338 1339 // Squash. 1340 squashDueToMemOrder(inst,tid); 1341 1342 ++memOrderViolationEvents; 1343 } else if (ldstQueue.loadBlocked(tid) && 1344 !ldstQueue.isLoadBlockedHandled(tid)) { 1345 fetchRedirect[tid] = true; 1346 1347 DPRINTF(IEW, "Load operation couldn't execute because the " 1348 "memory system is blocked. PC: %s [sn:%lli]\n", 1349 inst->pcState(), inst->seqNum); 1350 1351 squashDueToMemBlocked(inst, tid); 1352 } 1353 } else { 1354 // Reset any state associated with redirects that will not 1355 // be used. 1356 if (ldstQueue.violation(tid)) { 1357 assert(inst->isMemRef()); 1358 1359 DynInstPtr violator = ldstQueue.getMemDepViolator(tid); 1360 1361 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: " 1362 "%s, inst PC: %s. Addr is: %#x.\n", 1363 violator->pcState(), inst->pcState(), 1364 inst->physEffAddr); 1365 DPRINTF(IEW, "Violation will not be handled because " 1366 "already squashing\n"); 1367 1368 ++memOrderViolationEvents; 1369 } 1370 if (ldstQueue.loadBlocked(tid) && 1371 !ldstQueue.isLoadBlockedHandled(tid)) { 1372 DPRINTF(IEW, "Load operation couldn't execute because the " 1373 "memory system is blocked. PC: %s [sn:%lli]\n", 1374 inst->pcState(), inst->seqNum); 1375 DPRINTF(IEW, "Blocked load will not be handled because " 1376 "already squashing\n"); 1377 1378 ldstQueue.setLoadBlockedHandled(tid); 1379 } 1380 1381 } 1382 } 1383 1384 // Update and record activity if we processed any instructions. 1385 if (inst_num) { 1386 if (exeStatus == Idle) { 1387 exeStatus = Running; 1388 } 1389 1390 updatedQueues = true; 1391 1392 cpu->activityThisCycle(); 1393 } 1394 1395 // Need to reset this in case a writeback event needs to write into the 1396 // iew queue. That way the writeback event will write into the correct 1397 // spot in the queue. 1398 wbNumInst = 0; 1399 1400} 1401 1402template <class Impl> 1403void 1404DefaultIEW<Impl>::writebackInsts() 1405{ 1406 // Loop through the head of the time buffer and wake any 1407 // dependents. These instructions are about to write back. Also 1408 // mark scoreboard that this instruction is finally complete. 1409 // Either have IEW have direct access to scoreboard, or have this 1410 // as part of backwards communication. 1411 for (int inst_num = 0; inst_num < wbWidth && 1412 toCommit->insts[inst_num]; inst_num++) { 1413 DynInstPtr inst = toCommit->insts[inst_num]; 1414 ThreadID tid = inst->threadNumber; 1415 1416 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n", 1417 inst->seqNum, inst->pcState()); 1418 1419 iewInstsToCommit[tid]++; 1420 1421 // Some instructions will be sent to commit without having 1422 // executed because they need commit to handle them. 1423 // E.g. Uncached loads have not actually executed when they 1424 // are first sent to commit. Instead commit must tell the LSQ 1425 // when it's ready to execute the uncached load. 1426 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) { 1427 int dependents = instQueue.wakeDependents(inst); 1428 1429 for (int i = 0; i < inst->numDestRegs(); i++) { 1430 //mark as Ready 1431 DPRINTF(IEW,"Setting Destination Register %i\n", 1432 inst->renamedDestRegIdx(i)); 1433 scoreboard->setReg(inst->renamedDestRegIdx(i)); 1434 } 1435 1436 if (dependents) { 1437 producerInst[tid]++; 1438 consumerInst[tid]+= dependents; 1439 } 1440 writebackCount[tid]++; 1441 } 1442 1443 decrWb(inst->seqNum); 1444 } 1445} 1446 1447template<class Impl> 1448void 1449DefaultIEW<Impl>::tick() 1450{ 1451 wbNumInst = 0; 1452 wbCycle = 0; 1453 1454 wroteToTimeBuffer = false; 1455 updatedQueues = false; 1456 1457 sortInsts(); 1458 1459 // Free function units marked as being freed this cycle. 1460 fuPool->processFreeUnits(); 1461 1462 list<ThreadID>::iterator threads = activeThreads->begin(); 1463 list<ThreadID>::iterator end = activeThreads->end(); 1464 1465 // Check stall and squash signals, dispatch any instructions. 1466 while (threads != end) { 1467 ThreadID tid = *threads++; 1468 1469 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid); 1470 1471 checkSignalsAndUpdate(tid); 1472 dispatch(tid); 1473 } 1474 1475 if (exeStatus != Squashing) { 1476 executeInsts(); 1477 1478 writebackInsts(); 1479 1480 // Have the instruction queue try to schedule any ready instructions. 1481 // (In actuality, this scheduling is for instructions that will 1482 // be executed next cycle.) 