iew_impl.hh revision 7720
1/* 2 * Copyright (c) 2010 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Kevin Lim 41 */ 42 43// @todo: Fix the instantaneous communication among all the stages within 44// iew. There's a clear delay between issue and execute, yet backwards 45// communication happens simultaneously. 46 47#include <queue> 48 49#include "base/timebuf.hh" 50#include "config/the_isa.hh" 51#include "cpu/o3/fu_pool.hh" 52#include "cpu/o3/iew.hh" 53#include "params/DerivO3CPU.hh" 54 55using namespace std; 56 57template<class Impl> 58DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params) 59 : issueToExecQueue(params->backComSize, params->forwardComSize), 60 cpu(_cpu), 61 instQueue(_cpu, this, params), 62 ldstQueue(_cpu, this, params), 63 fuPool(params->fuPool), 64 commitToIEWDelay(params->commitToIEWDelay), 65 renameToIEWDelay(params->renameToIEWDelay), 66 issueToExecuteDelay(params->issueToExecuteDelay), 67 dispatchWidth(params->dispatchWidth), 68 issueWidth(params->issueWidth), 69 wbOutstanding(0), 70 wbWidth(params->wbWidth), 71 numThreads(params->numThreads), 72 switchedOut(false) 73{ 74 _status = Active; 75 exeStatus = Running; 76 wbStatus = Idle; 77 78 // Setup wire to read instructions coming from issue. 79 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay); 80 81 // Instruction queue needs the queue between issue and execute. 82 instQueue.setIssueToExecuteQueue(&issueToExecQueue); 83 84 for (ThreadID tid = 0; tid < numThreads; tid++) { 85 dispatchStatus[tid] = Running; 86 stalls[tid].commit = false; 87 fetchRedirect[tid] = false; 88 } 89 90 wbMax = wbWidth * params->wbDepth; 91 92 updateLSQNextCycle = false; 93 94 ableToIssue = true; 95 96 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth; 97} 98 99template <class Impl> 100std::string 101DefaultIEW<Impl>::name() const 102{ 103 return cpu->name() + ".iew"; 104} 105 106template <class Impl> 107void 108DefaultIEW<Impl>::regStats() 109{ 110 using namespace Stats; 111 112 instQueue.regStats(); 113 ldstQueue.regStats(); 114 115 iewIdleCycles 116 .name(name() + ".iewIdleCycles") 117 .desc("Number of cycles IEW is idle"); 118 119 iewSquashCycles 120 .name(name() + ".iewSquashCycles") 121 .desc("Number of cycles IEW is squashing"); 122 123 iewBlockCycles 124 .name(name() + ".iewBlockCycles") 125 .desc("Number of cycles IEW is blocking"); 126 127 iewUnblockCycles 128 .name(name() + ".iewUnblockCycles") 129 .desc("Number of cycles IEW is unblocking"); 130 131 iewDispatchedInsts 132 .name(name() + ".iewDispatchedInsts") 133 .desc("Number of instructions dispatched to IQ"); 134 135 iewDispSquashedInsts 136 .name(name() + ".iewDispSquashedInsts") 137 .desc("Number of squashed instructions skipped by dispatch"); 138 139 iewDispLoadInsts 140 .name(name() + ".iewDispLoadInsts") 141 .desc("Number of dispatched load instructions"); 142 143 iewDispStoreInsts 144 .name(name() + ".iewDispStoreInsts") 145 .desc("Number of dispatched store instructions"); 146 147 iewDispNonSpecInsts 148 .name(name() + ".iewDispNonSpecInsts") 149 .desc("Number of dispatched non-speculative instructions"); 150 151 iewIQFullEvents 152 .name(name() + ".iewIQFullEvents") 153 .desc("Number of times the IQ has become full, causing a stall"); 154 155 iewLSQFullEvents 156 .name(name() + ".iewLSQFullEvents") 157 .desc("Number of times the LSQ has become full, causing a stall"); 158 159 memOrderViolationEvents 160 .name(name() + ".memOrderViolationEvents") 161 .desc("Number of memory order violations"); 162 163 predictedTakenIncorrect 164 .name(name() + ".predictedTakenIncorrect") 165 .desc("Number of branches that were predicted taken incorrectly"); 166 167 predictedNotTakenIncorrect 168 .name(name() + ".predictedNotTakenIncorrect") 169 .desc("Number of branches that were predicted not taken incorrectly"); 170 171 branchMispredicts 172 .name(name() + ".branchMispredicts") 173 .desc("Number of branch mispredicts detected at execute"); 174 175 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect; 176 177 iewExecutedInsts 178 .name(name() + ".iewExecutedInsts") 179 .desc("Number of executed instructions"); 180 181 iewExecLoadInsts 182 .init(cpu->numThreads) 183 .name(name() + ".iewExecLoadInsts") 184 .desc("Number of load instructions executed") 185 .flags(total); 186 187 iewExecSquashedInsts 188 .name(name() + ".iewExecSquashedInsts") 189 .desc("Number of squashed instructions skipped in