iew_impl.hh revision 7851:bb38f0c47ade
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43// @todo: Fix the instantaneous communication among all the stages within
44// iew.  There's a clear delay between issue and execute, yet backwards
45// communication happens simultaneously.
46
47#include <queue>
48
49#include "cpu/timebuf.hh"
50#include "config/the_isa.hh"
51#include "cpu/o3/fu_pool.hh"
52#include "cpu/o3/iew.hh"
53#include "params/DerivO3CPU.hh"
54
55using namespace std;
56
57template<class Impl>
58DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
59    : issueToExecQueue(params->backComSize, params->forwardComSize),
60      cpu(_cpu),
61      instQueue(_cpu, this, params),
62      ldstQueue(_cpu, this, params),
63      fuPool(params->fuPool),
64      commitToIEWDelay(params->commitToIEWDelay),
65      renameToIEWDelay(params->renameToIEWDelay),
66      issueToExecuteDelay(params->issueToExecuteDelay),
67      dispatchWidth(params->dispatchWidth),
68      issueWidth(params->issueWidth),
69      wbOutstanding(0),
70      wbWidth(params->wbWidth),
71      numThreads(params->numThreads),
72      switchedOut(false)
73{
74    _status = Active;
75    exeStatus = Running;
76    wbStatus = Idle;
77
78    // Setup wire to read instructions coming from issue.
79    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
80
81    // Instruction queue needs the queue between issue and execute.
82    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
83
84    for (ThreadID tid = 0; tid < numThreads; tid++) {
85        dispatchStatus[tid] = Running;
86        stalls[tid].commit = false;
87        fetchRedirect[tid] = false;
88    }
89
90    wbMax = wbWidth * params->wbDepth;
91
92    updateLSQNextCycle = false;
93
94    ableToIssue = true;
95
96    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
97}
98
99template <class Impl>
100std::string
101DefaultIEW<Impl>::name() const
102{
103    return cpu->name() + ".iew";
104}
105
106template <class Impl>
107void
108DefaultIEW<Impl>::regStats()
109{
110    using namespace Stats;
111
112    instQueue.regStats();
113    ldstQueue.regStats();
114
115    iewIdleCycles
116        .name(name() + ".iewIdleCycles")
117        .desc("Number of cycles IEW is idle");
118
119    iewSquashCycles
120        .name(name() + ".iewSquashCycles")
121        .desc("Number of cycles IEW is squashing");
122
123    iewBlockCycles
124        .name(name() + ".iewBlockCycles")
125        .desc("Number of cycles IEW is blocking");
126
127    iewUnblockCycles
128        .name(name() + ".iewUnblockCycles")
129        .desc("Number of cycles IEW is unblocking");
130
131    iewDispatchedInsts
132        .name(name() + ".iewDispatchedInsts")
133        .desc("Number of instructions dispatched to IQ");
134
135    iewDispSquashedInsts
136        .name(name() + ".iewDispSquashedInsts")
137        .desc("Number of squashed instructions skipped by dispatch");
138
139    iewDispLoadInsts
140        .name(name() + ".iewDispLoadInsts")
141        .desc("Number of dispatched load instructions");
142
143    iewDispStoreInsts
144        .name(name() + ".iewDispStoreInsts")
145        .desc("Number of dispatched store instructions");
146
147    iewDispNonSpecInsts
148        .name(name() + ".iewDispNonSpecInsts")
149        .desc("Number of dispatched non-speculative instructions");
150
151    iewIQFullEvents
152        .name(name() + ".iewIQFullEvents")
153        .desc("Number of times the IQ has become full, causing a stall");
154
155    iewLSQFullEvents
156        .name(name() + ".iewLSQFullEvents")
157        .desc("Number of times the LSQ has become full, causing a stall");
158
159    memOrderViolationEvents
160        .name(name() + ".memOrderViolationEvents")
161        .desc("Number of memory order violations");
162
163    predictedTakenIncorrect
164        .name(name() + ".predictedTakenIncorrect")
165        .desc("Number of branches that were predicted taken incorrectly");
166
167    predictedNotTakenIncorrect
168        .name(name() + ".predictedNotTakenIncorrect")
169        .desc("Number of branches that were predicted not taken incorrectly");
170
171    branchMispredicts
172        .name(name() + ".branchMispredicts")
173        .desc("Number of branch mispredicts detected at execute");
174
175    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
176
177    iewExecutedInsts
178        .name(name() + ".iewExecutedInsts")
179        .desc("Number of executed instructions");
180
181    iewExecLoadInsts
182        .init(cpu->numThreads)
183        .name(name() + ".iewExecLoadInsts")
184        .desc("Number of load instructions executed")
185        .flags(total);
186
187    iewExecSquashedInsts
188        .name(name() + ".iewExecSquashedInsts")
189        .desc("Number of squashed instructions skipped in execute");
190
191    iewExecutedSwp
192        .init(cpu->numThreads)
193        .name(name() + ".EXEC:swp")
194        .desc("number of swp insts executed")
195        .flags(total);
196
197    iewExecutedNop
198        .init(cpu->numThreads)
199        .name(name() + ".EXEC:nop")
200        .desc("number of nop insts executed")
201        .flags(total);
202
203    iewExecutedRefs
204        .init(cpu->numThreads)
205        .name(name() + ".EXEC:refs")
206        .desc("number of memory reference insts executed")
207        .flags(total);
208
209    iewExecutedBranches
210        .init(cpu->numThreads)
211        .name(name() + ".EXEC:branches")
212        .desc("Number of branches executed")
213        .flags(total);
214
215    iewExecStoreInsts