1483 instQueue.scheduleReadyInsts(); 1484 1485 // Also should advance its own time buffers if the stage ran. 1486 // Not the best place for it, but this works (hopefully). 1487 issueToExecQueue.advance(); 1488 } 1489 1490 bool broadcast_free_entries = false; 1491 1492 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) { 1493 exeStatus = Idle; 1494 updateLSQNextCycle = false; 1495 1496 broadcast_free_entries = true; 1497 } 1498 1499 // Writeback any stores using any leftover bandwidth. 1500 ldstQueue.writebackStores(); 1501 1502 // Check the committed load/store signals to see if there's a load 1503 // or store to commit. Also check if it's being told to execute a 1504 // nonspeculative instruction. 1505 // This is pretty inefficient... 1506 1507 threads = activeThreads->begin(); 1508 while (threads != end) { 1509 ThreadID tid = (*threads++); 1510 1511 DPRINTF(IEW,"Processing [tid:%i]\n",tid); 1512 1513 // Update structures based on instructions committed. 1514 if (fromCommit->commitInfo[tid].doneSeqNum != 0 && 1515 !fromCommit->commitInfo[tid].squash && 1516 !fromCommit->commitInfo[tid].robSquashing) { 1517 1518 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid); 1519 1520 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid); 1521 1522 updateLSQNextCycle = true; 1523 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid); 1524 } 1525 1526 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) { 1527 1528 //DPRINTF(IEW,"NonspecInst from thread %i",tid); 1529 if (fromCommit->commitInfo[tid].uncached) { 1530 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad); 1531 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit(); 1532 } else { 1533 instQueue.scheduleNonSpec( 1534 fromCommit->commitInfo[tid].nonSpecSeqNum); 1535 } 1536 } 1537 1538 if (broadcast_free_entries) { 1539 toFetch->iewInfo[tid].iqCount = 1540 instQueue.getCount(tid); 1541 toFetch->iewInfo[tid].ldstqCount = 1542 ldstQueue.getCount(tid); 1543 1544 toRename->iewInfo[tid].usedIQ = true; 1545 toRename->iewInfo[tid].freeIQEntries = 1546 instQueue.numFreeEntries(); 1547 toRename->iewInfo[tid].usedLSQ = true; 1548 toRename->iewInfo[tid].freeLSQEntries = 1549 ldstQueue.numFreeEntries(tid); 1550 1551 wroteToTimeBuffer = true; 1552 } 1553 1554 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n", 1555 tid, toRename->iewInfo[tid].dispatched); 1556 } 1557 1558 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). " 1559 "LSQ has %i free entries.\n", 1560 instQueue.numFreeEntries(), instQueue.hasReadyInsts(), 1561 ldstQueue.numFreeEntries()); 1562 1563 updateStatus(); 1564 1565 if (wroteToTimeBuffer) { 1566 DPRINTF(Activity, "Activity this cycle.\n"); 1567 cpu->activityThisCycle(); 1568 } 1569} 1570 1571template <class Impl> 1572void 1573DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst) 1574{ 1575 ThreadID tid = inst->threadNumber; 1576 1577 // 1578 // Pick off the software prefetches 1579 // 1580#ifdef TARGET_ALPHA 1581 if (inst->isDataPrefetch()) 1582 iewExecutedSwp[tid]++; 1583 else 1584 iewIewExecutedcutedInsts++; 1585#else 1586 iewExecutedInsts++; 1587#endif 1588 1589 // 1590 // Control operations 1591 // 1592 if (inst->isControl()) 1593 iewExecutedBranches[tid]++; 1594 1595 // 1596 // Memory operations 1597 // 1598 if (inst->isMemRef()) { 1599 iewExecutedRefs[tid]++; 1600 1601 if (inst->isLoad()) { 1602 iewExecLoadInsts[tid]++; 1603 } 1604 } 1605} 1606 1607template <class Impl> 1608void 1609DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst) 1610{ 1611 ThreadID tid = inst->threadNumber; 1612 1613 if (!fetchRedirect[tid] || 1614 !toCommit->squash[tid] || 1615 toCommit->squashedSeqNum[tid] > inst->seqNum) { 1616 1617 if (inst->mispredicted()) { 1618 fetchRedirect[tid] = true; 1619 1620 DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); 1621 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", 1622 inst->predInstAddr(), inst->predNextInstAddr()); 1623 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x," 1624 " NPC: %#x.\n", inst->nextInstAddr(), 1625 inst->nextInstAddr()); 1626 // If incorrect, then signal the ROB that it must be squashed. 1627 squashDueToBranch(inst, tid); 1628 1629 if (inst->readPredTaken()) { 1630 predictedTakenIncorrect++; 1631 } else { 1632 predictedNotTakenIncorrect++; 1633 } 1634 } 1635 } 1636} 1637