execute"); 190 191 iewExecutedSwp 192 .init(cpu->numThreads) 193 .name(name() + ".EXEC:swp") 194 .desc("number of swp insts executed") 195 .flags(total); 196 197 iewExecutedNop 198 .init(cpu->numThreads) 199 .name(name() + ".EXEC:nop") 200 .desc("number of nop insts executed") 201 .flags(total); 202 203 iewExecutedRefs 204 .init(cpu->numThreads) 205 .name(name() + ".EXEC:refs") 206 .desc("number of memory reference insts executed") 207 .flags(total); 208 209 iewExecutedBranches 210 .init(cpu->numThreads) 211 .name(name() + ".EXEC:branches") 212 .desc("Number of branches executed") 213 .flags(total); 214 215 iewExecStoreInsts 216 .name(name() + ".EXEC:stores") 217 .desc("Number of stores executed") 218 .flags(total); 219 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts; 220 221 iewExecRate 222 .name(name() + ".EXEC:rate") 223 .desc("Inst execution rate") 224 .flags(total); 225 226 iewExecRate = iewExecutedInsts / cpu->numCycles; 227 228 iewInstsToCommit 229 .init(cpu->numThreads) 230 .name(name() + ".WB:sent") 231 .desc("cumulative count of insts sent to commit") 232 .flags(total); 233 234 writebackCount 235 .init(cpu->numThreads) 236 .name(name() + ".WB:count") 237 .desc("cumulative count of insts written-back") 238 .flags(total); 239 240 producerInst 241 .init(cpu->numThreads) 242 .name(name() + ".WB:producers") 243 .desc("num instructions producing a value") 244 .flags(total); 245 246 consumerInst 247 .init(cpu->numThreads) 248 .name(name() + ".WB:consumers") 249 .desc("num instructions consuming a value") 250 .flags(total); 251 252 wbPenalized 253 .init(cpu->numThreads) 254 .name(name() + ".WB:penalized") 255 .desc("number of instrctions required to write to 'other' IQ") 256 .flags(total); 257 258 wbPenalizedRate 259 .name(name() + ".WB:penalized_rate") 260 .desc ("fraction of instructions written-back that wrote to 'other' IQ") 261 .flags(total); 262 263 wbPenalizedRate = wbPenalized / writebackCount; 264 265 wbFanout 266 .name(name() + ".WB:fanout") 267 .desc("average fanout of values written-back") 268 .flags(total); 269 270 wbFanout = producerInst / consumerInst; 271 272 wbRate 273 .name(name() + ".WB:rate") 274 .desc("insts written-back per cycle") 275 .flags(total); 276 wbRate = writebackCount / cpu->numCycles; 277} 278 279template<class Impl> 280void 281DefaultIEW<Impl>::initStage() 282{ 283 for (ThreadID tid = 0; tid < numThreads; tid++) { 284 toRename->iewInfo[tid].usedIQ = true; 285 toRename->iewInfo[tid].freeIQEntries = 286 instQueue.numFreeEntries(tid); 287 288 toRename->iewInfo[tid].usedLSQ = true; 289 toRename->iewInfo[tid].freeLSQEntries = 290 ldstQueue.numFreeEntries(tid); 291 } 292 293 cpu->activateStage(O3CPU::IEWIdx); 294} 295 296template<class Impl> 297void 298DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 299{ 300 timeBuffer = tb_ptr; 301 302 // Setup wire to read information from time buffer, from commit. 303 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 304 305 // Setup wire to write information back to previous stages. 306 toRename = timeBuffer->getWire(0); 307 308 toFetch = timeBuffer->getWire(0); 309 310 // Instruction queue also needs main time buffer. 311 instQueue.setTimeBuffer(tb_ptr); 312} 313 314template<class Impl> 315void 316DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr) 317{ 318 renameQueue = rq_ptr; 319 320 // Setup wire to read information from rename queue. 321 fromRename = renameQueue->getWire(-renameToIEWDelay); 322} 323 324template<class Impl> 325void 326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr) 327{ 328 iewQueue = iq_ptr; 329 330 // Setup wire to write instructions to commit. 331 toCommit = iewQueue->getWire(0); 332} 333 334template<class Impl> 335void 336DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr) 337{ 338 activeThreads = at_ptr; 339 340 ldstQueue.setActiveThreads(at_ptr); 341 instQueue.setActiveThreads(at_ptr); 342} 343 344template<class Impl> 345void 346DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr) 347{ 348 scoreboard = sb_ptr; 349} 350 351template <class Impl> 352bool 353DefaultIEW<Impl>::drain() 354{ 355 // IEW is ready to drain at any time. 356 cpu->signalDrained(); 357 return true; 358} 359 360template <class Impl> 361void 362DefaultIEW<Impl>::resume() 363{ 364} 365 366template <class Impl> 367void 368DefaultIEW<Impl>::switchOut() 369{ 370 // Clear any state. 