216        .name(name() + ".EXEC:stores")
217        .desc("Number of stores executed")
218        .flags(total);
219    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
220
221    iewExecRate
222        .name(name() + ".EXEC:rate")
223        .desc("Inst execution rate")
224        .flags(total);
225
226    iewExecRate = iewExecutedInsts / cpu->numCycles;
227
228    iewInstsToCommit
229        .init(cpu->numThreads)
230        .name(name() + ".WB:sent")
231        .desc("cumulative count of insts sent to commit")
232        .flags(total);
233
234    writebackCount
235        .init(cpu->numThreads)
236        .name(name() + ".WB:count")
237        .desc("cumulative count of insts written-back")
238        .flags(total);
239
240    producerInst
241        .init(cpu->numThreads)
242        .name(name() + ".WB:producers")
243        .desc("num instructions producing a value")
244        .flags(total);
245
246    consumerInst
247        .init(cpu->numThreads)
248        .name(name() + ".WB:consumers")
249        .desc("num instructions consuming a value")
250        .flags(total);
251
252    wbPenalized
253        .init(cpu->numThreads)
254        .name(name() + ".WB:penalized")
255        .desc("number of instrctions required to write to 'other' IQ")
256        .flags(total);
257
258    wbPenalizedRate
259        .name(name() + ".WB:penalized_rate")
260        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
261        .flags(total);
262
263    wbPenalizedRate = wbPenalized / writebackCount;
264
265    wbFanout
266        .name(name() + ".WB:fanout")
267        .desc("average fanout of values written-back")
268        .flags(total);
269
270    wbFanout = producerInst / consumerInst;
271
272    wbRate
273        .name(name() + ".WB:rate")
274        .desc("insts written-back per cycle")
275        .flags(total);
276    wbRate = writebackCount / cpu->numCycles;
277}
278
279template<class Impl>
280void
281DefaultIEW<Impl>::initStage()
282{
283    for (ThreadID tid = 0; tid < numThreads; tid++) {
284        toRename->iewInfo[tid].usedIQ = true;
285        toRename->iewInfo[tid].freeIQEntries =
286            instQueue.numFreeEntries(tid);
287
288        toRename->iewInfo[tid].usedLSQ = true;
289        toRename->iewInfo[tid].freeLSQEntries =
290            ldstQueue.numFreeEntries(tid);
291    }
292
293    cpu->activateStage(O3CPU::IEWIdx);
294}
295
296template<class Impl>
297void
298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
299{
300    timeBuffer = tb_ptr;
301
302    // Setup wire to read information from time buffer, from commit.
303    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
304
305    // Setup wire to write information back to previous stages.
306    toRename = timeBuffer->getWire(0);
307
308    toFetch = timeBuffer->getWire(0);
309
310    // Instruction queue also needs main time buffer.
311    instQueue.setTimeBuffer(tb_ptr);
312}
313
314template<class Impl>
315void
316DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
317{
318    renameQueue = rq_ptr;
319
320    // Setup wire to read information from rename queue.
321    fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328    iewQueue = iq_ptr;
329
330    // Setup wire to write instructions to commit.
331    toCommit = iewQueue->getWire(0);
332}
333
334template<class Impl>
335void
336DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
337{
338    activeThreads = at_ptr;
339
340    ldstQueue.setActiveThreads(at_ptr);
341    instQueue.setActiveThreads(at_ptr);
342}
343
344template<class Impl>
345void
346DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
347{
348    scoreboard = sb_ptr;
349}
350
351template <class Impl>
352bool
353DefaultIEW<Impl>::drain()
354{
355    // IEW is ready to drain at any time.
356    cpu->signalDrained();
357    return true;
358}
359
360template <class Impl>
361void
362DefaultIEW<Impl>::resume()
363{
364}
365
366template <class Impl>
367void
368DefaultIEW<Impl>::switchOut()
369{
370    // Clear any state.
371    switchedOut = true;
372    assert(insts[0].empty());
373    assert(skidBuffer[0].empty());
374
375    instQueue.switchOut();
376    ldstQueue.switchOut();
377    fuPool->switchOut();
378
379    for (ThreadID tid = 0; tid < numThreads; tid++) {
380        while (!insts[tid].empty())
381            insts[tid].pop();
382        while (!skidBuffer[tid].empty())
383            skidBuffer[tid].pop();
384    }
385}
386
387template <class Impl>
388void
389DefaultIEW<Impl>::takeOverFrom()
390{
391    // Reset all state.
392    _status = Active;
393    exeStatus = Running;
394    wbStatus = Idle;
395    switchedOut = false;
396
397    instQueue.takeOverFrom();
398    ldstQueue.takeOverFrom();
399    fuPool->takeOverFrom();
400
401    initStage();
402    cpu->activityThisCycle();
403
404    for (ThreadID tid = 0; tid < numThreads; tid++) {
405        dispatchStatus[tid] = Running;
406        stalls[tid].commit = false;
407        fetchRedirect[tid] = false;
408    }
409
410    updateLSQNextCycle = false;
411
412    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
413        issueToExecQueue.advance();
414    }
415}
416
417template<class Impl>
418void
419DefaultIEW<Impl>::squash(ThreadID tid)
420{
421    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
422
423    // Tell the IQ to start squashing.
424    instQueue.squash(tid);
425
426    // Tell the LDSTQ to start squashing.
427    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
428    updatedQueues = true;
429
430    // Clear the skid buffer in case it has any data in it.
431    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
432            tid, fromCommit->commitInfo[tid].doneSeqNum);
433
434    while (!skidBuffer[tid].empty()) {
435        if (skidBuffer[tid].front()->isLoad() ||
436            skidBuffer[tid].front()->isStore() ) {
437            toRename->iewInfo[tid].dispatchedToLSQ++;
438        }
439
440        toRename->iewInfo[tid].dispatched++;
441
442        skidBuffer[tid].pop();
443    }
444
445    emptyRenameInsts(tid);
446}
447
448template<class Impl>
449void
450DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
451{
452    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
453            "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
454
455    toCommit->squash[tid] = true;
456    toCommit->squashedSeqNum[tid] = inst->seqNum;
457    toCommit->mispredPC[tid] = inst->instAddr();
458    toCommit->branchMispredict[tid] = true;
459    toCommit->mispredictInst[tid] = inst;
460
461    toCommit->branchTaken[tid] = inst->pcState().branching();
462    TheISA::PCState pc = inst->pcState();
463    TheISA::advancePC(pc, inst->staticInst);
464    toCommit->pc[tid] = pc;
465
466    toCommit->includeSquashInst[tid] = false;
467
468    wroteToTimeBuffer = true;
469}
470
471template<class Impl>
472void
473DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
474{
475    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
476            "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
477
478    toCommit->squash[tid] = true;
479    toCommit->squashedSeqNum[tid] = inst->seqNum;
480    TheISA::PCState pc = inst->pcState();
481    TheISA::advancePC(pc, inst->staticInst);
482    toCommit->pc[tid] = pc;
483    toCommit->branchMispredict[tid] = false;
484
485    toCommit->includeSquashInst[tid] = false;
486
487    wroteToTimeBuffer = true;
488}
489
490template<class Impl>
491void
492DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid)
493{
494    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
495            "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
496
497    toCommit->squash[tid] = true;
498    toCommit->squashedSeqNum[tid] = inst->seqNum;
499    toCommit->pc[tid] = inst->pcState();
500    toCommit->branchMispredict[tid] = false;
501
502    // Must include the broadcasted SN in the squash.
503    toCommit->includeSquashInst[tid] = true;
504
505    ldstQueue.setLoadBlockedHandled(tid);
506
507    wroteToTimeBuffer = true;
508}
509
510template<class Impl>
511void
512DefaultIEW<Impl>::block(ThreadID tid)
513{
514    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
515
516    if (dispatchStatus[tid] != Blocked &&
517        dispatchStatus[tid] != Unblocking) {
518        toRename->iewBlock[tid] = true;
519        wroteToTimeBuffer = true;
520    }
521
522    // Add the current inputs to the skid buffer so they can be
523    // reprocessed when this stage unblocks.
524    skidInsert(tid);
525
526    dispatchStatus[tid] = Blocked;
527}
528
529template<class Impl>
530void
531DefaultIEW<Impl>::unblock(ThreadID tid)
532{
533    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
534            "buffer %u.\n",tid, tid);
535
536    // If the skid bufffer is empty, signal back to previous stages to unblock.
537    // Also switch status to running.
538    if (skidBuffer[tid].empty()) {
539        toRename->iewUnblock[tid] = true;
540        wroteToTimeBuffer = true;
541        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
542        dispatchStatus[tid] = Running;
543    }
544}
545
546template<class Impl>
547void
548DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
549{
550    instQueue.wakeDependents(inst);
551}
552
553template<class Impl>
554void
555DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
556{
557    instQueue.rescheduleMemInst(inst);
558}
559
560template<class Impl>
561void
562DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
563{
564    instQueue.replayMemInst(inst);
565}
566
567template<class Impl>
568void
569DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
570{
571    // This function should not be called after writebackInsts in a
572    // single cycle.  That will cause problems with an instruction
573    // being added to the queue to commit without being processed by
574    // writebackInsts prior to being sent to commit.
575
576    // First check the time slot that this instruction will write
577    // to.  If there are free write ports at the time, then go ahead
578    // and write the instruction to that time.  If there are not,
579    // keep looking back to see where's the first time there's a
580    // free slot.
581    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
582        ++wbNumInst;
583        if (wbNumInst == wbWidth) {
584            ++wbCycle;
585            wbNumInst = 0;
586        }
587
588        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
589    }
590
591    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
592            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
593    // Add finished instruction to queue to commit.
594    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
595    (*iewQueue)[wbCycle].size++;
596}
597
598template <class Impl>
599unsigned
600DefaultIEW<Impl>::validInstsFromRename()
601{
602    unsigned inst_count = 0;
603
604    for (int i=0; i<fromRename->size; i++) {
605        if (!fromRename->insts[i]->isSquashed())
606            inst_count++;
607    }
608
609    return inst_count;
610}
611
612template<class Impl>
613void
614DefaultIEW<Impl>::skidInsert(ThreadID tid)
615{
616    DynInstPtr inst = NULL;
617
618    while (!insts[tid].empty()) {
619        inst = insts[tid].front();
620
621        insts[tid].pop();
622
623        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
624                "dispatch skidBuffer %i\n",tid, inst->seqNum,
625                inst->pcState(),tid);
626
627        skidBuffer[tid].push(inst);
628    }
629
630    assert(skidBuffer[tid].size() <= skidBufferMax &&
631           "Skidbuffer Exceeded Max Size");
632}
633
634template<class Impl>
635int
636DefaultIEW<Impl>::skidCount()
637{
638    int max=0;
639
640    list<ThreadID>::iterator threads = activeThreads->begin();
641    list<ThreadID>::iterator end = activeThreads->end();
642
643    while (threads != end) {
644        ThreadID tid = *threads++;
645        unsigned thread_count = skidBuffer[tid].size();
646        if (max < thread_count)
647            max = thread_count;
648    }
649
650    return max;
651}
652
653template<class Impl>
654bool
655DefaultIEW<Impl>::skidsEmpty()
656{
657    list<ThreadID>::iterator threads = activeThreads->begin();
658    list<ThreadID>::iterator end = activeThreads->end();
659
660    while (threads != end) {
661        ThreadID tid = *threads++;
662
663        if (!skidBuffer[tid].empty())
664            return false;
665    }
666
667    return true;
668}
669
670template <class Impl>
671void
672DefaultIEW<Impl>::updateStatus()
673{
674    bool any_unblocking = false;
675
676    list<ThreadID>::iterator threads = activeThreads->begin();
677    list<ThreadID>::iterator end = activeThreads->end();
678
679    while (threads != end) {
680        ThreadID tid = *threads++;
681
682        if (dispatchStatus[tid] == Unblocking) {
683            any_unblocking = true;
684            break;
685        }
686    }
687
688    // If there are no ready instructions waiting to be scheduled by the IQ,
689    // and there's no stores waiting to write back, and dispatch is not
690    // unblocking, then there is no internal activity for the IEW stage.