371 switchedOut = true; 372 assert(insts[0].empty()); 373 assert(skidBuffer[0].empty()); 374 375 instQueue.switchOut(); 376 ldstQueue.switchOut(); 377 fuPool->switchOut(); 378 379 for (ThreadID tid = 0; tid < numThreads; tid++) { 380 while (!insts[tid].empty()) 381 insts[tid].pop(); 382 while (!skidBuffer[tid].empty()) 383 skidBuffer[tid].pop(); 384 } 385} 386 387template <class Impl> 388void 389DefaultIEW<Impl>::takeOverFrom() 390{ 391 // Reset all state. 392 _status = Active; 393 exeStatus = Running; 394 wbStatus = Idle; 395 switchedOut = false; 396 397 instQueue.takeOverFrom(); 398 ldstQueue.takeOverFrom(); 399 fuPool->takeOverFrom(); 400 401 initStage(); 402 cpu->activityThisCycle(); 403 404 for (ThreadID tid = 0; tid < numThreads; tid++) { 405 dispatchStatus[tid] = Running; 406 stalls[tid].commit = false; 407 fetchRedirect[tid] = false; 408 } 409 410 updateLSQNextCycle = false; 411 412 for (int i = 0; i < issueToExecQueue.getSize(); ++i) { 413 issueToExecQueue.advance(); 414 } 415} 416 417template<class Impl> 418void 419DefaultIEW<Impl>::squash(ThreadID tid) 420{ 421 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid); 422 423 // Tell the IQ to start squashing. 424 instQueue.squash(tid); 425 426 // Tell the LDSTQ to start squashing. 427 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid); 428 updatedQueues = true; 429 430 // Clear the skid buffer in case it has any data in it. 431 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n", 432 tid, fromCommit->commitInfo[tid].doneSeqNum); 433 434 while (!skidBuffer[tid].empty()) { 435 if (skidBuffer[tid].front()->isLoad() || 436 skidBuffer[tid].front()->isStore() ) { 437 toRename->iewInfo[tid].dispatchedToLSQ++; 438 } 439 440 toRename->iewInfo[tid].dispatched++; 441 442 skidBuffer[tid].pop(); 443 } 444 445 emptyRenameInsts(tid); 446} 447 448template<class Impl> 449void 450DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid) 451{ 452 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s " 453 "[sn:%i].\n", tid, inst->pcState(), inst->seqNum); 454 455 toCommit->squash[tid] = true; 456 toCommit->squashedSeqNum[tid] = inst->seqNum; 457 toCommit->mispredPC[tid] = inst->instAddr(); 458 toCommit->branchMispredict[tid] = true; 459 460 toCommit->branchTaken[tid] = inst->pcState().branching(); 461 TheISA::PCState pc = inst->pcState(); 462 TheISA::advancePC(pc, inst->staticInst); 463 toCommit->pc[tid] = pc; 464 465 toCommit->includeSquashInst[tid] = false; 466 467 wroteToTimeBuffer = true; 468} 469 470template<class Impl> 471void 472DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid) 473{ 474 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, " 475 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum); 476 477 toCommit->squash[tid] = true; 478 toCommit->squashedSeqNum[tid] = inst->seqNum; 479 TheISA::PCState pc = inst->pcState(); 480 TheISA::advancePC(pc, inst->staticInst); 481 toCommit->pc[tid] = pc; 482 toCommit->branchMispredict[tid] = false; 483 484 toCommit->includeSquashInst[tid] = false; 485 486 wroteToTimeBuffer = true; 487} 488 489template<class Impl> 490void 491DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid) 492{ 493 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, " 494 "PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum); 495 496 toCommit->squash[tid] = true; 497 toCommit->squashedSeqNum[tid] = inst->seqNum; 498 toCommit->pc[tid] = inst->pcState(); 499 toCommit->branchMispredict[tid] = false; 500 501 // Must include the broadcasted SN in the squash. 502 toCommit->includeSquashInst[tid] = true; 503 504 ldstQueue.setLoadBlockedHandled(tid); 505 506 wroteToTimeBuffer = true; 507} 508 509template<class Impl> 510void 511DefaultIEW<Impl>::block(ThreadID tid) 512{ 513 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid); 514 515 if (dispatchStatus[tid] != Blocked && 516 dispatchStatus[tid] != Unblocking) { 517 toRename->iewBlock[tid] = true; 518 wroteToTimeBuffer = true; 519 } 520 521 // Add the current inputs to the skid buffer so they can be 522 // reprocessed when this stage unblocks. 523 skidInsert(tid); 524 525 dispatchStatus[tid] = Blocked; 526} 527 528template<class Impl> 529void 530DefaultIEW<Impl>::unblock(ThreadID tid) 531{ 532 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid " 533 "buffer %u.\n",tid, tid); 534 535 // If the skid bufffer is empty, signal back to previous stages to unblock. 536 // Also switch status to running. 