691    if (_status == Active && !instQueue.hasReadyInsts() &&
692        !ldstQueue.willWB() && !any_unblocking) {
693        DPRINTF(IEW, "IEW switching to idle\n");
694
695        deactivateStage();
696
697        _status = Inactive;
698    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
699                                       ldstQueue.willWB() ||
700                                       any_unblocking)) {
701        // Otherwise there is internal activity.  Set to active.
702        DPRINTF(IEW, "IEW switching to active\n");
703
704        activateStage();
705
706        _status = Active;
707    }
708}
709
710template <class Impl>
711void
712DefaultIEW<Impl>::resetEntries()
713{
714    instQueue.resetEntries();
715    ldstQueue.resetEntries();
716}
717
718template <class Impl>
719void
720DefaultIEW<Impl>::readStallSignals(ThreadID tid)
721{
722    if (fromCommit->commitBlock[tid]) {
723        stalls[tid].commit = true;
724    }
725
726    if (fromCommit->commitUnblock[tid]) {
727        assert(stalls[tid].commit);
728        stalls[tid].commit = false;
729    }
730}
731
732template <class Impl>
733bool
734DefaultIEW<Impl>::checkStall(ThreadID tid)
735{
736    bool ret_val(false);
737
738    if (stalls[tid].commit) {
739        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
740        ret_val = true;
741    } else if (instQueue.isFull(tid)) {
742        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
743        ret_val = true;
744    } else if (ldstQueue.isFull(tid)) {
745        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
746
747        if (ldstQueue.numLoads(tid) > 0 ) {
748
749            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
750                    tid,ldstQueue.getLoadHeadSeqNum(tid));
751        }
752
753        if (ldstQueue.numStores(tid) > 0) {
754
755            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
756                    tid,ldstQueue.getStoreHeadSeqNum(tid));
757        }
758
759        ret_val = true;
760    } else if (ldstQueue.isStalled(tid)) {
761        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
762        ret_val = true;
763    }
764
765    return ret_val;
766}
767
768template <class Impl>
769void
770DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
771{
772    // Check if there's a squash signal, squash if there is
773    // Check stall signals, block if there is.
774    // If status was Blocked
775    //     if so then go to unblocking
776    // If status was Squashing
777    //     check if squashing is not high.  Switch to running this cycle.
778
779    readStallSignals(tid);
780
781    if (fromCommit->commitInfo[tid].squash) {
782        squash(tid);
783
784        if (dispatchStatus[tid] == Blocked ||
785            dispatchStatus[tid] == Unblocking) {
786            toRename->iewUnblock[tid] = true;
787            wroteToTimeBuffer = true;
788        }
789
790        dispatchStatus[tid] = Squashing;
791
792        fetchRedirect[tid] = false;
793        return;
794    }
795
796    if (fromCommit->commitInfo[tid].robSquashing) {
797        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
798
799        dispatchStatus[tid] = Squashing;
800
801        emptyRenameInsts(tid);
802        wroteToTimeBuffer = true;
803        return;
804    }
805
806    if (checkStall(tid)) {
807        block(tid);
808        dispatchStatus[tid] = Blocked;
809        return;
810    }
811
812    if (dispatchStatus[tid] == Blocked) {
813        // Status from previous cycle was blocked, but there are no more stall
814        // conditions.  Switch over to unblocking.
815        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
816                tid);
817
818        dispatchStatus[tid] = Unblocking;
819
820        unblock(tid);
821
822        return;
823    }
824
825    if (dispatchStatus[tid] == Squashing) {
826        // Switch status to running if rename isn't being told to block or
827        // squash this cycle.
828        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
829                tid);
830
831        dispatchStatus[tid] = Running;
832
833        return;
834    }
835}
836
837template <class Impl>
838void
839DefaultIEW<Impl>::sortInsts()
840{
841    int insts_from_rename = fromRename->size;
842#ifdef DEBUG
843    for (ThreadID tid = 0; tid < numThreads; tid++)
844        assert(insts[tid].empty());
845#endif
846    for (int i = 0; i < insts_from_rename; ++i) {
847        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
848    }
849}
850
851template <class Impl>
852void
853DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
854{
855    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
856
857    while (!insts[tid].empty()) {
858
859        if (insts[tid].front()->isLoad() ||
860            insts[tid].front()->isStore() ) {
861            toRename->iewInfo[tid].dispatchedToLSQ++;
862        }
863
864        toRename->iewInfo[tid].dispatched++;
865
866        insts[tid].pop();
867    }
868}
869
870template <class Impl>
871void
872DefaultIEW<Impl>::wakeCPU()
873{
874    cpu->wakeCPU();
875}
876
877template <class Impl>
878void
879DefaultIEW<Impl>::activityThisCycle()
880{
881    DPRINTF(Activity, "Activity this cycle.\n");
882    cpu->activityThisCycle();
883}
884
885template <class Impl>
886inline void
887DefaultIEW<Impl>::activateStage()
888{
889    DPRINTF(Activity, "Activating stage.\n");
890    cpu->activateStage(O3CPU::IEWIdx);
891}
892
893template <class Impl>
894inline void
895DefaultIEW<Impl>::deactivateStage()
896{
897    DPRINTF(Activity, "Deactivating stage.\n");
898    cpu->deactivateStage(O3CPU::IEWIdx);
899}
900
901template<class Impl>
902void
903DefaultIEW<Impl>::dispatch(ThreadID tid)
904{
905    // If status is Running or idle,
906    //     call dispatchInsts()
907    // If status is Unblocking,
908    //     buffer any instructions coming from rename
909    //     continue trying to empty skid buffer
910    //     check if stall conditions have passed
911
912    if (dispatchStatus[tid] == Blocked) {
913        ++iewBlockCycles;
914
915    } else if (dispatchStatus[tid] == Squashing) {
916        ++iewSquashCycles;
917    }
918
919    // Dispatch should try to dispatch as many instructions as its bandwidth
920    // will allow, as long as it is not currently blocked.
921    if (dispatchStatus[tid] == Running ||
922        dispatchStatus[tid] == Idle) {
923        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
924                "dispatch.\n", tid);
925
926        dispatchInsts(tid);
927    } else if (dispatchStatus[tid] == Unblocking) {
928        // Make sure that the skid buffer has something in it if the
929        // status is unblocking.
930        assert(!skidsEmpty());
931
932        // If the status was unblocking, then instructions from the skid
933        // buffer were used.  Remove those instructions and handle
934        // the rest of unblocking.
935        dispatchInsts(tid);
936
937        ++iewUnblockCycles;
938
939        if (validInstsFromRename()) {
940            // Add the current inputs to the skid buffer so they can be
941            // reprocessed when this stage unblocks.
942            skidInsert(tid);
943        }
944
945        unblock(tid);
946    }
947}
948
949template <class Impl>
950void
951DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
952{
953    // Obtain instructions from skid buffer if unblocking, or queue from rename
954    // otherwise.
955    std::queue<DynInstPtr> &insts_to_dispatch =
956        dispatchStatus[tid] == Unblocking ?
957        skidBuffer[tid] : insts[tid];
958
959    int insts_to_add = insts_to_dispatch.size();
960
961    DynInstPtr inst;
962    bool add_to_iq = false;
963    int dis_num_inst = 0;
964
965    // Loop through the instructions, putting them in the instruction
966    // queue.
967    for ( ; dis_num_inst < insts_to_add &&
968              dis_num_inst < dispatchWidth;
969          ++dis_num_inst)
970    {
971        inst = insts_to_dispatch.front();
972
973        if (dispatchStatus[tid] == Unblocking) {
974            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
975                    "buffer\n", tid);
976        }
977
978        // Make sure there's a valid instruction there.
979        assert(inst);
980
981        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
982                "IQ.\n",
983                tid, inst->pcState(), inst->seqNum, inst->threadNumber);
984
985        // Be sure to mark these instructions as ready so that the
986        // commit stage can go ahead and execute them, and mark
987        // them as issued so the IQ doesn't reprocess them.
988
989        // Check for squashed instructions.
990        if (inst->isSquashed()) {
991            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
992                    "not adding to IQ.\n", tid);
993
994            ++iewDispSquashedInsts;
995
996            insts_to_dispatch.pop();
997
998            //Tell Rename That An Instruction has been processed
999            if (inst->isLoad() || inst->isStore()) {
1000                toRename->iewInfo[tid].dispatchedToLSQ++;
1001            }
1002            toRename->iewInfo[tid].dispatched++;
1003
1004            continue;
1005        }
1006
1007        // Check for full conditions.
1008        if (instQueue.isFull(tid)) {
1009            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1010
1011            // Call function to start blocking.
1012            block(tid);
1013
1014            // Set unblock to false. Special case where we are using
1015            // skidbuffer (unblocking) instructions but then we still
1016            // get full in the IQ.
1017            toRename->iewUnblock[tid] = false;
1018
1019            ++iewIQFullEvents;
1020            break;
1021        } else if (ldstQueue.isFull(tid)) {
1022            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1023
1024            // Call function to start blocking.
1025            block(tid);
1026
1027            // Set unblock to false. Special case where we are using
1028            // skidbuffer (unblocking) instructions but then we still
1029            // get full in the IQ.
1030            toRename->iewUnblock[tid] = false;
1031
1032            ++iewLSQFullEvents;
1033            break;
1034        }
1035
1036        // Otherwise issue the instruction just fine.
1037        if (inst->isLoad()) {
1038            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1039                    "encountered, adding to LSQ.\n", tid);
1040
1041            // Reserve a spot in the load store queue for this
1042            // memory access.
1043            ldstQueue.insertLoad(inst);
1044
1045            ++iewDispLoadInsts;
1046
1047            add_to_iq = true;
1048
1049            toRename->iewInfo[tid].dispatchedToLSQ++;
1050        } else if (inst->isStore()) {
1051            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1052                    "encountered, adding to LSQ.\n", tid);
1053
1054            ldstQueue.insertStore(inst);
1055
1056            ++iewDispStoreInsts;
1057
1058            if (inst->isStoreConditional()) {
1059                // Store conditionals need to be set as "canCommit()"
1060                // so that commit can process them when they reach the
1061                // head of commit.
1062                // @todo: This is somewhat specific to Alpha.
1063                inst->setCanCommit();
1064                instQueue.insertNonSpec(inst);
1065                add_to_iq = false;
1066
1067                ++iewDispNonSpecInsts;
1068            } else {
1069                add_to_iq = true;
1070            }
1071
1072            toRename->iewInfo[tid].dispatchedToLSQ++;
1073        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1074            // Same as non-speculative stores.