537 if (skidBuffer[tid].empty()) { 538 toRename->iewUnblock[tid] = true; 539 wroteToTimeBuffer = true; 540 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid); 541 dispatchStatus[tid] = Running; 542 } 543} 544 545template<class Impl> 546void 547DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst) 548{ 549 instQueue.wakeDependents(inst); 550} 551 552template<class Impl> 553void 554DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst) 555{ 556 instQueue.rescheduleMemInst(inst); 557} 558 559template<class Impl> 560void 561DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst) 562{ 563 instQueue.replayMemInst(inst); 564} 565 566template<class Impl> 567void 568DefaultIEW<Impl>::instToCommit(DynInstPtr &inst) 569{ 570 // This function should not be called after writebackInsts in a 571 // single cycle. That will cause problems with an instruction 572 // being added to the queue to commit without being processed by 573 // writebackInsts prior to being sent to commit. 574 575 // First check the time slot that this instruction will write 576 // to. If there are free write ports at the time, then go ahead 577 // and write the instruction to that time. If there are not, 578 // keep looking back to see where's the first time there's a 579 // free slot. 580 while ((*iewQueue)[wbCycle].insts[wbNumInst]) { 581 ++wbNumInst; 582 if (wbNumInst == wbWidth) { 583 ++wbCycle; 584 wbNumInst = 0; 585 } 586 587 assert((wbCycle * wbWidth + wbNumInst) <= wbMax); 588 } 589 590 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n", 591 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst); 592 // Add finished instruction to queue to commit. 593 (*iewQueue)[wbCycle].insts[wbNumInst] = inst; 594 (*iewQueue)[wbCycle].size++; 595} 596 597template <class Impl> 598unsigned 599DefaultIEW<Impl>::validInstsFromRename() 600{ 601 unsigned inst_count = 0; 602 603 for (int i=0; i<fromRename->size; i++) { 604 if (!fromRename->insts[i]->isSquashed()) 605 inst_count++; 606 } 607 608 return inst_count; 609} 610 611template<class Impl> 612void 613DefaultIEW<Impl>::skidInsert(ThreadID tid) 614{ 615 DynInstPtr inst = NULL; 616 617 while (!insts[tid].empty()) { 618 inst = insts[tid].front(); 619 620 insts[tid].pop(); 621 622 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%s into " 623 "dispatch skidBuffer %i\n",tid, inst->seqNum, 624 inst->pcState(),tid); 625 626 skidBuffer[tid].push(inst); 627 } 628 629 assert(skidBuffer[tid].size() <= skidBufferMax && 630 "Skidbuffer Exceeded Max Size"); 631} 632 633template<class Impl> 634int 635DefaultIEW<Impl>::skidCount() 636{ 637 int max=0; 638 639 list<ThreadID>::iterator threads = activeThreads->begin(); 640 list<ThreadID>::iterator end = activeThreads->end(); 641 642 while (threads != end) { 643 ThreadID tid = *threads++; 644 unsigned thread_count = skidBuffer[tid].size(); 645 if (max < thread_count) 646 max = thread_count; 647 } 648 649 return max; 650} 651 652template<class Impl> 653bool 654DefaultIEW<Impl>::skidsEmpty() 655{ 656 list<ThreadID>::iterator threads = activeThreads->begin(); 657 list<ThreadID>::iterator end = activeThreads->end(); 658 659 while (threads != end) { 660 ThreadID tid = *threads++; 661 662 if (!skidBuffer[tid].empty()) 663 return false; 664 } 665 666 return true; 667} 668 669template <class Impl> 670void 671DefaultIEW<Impl>::updateStatus() 672{ 673 bool any_unblocking = false; 674 675 list<ThreadID>::iterator threads = activeThreads->begin(); 676 list<ThreadID>::iterator end = activeThreads->end(); 677 678 while (threads != end) { 679 ThreadID tid = *threads++; 680 681 if (dispatchStatus[tid] == Unblocking) { 682 any_unblocking = true; 683 break; 684 } 685 } 686 687 // If there are no ready instructions waiting to be scheduled by the IQ, 688 // and there's no stores waiting to write back, and dispatch is not 689 // unblocking, then there is no internal activity for the IEW stage. 690 if (_status == Active && !instQueue.hasReadyInsts() && 691 !ldstQueue.willWB() && !any_unblocking) { 692 DPRINTF(IEW, "IEW switching to idle\n"); 693 694 deactivateStage(); 695 696 _status = Inactive; 697 } else if (_status == Inactive && (instQueue.hasReadyInsts() || 698 ldstQueue.willWB() || 699 any_unblocking)) { 700 // Otherwise there is internal activity. Set to active. 