1075            inst->setCanCommit();
1076            instQueue.insertBarrier(inst);
1077            add_to_iq = false;
1078        } else if (inst->isNop()) {
1079            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1080                    "skipping.\n", tid);
1081
1082            inst->setIssued();
1083            inst->setExecuted();
1084            inst->setCanCommit();
1085
1086            instQueue.recordProducer(inst);
1087
1088            iewExecutedNop[tid]++;
1089
1090            add_to_iq = false;
1091        } else if (inst->isExecuted()) {
1092            assert(0 && "Instruction shouldn't be executed.\n");
1093            DPRINTF(IEW, "Issue: Executed branch encountered, "
1094                    "skipping.\n");
1095
1096            inst->setIssued();
1097            inst->setCanCommit();
1098
1099            instQueue.recordProducer(inst);
1100
1101            add_to_iq = false;
1102        } else {
1103            add_to_iq = true;
1104        }
1105        if (inst->isNonSpeculative()) {
1106            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1107                    "encountered, skipping.\n", tid);
1108
1109            // Same as non-speculative stores.
1110            inst->setCanCommit();
1111
1112            // Specifically insert it as nonspeculative.
1113            instQueue.insertNonSpec(inst);
1114
1115            ++iewDispNonSpecInsts;
1116
1117            add_to_iq = false;
1118        }
1119
1120        // If the instruction queue is not full, then add the
1121        // instruction.
1122        if (add_to_iq) {
1123            instQueue.insert(inst);
1124        }
1125
1126        insts_to_dispatch.pop();
1127
1128        toRename->iewInfo[tid].dispatched++;
1129
1130        ++iewDispatchedInsts;
1131    }
1132
1133    if (!insts_to_dispatch.empty()) {
1134        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1135        block(tid);
1136        toRename->iewUnblock[tid] = false;
1137    }
1138
1139    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1140        dispatchStatus[tid] = Running;
1141
1142        updatedQueues = true;
1143    }
1144
1145    dis_num_inst = 0;
1146}
1147
1148template <class Impl>
1149void
1150DefaultIEW<Impl>::printAvailableInsts()
1151{
1152    int inst = 0;
1153
1154    std::cout << "Available Instructions: ";
1155
1156    while (fromIssue->insts[inst]) {
1157
1158        if (inst%3==0) std::cout << "\n\t";
1159
1160        std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1161             << " TN: " << fromIssue->insts[inst]->threadNumber
1162             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1163
1164        inst++;
1165
1166    }
1167
1168    std::cout << "\n";
1169}
1170
1171template <class Impl>
1172void
1173DefaultIEW<Impl>::executeInsts()
1174{
1175    wbNumInst = 0;
1176    wbCycle = 0;
1177
1178    list<ThreadID>::iterator threads = activeThreads->begin();
1179    list<ThreadID>::iterator end = activeThreads->end();
1180
1181    while (threads != end) {
1182        ThreadID tid = *threads++;
1183        fetchRedirect[tid] = false;
1184    }
1185
1186    // Uncomment this if you want to see all available instructions.
1187    // @todo This doesn't actually work anymore, we should fix it.
1188//    printAvailableInsts();
1189
1190    // Execute/writeback any instructions that are available.
1191    int insts_to_execute = fromIssue->size;
1192    int inst_num = 0;
1193    for (; inst_num < insts_to_execute;
1194          ++inst_num) {
1195
1196        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1197
1198        DynInstPtr inst = instQueue.getInstToExecute();
1199
1200        DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1201                inst->pcState(), inst->threadNumber,inst->seqNum);
1202
1203        // Check if the instruction is squashed; if so then skip it
1204        if (inst->isSquashed()) {
1205            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1206
1207            // Consider this instruction executed so that commit can go
1208            // ahead and retire the instruction.
1209            inst->setExecuted();
1210
1211            // Not sure if I should set this here or just let commit try to
1212            // commit any squashed instructions.  I like the latter a bit more.
1213            inst->setCanCommit();
1214
1215            ++iewExecSquashedInsts;
1216
1217            decrWb(inst->seqNum);
1218            continue;
1219        }
1220
1221        Fault fault = NoFault;
1222
1223        // Execute instruction.
1224        // Note that if the instruction faults, it will be handled
1225        // at the commit stage.
1226        if (inst->isMemRef()) {
1227            DPRINTF(IEW, "Execute: Calculating address for memory "
1228                    "reference.\n");
1229
1230            // Tell the LDSTQ to execute this instruction (if it is a load).
1231            if (inst->isLoad()) {
1232                // Loads will mark themselves as executed, and their writeback
1233                // event adds the instruction to the queue to commit
1234                fault = ldstQueue.executeLoad(inst);
1235                if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1236                    fault = NoFault;
1237                }
1238            } else if (inst->isStore()) {
1239                fault = ldstQueue.executeStore(inst);
1240
1241                // If the store had a fault then it may not have a mem req
1242                if (fault != NoFault || inst->readPredicate() == false ||
1243                        !inst->isStoreConditional()) {
1244                    // If the instruction faulted, then we need to send it along
1245                    // to commit without the instruction completing.
1246                    // Send this instruction to commit, also make sure iew stage
1247                    // realizes there is activity.
1248                    inst->setExecuted();
1249                    instToCommit(inst);
1250                    activityThisCycle();
1251                }
1252
1253                // Store conditionals will mark themselves as
1254                // executed, and their writeback event will add the
1255                // instruction to the queue to commit.
1256            } else {
1257                panic("Unexpected memory type!\n");
1258            }
1259
1260        } else {
1261            // If the instruction has already faulted, then skip executing it.
1262            // Such case can happen when it faulted during ITLB translation.
1263            // If we execute the instruction (even if it's a nop) the fault
1264            // will be replaced and we will lose it.
1265            if (inst->getFault() == NoFault) {
1266                inst->execute();
1267                if (inst->readPredicate() == false)
1268                    inst->forwardOldRegs();
1269            }
1270
1271            inst->setExecuted();
1272
1273            instToCommit(inst);
1274        }
1275
1276        updateExeInstStats(inst);
1277
1278        // Check if branch prediction was correct, if not then we need
1279        // to tell commit to squash in flight instructions.  Only
1280        // handle this if there hasn't already been something that
1281        // redirects fetch in this group of instructions.
1282
1283        // This probably needs to prioritize the redirects if a different
1284        // scheduler is used.  Currently the scheduler schedules the oldest
1285        // instruction first, so the branch resolution order will be correct.
1286        ThreadID tid = inst->threadNumber;
1287
1288        if (!fetchRedirect[tid] ||
1289            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1290
1291            if (inst->mispredicted()) {
1292                fetchRedirect[tid] = true;
1293
1294                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1295                DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1296                        inst->predInstAddr(), inst->predNextInstAddr());
1297                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1298                        inst->pcState(), inst->nextInstAddr());
1299                // If incorrect, then signal the ROB that it must be squashed.
1300                squashDueToBranch(inst, tid);
1301
1302                if (inst->readPredTaken()) {
1303                    predictedTakenIncorrect++;
1304                } else {
1305                    predictedNotTakenIncorrect++;
1306                }
1307            } else if (ldstQueue.violation(tid)) {
1308                assert(inst->isMemRef());
1309                // If there was an ordering violation, then get the
1310                // DynInst that caused the violation.  Note that this
1311                // clears the violation signal.
1312                DynInstPtr violator;
1313                violator = ldstQueue.getMemDepViolator(tid);
1314
1315                DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1316                        "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1317                        violator->pcState(), violator->seqNum,
1318                        inst->pcState(), inst->seqNum, inst->physEffAddr);
1319
1320                fetchRedirect[tid] = true;
1321
1322                // Tell the instruction queue that a violation has occured.
1323                instQueue.violation(inst, violator);
1324
1325                // Squash.
1326                squashDueToMemOrder(inst,tid);
1327
1328                ++memOrderViolationEvents;
1329            } else if (ldstQueue.loadBlocked(tid) &&
1330                       !ldstQueue.isLoadBlockedHandled(tid)) {
1331                fetchRedirect[tid] = true;
1332
1333                DPRINTF(IEW, "Load operation couldn't execute because the "
1334                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1335                        inst->pcState(), inst->seqNum);
1336
1337                squashDueToMemBlocked(inst, tid);
1338            }
1339        } else {
1340            // Reset any state associated with redirects that will not
1341            // be used.
1342            if (ldstQueue.violation(tid)) {
1343                assert(inst->isMemRef());
1344
1345                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1346
1347                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1348                        "%s, inst PC: %s.  Addr is: %#x.\n",
1349                        violator->pcState(), inst->pcState(),
1350                        inst->physEffAddr);
1351                DPRINTF(IEW, "Violation will not be handled because "
1352                        "already squashing\n");
1353
1354                ++memOrderViolationEvents;
1355            }
1356            if (ldstQueue.loadBlocked(tid) &&
1357                !ldstQueue.isLoadBlockedHandled(tid)) {
1358                DPRINTF(IEW, "Load operation couldn't execute because the "
1359                        "memory system is blocked.  PC: %s [sn:%lli]\n",
1360                        inst->pcState(), inst->seqNum);
1361                DPRINTF(IEW, "Blocked load will not be handled because "
1362                        "already squashing\n");
1363
1364                ldstQueue.setLoadBlockedHandled(tid);
1365            }
1366
1367        }
1368    }
1369
1370    // Update and record activity if we processed any instructions.
1371    if (inst_num) {
1372        if (exeStatus == Idle) {
1373            exeStatus = Running;
1374        }
1375
1376        updatedQueues = true;
1377
1378        cpu->activityThisCycle();
1379    }
1380
1381    // Need to reset this in case a writeback event needs to write into the
1382    // iew queue.  That way the writeback event will write into the correct
1383    // spot in the queue.
1384    wbNumInst = 0;
1385}
1386
1387template <class Impl>
1388void
1389DefaultIEW<Impl>::writebackInsts()
1390{
1391    // Loop through the head of the time buffer and wake any
1392    // dependents.  These instructions are about to write back.  Also
1393    // mark scoreboard that this instruction is finally complete.
1394    // Either have IEW have direct access to scoreboard, or have this
1395    // as part of backwards communication.
1396    for (int inst_num = 0; inst_num < wbWidth &&
1397             toCommit->insts[inst_num]; inst_num++) {
1398        DynInstPtr inst = toCommit->insts[inst_num];
1399        ThreadID tid = inst->threadNumber;
1400
1401        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1402                inst->seqNum, inst->pcState());
1403
1404        iewInstsToCommit[tid]++;
1405
1406        // Some instructions will be sent to commit without having
1407        // executed because they need commit to handle them.
1408        // E.g. Uncached loads have not actually executed when they
1409        // are first sent to commit.  Instead commit must tell the LSQ
1410        // when it's ready to execute the uncached load.