701 DPRINTF(IEW, "IEW switching to active\n"); 702 703 activateStage(); 704 705 _status = Active; 706 } 707} 708 709template <class Impl> 710void 711DefaultIEW<Impl>::resetEntries() 712{ 713 instQueue.resetEntries(); 714 ldstQueue.resetEntries(); 715} 716 717template <class Impl> 718void 719DefaultIEW<Impl>::readStallSignals(ThreadID tid) 720{ 721 if (fromCommit->commitBlock[tid]) { 722 stalls[tid].commit = true; 723 } 724 725 if (fromCommit->commitUnblock[tid]) { 726 assert(stalls[tid].commit); 727 stalls[tid].commit = false; 728 } 729} 730 731template <class Impl> 732bool 733DefaultIEW<Impl>::checkStall(ThreadID tid) 734{ 735 bool ret_val(false); 736 737 if (stalls[tid].commit) { 738 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid); 739 ret_val = true; 740 } else if (instQueue.isFull(tid)) { 741 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid); 742 ret_val = true; 743 } else if (ldstQueue.isFull(tid)) { 744 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid); 745 746 if (ldstQueue.numLoads(tid) > 0 ) { 747 748 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n", 749 tid,ldstQueue.getLoadHeadSeqNum(tid)); 750 } 751 752 if (ldstQueue.numStores(tid) > 0) { 753 754 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n", 755 tid,ldstQueue.getStoreHeadSeqNum(tid)); 756 } 757 758 ret_val = true; 759 } else if (ldstQueue.isStalled(tid)) { 760 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid); 761 ret_val = true; 762 } 763 764 return ret_val; 765} 766 767template <class Impl> 768void 769DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid) 770{ 771 // Check if there's a squash signal, squash if there is 772 // Check stall signals, block if there is. 773 // If status was Blocked 774 // if so then go to unblocking 775 // If status was Squashing 776 // check if squashing is not high. Switch to running this cycle. 777 778 readStallSignals(tid); 779 780 if (fromCommit->commitInfo[tid].squash) { 781 squash(tid); 782 783 if (dispatchStatus[tid] == Blocked || 784 dispatchStatus[tid] == Unblocking) { 785 toRename->iewUnblock[tid] = true; 786 wroteToTimeBuffer = true; 787 } 788 789 dispatchStatus[tid] = Squashing; 790 791 fetchRedirect[tid] = false; 792 return; 793 } 794 795 if (fromCommit->commitInfo[tid].robSquashing) { 796 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid); 797 798 dispatchStatus[tid] = Squashing; 799 800 emptyRenameInsts(tid); 801 wroteToTimeBuffer = true; 802 return; 803 } 804 805 if (checkStall(tid)) { 806 block(tid); 807 dispatchStatus[tid] = Blocked; 808 return; 809 } 810 811 if (dispatchStatus[tid] == Blocked) { 812 // Status from previous cycle was blocked, but there are no more stall 813 // conditions. Switch over to unblocking. 814 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n", 815 tid); 816 817 dispatchStatus[tid] = Unblocking; 818 819 unblock(tid); 820 821 return; 822 } 823 824 if (dispatchStatus[tid] == Squashing) { 825 // Switch status to running if rename isn't being told to block or 826 // squash this cycle. 827 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n", 828 tid); 829 830 dispatchStatus[tid] = Running; 831 832 return; 833 } 834} 835 836template <class Impl> 837void 838DefaultIEW<Impl>::sortInsts() 839{ 840 int insts_from_rename = fromRename->size; 841#ifdef DEBUG 842 for (ThreadID tid = 0; tid < numThreads; tid++) 843 assert(insts[tid].empty()); 844#endif 845 for (int i = 0; i < insts_from_rename; ++i) { 846 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]); 847 } 848} 849 850template <class Impl> 851void 852DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid) 853{ 854 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid); 855 856 while (!insts[tid].empty()) { 857 858 if (insts[tid].front()->isLoad() || 859 insts[tid].front()->isStore() ) { 860 toRename->iewInfo[tid].dispatchedToLSQ++; 861 } 862 863 toRename->iewInfo[tid].dispatched++; 864 865 insts[tid].pop(); 866 } 867} 868 869template <class Impl> 870void 871DefaultIEW<Impl>::wakeCPU() 872{ 873 cpu->wakeCPU(); 874} 875 876template <class Impl> 877void 878DefaultIEW<Impl>::activityThisCycle() 879{ 880 DPRINTF(Activity, "Activity this cycle.\n"); 881 cpu->activityThisCycle(); 882} 883 884template <class Impl> 885inline void 886DefaultIEW<Impl>::activateStage() 887{ 888 DPRINTF(Activity, "Activating stage.\n"); 889 cpu->activateStage(O3CPU::IEWIdx); 890} 891 892template <class Impl> 893inline void 894DefaultIEW<Impl>::deactivateStage() 895{ 896 DPRINTF(Activity, "Deactivating stage.