1411        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1412            int dependents = instQueue.wakeDependents(inst);
1413
1414            for (int i = 0; i < inst->numDestRegs(); i++) {
1415                //mark as Ready
1416                DPRINTF(IEW,"Setting Destination Register %i\n",
1417                        inst->renamedDestRegIdx(i));
1418                scoreboard->setReg(inst->renamedDestRegIdx(i));
1419            }
1420
1421            if (dependents) {
1422                producerInst[tid]++;
1423                consumerInst[tid]+= dependents;
1424            }
1425            writebackCount[tid]++;
1426        }
1427
1428        decrWb(inst->seqNum);
1429    }
1430}
1431
1432template<class Impl>
1433void
1434DefaultIEW<Impl>::tick()
1435{
1436    wbNumInst = 0;
1437    wbCycle = 0;
1438
1439    wroteToTimeBuffer = false;
1440    updatedQueues = false;
1441
1442    sortInsts();
1443
1444    // Free function units marked as being freed this cycle.
1445    fuPool->processFreeUnits();
1446
1447    list<ThreadID>::iterator threads = activeThreads->begin();
1448    list<ThreadID>::iterator end = activeThreads->end();
1449
1450    // Check stall and squash signals, dispatch any instructions.
1451    while (threads != end) {
1452        ThreadID tid = *threads++;
1453
1454        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1455
1456        checkSignalsAndUpdate(tid);
1457        dispatch(tid);
1458    }
1459
1460    if (exeStatus != Squashing) {
1461        executeInsts();
1462
1463        writebackInsts();
1464
1465        // Have the instruction queue try to schedule any ready instructions.
1466        // (In actuality, this scheduling is for instructions that will
1467        // be executed next cycle.)
1468        instQueue.scheduleReadyInsts();
1469
1470        // Also should advance its own time buffers if the stage ran.
1471        // Not the best place for it, but this works (hopefully).
1472        issueToExecQueue.advance();
1473    }
1474
1475    bool broadcast_free_entries = false;
1476
1477    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1478        exeStatus = Idle;
1479        updateLSQNextCycle = false;
1480
1481        broadcast_free_entries = true;
1482    }
1483
1484    // Writeback any stores using any leftover bandwidth.
1485    ldstQueue.writebackStores();
1486
1487    // Check the committed load/store signals to see if there's a load
1488    // or store to commit.  Also check if it's being told to execute a
1489    // nonspeculative instruction.
1490    // This is pretty inefficient...
1491
1492    threads = activeThreads->begin();
1493    while (threads != end) {
1494        ThreadID tid = (*threads++);
1495
1496        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1497
1498        // Update structures based on instructions committed.
1499        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1500            !fromCommit->commitInfo[tid].squash &&
1501            !fromCommit->commitInfo[tid].robSquashing) {
1502
1503            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1504
1505            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1506
1507            updateLSQNextCycle = true;
1508            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1509        }
1510
1511        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1512
1513            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1514            if (fromCommit->commitInfo[tid].uncached) {
1515                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1516                fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1517            } else {
1518                instQueue.scheduleNonSpec(
1519                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1520            }
1521        }
1522
1523        if (broadcast_free_entries) {
1524            toFetch->iewInfo[tid].iqCount =
1525                instQueue.getCount(tid);
1526            toFetch->iewInfo[tid].ldstqCount =
1527                ldstQueue.getCount(tid);
1528
1529            toRename->iewInfo[tid].usedIQ = true;
1530            toRename->iewInfo[tid].freeIQEntries =
1531                instQueue.numFreeEntries();
1532            toRename->iewInfo[tid].usedLSQ = true;
1533            toRename->iewInfo[tid].freeLSQEntries =
1534                ldstQueue.numFreeEntries(tid);
1535
1536            wroteToTimeBuffer = true;
1537        }
1538
1539        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1540                tid, toRename->iewInfo[tid].dispatched);
1541    }
1542
1543    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1544            "LSQ has %i free entries.\n",
1545            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1546            ldstQueue.numFreeEntries());
1547
1548    updateStatus();
1549
1550    if (wroteToTimeBuffer) {
1551        DPRINTF(Activity, "Activity this cycle.\n");
1552        cpu->activityThisCycle();
1553    }
1554}
1555
1556template <class Impl>
1557void
1558DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1559{
1560    ThreadID tid = inst->threadNumber;
1561
1562    //
1563    //  Pick off the software prefetches
1564    //
1565#ifdef TARGET_ALPHA
1566    if (inst->isDataPrefetch())
1567        iewExecutedSwp[tid]++;
1568    else
1569        iewIewExecutedcutedInsts++;
1570#else
1571    iewExecutedInsts++;
1572#endif
1573
1574    //
1575    //  Control operations
1576    //
1577    if (inst->isControl())
1578        iewExecutedBranches[tid]++;
1579
1580    //
1581    //  Memory operations
1582    //
1583    if (inst->isMemRef()) {
1584        iewExecutedRefs[tid]++;
1585
1586        if (inst->isLoad()) {
1587            iewExecLoadInsts[tid]++;
1588        }
1589    }
1590}
1591
1592template <class Impl>
1593void
1594DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1595{
1596    ThreadID tid = inst->threadNumber;
1597
1598    if (!fetchRedirect[tid] ||
1599        toCommit->squashedSeqNum[tid] > inst->seqNum) {
1600
1601        if (inst->mispredicted()) {
1602            fetchRedirect[tid] = true;
1603
1604            DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1605            DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1606                    inst->predInstAddr(), inst->predNextInstAddr());
1607            DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1608                    " NPC: %#x.\n", inst->nextInstAddr(),
1609                    inst->nextInstAddr());
1610            // If incorrect, then signal the ROB that it must be squashed.
1611            squashDueToBranch(inst, tid);
1612
1613            if (inst->readPredTaken()) {
1614                predictedTakenIncorrect++;
1615            } else {
1616                predictedNotTakenIncorrect++;
1617            }
1618        }
1619    }
1620}
1621