\n"); 897 cpu->deactivateStage(O3CPU::IEWIdx); 898} 899 900template<class Impl> 901void 902DefaultIEW<Impl>::dispatch(ThreadID tid) 903{ 904 // If status is Running or idle, 905 // call dispatchInsts() 906 // If status is Unblocking, 907 // buffer any instructions coming from rename 908 // continue trying to empty skid buffer 909 // check if stall conditions have passed 910 911 if (dispatchStatus[tid] == Blocked) { 912 ++iewBlockCycles; 913 914 } else if (dispatchStatus[tid] == Squashing) { 915 ++iewSquashCycles; 916 } 917 918 // Dispatch should try to dispatch as many instructions as its bandwidth 919 // will allow, as long as it is not currently blocked. 920 if (dispatchStatus[tid] == Running || 921 dispatchStatus[tid] == Idle) { 922 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run " 923 "dispatch.\n", tid); 924 925 dispatchInsts(tid); 926 } else if (dispatchStatus[tid] == Unblocking) { 927 // Make sure that the skid buffer has something in it if the 928 // status is unblocking. 929 assert(!skidsEmpty()); 930 931 // If the status was unblocking, then instructions from the skid 932 // buffer were used. Remove those instructions and handle 933 // the rest of unblocking. 934 dispatchInsts(tid); 935 936 ++iewUnblockCycles; 937 938 if (validInstsFromRename()) { 939 // Add the current inputs to the skid buffer so they can be 940 // reprocessed when this stage unblocks. 941 skidInsert(tid); 942 } 943 944 unblock(tid); 945 } 946} 947 948template <class Impl> 949void 950DefaultIEW<Impl>::dispatchInsts(ThreadID tid) 951{ 952 // Obtain instructions from skid buffer if unblocking, or queue from rename 953 // otherwise. 954 std::queue<DynInstPtr> &insts_to_dispatch = 955 dispatchStatus[tid] == Unblocking ? 956 skidBuffer[tid] : insts[tid]; 957 958 int insts_to_add = insts_to_dispatch.size(); 959 960 DynInstPtr inst; 961 bool add_to_iq = false; 962 int dis_num_inst = 0; 963 964 // Loop through the instructions, putting them in the instruction 965 // queue. 966 for ( ; dis_num_inst < insts_to_add && 967 dis_num_inst < dispatchWidth; 968 ++dis_num_inst) 969 { 970 inst = insts_to_dispatch.front(); 971 972 if (dispatchStatus[tid] == Unblocking) { 973 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid " 974 "buffer\n", tid); 975 } 976 977 // Make sure there's a valid instruction there. 978 assert(inst); 979 980 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to " 981 "IQ.\n", 982 tid, inst->pcState(), inst->seqNum, inst->threadNumber); 983 984 // Be sure to mark these instructions as ready so that the 985 // commit stage can go ahead and execute them, and mark 986 // them as issued so the IQ doesn't reprocess them. 987 988 // Check for squashed instructions. 989 if (inst->isSquashed()) { 990 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, " 991 "not adding to IQ.\n", tid); 992 993 ++iewDispSquashedInsts; 994 995 insts_to_dispatch.pop(); 996 997 //Tell Rename That An Instruction has been processed 998 if (inst->isLoad() || inst->isStore()) { 999 toRename->iewInfo[tid].dispatchedToLSQ++; 1000 } 1001 toRename->iewInfo[tid].dispatched++; 1002 1003 continue; 1004 } 1005 1006 // Check for full conditions. 1007 if (instQueue.isFull(tid)) { 1008 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid); 1009 1010 // Call function to start blocking. 1011 block(tid); 1012 1013 // Set unblock to false. Special case where we are using 1014 // skidbuffer (unblocking) instructions but then we still 1015 // get full in the IQ. 1016 toRename->iewUnblock[tid] = false; 1017 1018 ++iewIQFullEvents; 1019 break; 1020 } else if (ldstQueue.isFull(tid)) { 1021 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid); 1022 1023 // Call function to start blocking. 1024 block(tid); 1025 1026 // Set unblock to false. Special case where we are using 1027 // skidbuffer (unblocking) instructions but then we still 1028 // get full in the IQ. 1029 toRename->iewUnblock[tid] = false; 1030 1031 ++iewLSQFullEvents; 1032 break; 1033 } 1034 1035 // Otherwise issue the instruction just fine. 1036 if (inst->isLoad()) { 1037 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1038 "encountered, adding to LSQ.\n", tid); 1039 1040 // Reserve a spot in the load store queue for this 1041 // memory access. 1042 ldstQueue.insertLoad(inst); 1043 1044 ++iewDispLoadInsts; 1045 1046 add_to_iq = true; 1047 1048 toRename->iewInfo[tid].dispatchedToLSQ++; 1049 } else if (inst->isStore()) { 1050 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1051 "encountered, adding to LSQ.\n", tid); 1052 1053 ldstQueue.insertStore(inst); 1054 1055 ++iewDispStoreInsts; 1056 1057 if (inst->isStoreConditional()) { 1058 // Store conditionals need to be set as "canCommit()" 1059 // so that commit can process them when they reach the 1060 // head of commit. 1061 // @todo: This is somewhat specific to Alpha. 1062 inst->setCanCommit(); 1063 instQueue.insertNonSpec(inst); 1064 add_to_iq = false; 1065 1066 ++iewDispNonSpecInsts; 1067 } else { 1068 add_to_iq = true; 1069 } 1070 1071 toRename->iewInfo[tid].dispatchedToLSQ++; 1072 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) { 1073 // Same as non-speculative stores. 1074 inst->setCanCommit(); 1075 instQueue.insertBarrier(inst); 1076 add_to_iq = false; 1077 } else if (inst->isNop()) { 1078 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, " 1079 "skipping.\n", tid); 1080 1081 inst->setIssued(); 1082 inst->setExecuted(); 1083 inst->setCanCommit(); 1084 1085 instQueue.recordProducer(inst); 1086 1087 iewExecutedNop[tid]++; 1088 1089 add_to_iq = false; 1090 } else if (inst->isExecuted()) { 1091 assert(0 && "Instruction shouldn't be executed.\n"); 1092 DPRINTF(IEW, "Issue: Executed branch encountered, " 1093 "skipping.\n"); 1094 1095 inst->setIssued(); 1096 inst->setCanCommit(); 1097 1098 instQueue.recordProducer(inst); 1099 1100 add_to_iq = false; 1101 } else { 1102 add_to_iq = true; 1103 } 1104 if (inst->isNonSpeculative()) { 1105 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction " 1106 "encountered, skipping.\n", tid); 1107 1108 // Same as non-speculative stores. 1109 inst->setCanCommit(); 1110 1111 // Specifically insert it as nonspeculative. 1112 instQueue.insertNonSpec(inst); 1113 1114 ++iewDispNonSpecInsts; 1115 1116 add_to_iq = false; 1117 } 1118 1119 // If the instruction queue is not full, then add the 1120 // instruction. 1121 if (add_to_iq) { 1122 instQueue.insert(inst); 1123 } 1124 1125 insts_to_dispatch.pop(); 1126 1127 toRename->iewInfo[tid].dispatched++; 1128 1129 ++iewDispatchedInsts; 1130 } 1131 1132 if (!insts_to_dispatch.empty()) { 1133 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid); 1134 block(tid); 1135 toRename->iewUnblock[tid] = false; 1136 } 1137 1138 if (dispatchStatus[tid] == Idle && dis_num_inst) { 1139 dispatchStatus[tid] = Running; 1140 1141 updatedQueues = true; 1142 } 1143 1144 dis_num_inst = 0; 1145} 1146 1147template <class Impl> 1148void 1149DefaultIEW<Impl>::printAvailableInsts() 1150{ 1151 int inst = 0; 1152 1153 std::cout << "Available Instructions: "; 1154 1155 while (fromIssue->insts[inst]) { 1156 1157 if (inst%3==0) std::cout << "\n\t"; 1158 1159 std::cout << "PC: " << fromIssue->insts[inst]->pcState() 1160 << " TN: " << fromIssue->insts[inst]->threadNumber 1161 << " SN: " << fromIssue->insts[inst]->seqNum << " | "; 1162 1163 inst++; 1164 1165 } 1166 1167 std::cout << "\n"; 1168} 1169 1170template <class Impl> 1171void 1172DefaultIEW<Impl>::executeInsts() 1173{ 1174 wbNumInst = 0; 1175 wbCycle = 0; 1176 1177 list<ThreadID>::iterator threads = activeThreads->begin(); 1178 list<ThreadID>::iterator end = activeThreads->end(); 1179 1180 while (threads != end) { 1181 ThreadID tid = *threads++; 1182 fetchRedirect[tid] = false; 1183 } 1184 1185 // Uncomment this if you want to see all available instructions. 1186 // @todo This doesn't actually work anymore, we should fix it. 1187// printAvailableInsts(); 1188 1189 // Execute/writeback any instructions that are available. 1190 int insts_to_execute = fromIssue->size; 1191 int inst_num = 0; 1192 for (; inst_num < insts_to_execute; 1193 ++inst_num) { 1194 1195 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n"); 1196 1197 DynInstPtr inst = instQueue.getInstToExecute(); 1198 1199 DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n", 1200 inst->pcState(), inst->threadNumber,inst->seqNum); 1201 1202 // Check if the instruction is squashed; if so then skip it 1203 if (inst->isSquashed()) { 1204 DPRINTF(IEW, "Execute: Instruction was squashed.\n"); 1205 1206 // Consider this instruction executed so that commit can go 1207 // ahead and retire the instruction. 1208 inst->setExecuted(); 1209 1210 // Not sure if I should set this here or just let commit try to 1211 // commit any squashed instructions. I like the latter a bit more. 1212 inst->setCanCommit(); 1213 1214 ++iewExecSquashedInsts; 1215 1216 decrWb(inst->seqNum); 1217 continue; 1218 } 1219 1220 Fault fault = NoFault; 1221 1222 // Execute instruction. 1223 // Note that if the instruction faults, it will be handled 1224 // at the commit stage. 1225 if (inst->isMemRef() && 1226 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) { 1227 DPRINTF(IEW, "Execute: Calculating address for memory " 1228 "reference.\n"); 1229 1230 // Tell the LDSTQ to execute this instruction (if it is a load). 1231 if (inst->isLoad()) { 1232 // Loads will mark themselves as executed, and their writeback 1233 // event adds the instruction to the queue to commit 1234 fault = ldstQueue.executeLoad(inst); 1235 } else if (inst->isStore()) { 1236 fault = ldstQueue.executeStore(inst); 1237 1238 // If the store had a fault then it may not have a mem req 1239 if (!inst->isStoreConditional() && fault == NoFault) { 1240 inst->setExecuted(); 1241 1242 instToCommit(inst); 1243 } else if (fault != NoFault) { 1244 // If the instruction faulted, then we need to send it along to commit 1245 // without the instruction completing. 1246 DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n", 1247 fault->name(), inst->seqNum); 1248 1249 // Send this instruction to commit, also make sure iew stage 1250 // realizes there is activity. 1251 inst->setExecuted(); 1252 1253 instToCommit(inst); 1254 activityThisCycle(); 1255 } 1256 1257 // Store conditionals will mark themselves as 1258 // executed, and their writeback event will add the 1259 // instruction to the queue to commit. 1260 } else { 1261 panic("Unexpected memory type!\n"); 1262 } 1263 1264 } else { 1265 inst->execute(); 1266 1267 inst->setExecuted(); 1268 1269 instToCommit(inst); 1270 } 1271 1272 updateExeInstStats(inst); 1273 1274 // Check if branch prediction was correct, if not then we need 1275 // to tell commit to squash in flight instructions. Only 1276 // handle this if there hasn't already been something that 1277 // redirects fetch in this group of instructions. 1278 1279 // This probably needs to prioritize the redirects if a different 1280 // scheduler is used. Currently the scheduler schedules the oldest 1281 // instruction first, so the branch resolution order will be correct. 1282 ThreadID tid = inst->threadNumber; 1283 1284 if (!fetchRedirect[tid] || 1285 toCommit->squashedSeqNum[tid] > inst->seqNum) { 1286 1287 if (inst->mispredicted()) { 1288 fetchRedirect[tid] = true; 1289 1290 DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); 1291 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", 1292 inst->predInstAddr(), inst->predNextInstAddr()); 1293 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n", 1294 inst->pcState(), inst->nextInstAddr()); 1295 // If incorrect, then signal the ROB that it must be squashed. 1296 squashDueToBranch(inst, tid); 1297 1298 if (inst->readPredTaken()) { 1299 predictedTakenIncorrect++; 1300 } else { 1301 predictedNotTakenIncorrect++; 1302 } 1303 } else if (ldstQueue.violation(tid)) { 1304 assert(inst->isMemRef()); 1305 // If there was an ordering violation, then get the 1306 // DynInst that caused the violation. Note that this 1307 // clears the violation signal. 1308 DynInstPtr violator; 1309 violator = ldstQueue.getMemDepViolator(tid); 1310 1311 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s " 1312 "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n", 1313 violator->pcState(), violator->seqNum, 1314 inst->pcState(), inst->seqNum, inst->physEffAddr); 1315 1316 fetchRedirect[tid] = true; 1317 1318 // Tell the instruction queue that a violation has occured. 1319 instQueue.violation(inst, violator); 1320 1321 // Squash. 1322 squashDueToMemOrder(inst,tid); 1323 1324 ++memOrderViolationEvents; 1325 } else if (ldstQueue.loadBlocked(tid) && 1326 !ldstQueue.isLoadBlockedHandled(tid)) { 1327 fetchRedirect[tid] = true; 1328 1329 DPRINTF(IEW, "Load operation couldn't execute because the " 1330 "memory system is blocked. PC: %s [sn:%lli]\n", 1331 inst->pcState(), inst->seqNum); 1332 1333 squashDueToMemBlocked(inst, tid); 1334 } 1335 } else { 1336 // Reset any state associated with redirects that will not 1337 // be used. 1338 if (ldstQueue.violation(tid)) { 1339 assert(inst->isMemRef()); 1340 1341 DynInstPtr violator = ldstQueue.getMemDepViolator(tid); 1342 1343 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: " 1344 "%s, inst PC: %s. Addr is: %#x.\n", 1345 violator->pcState(), inst->pcState(), 1346 inst->physEffAddr); 1347 DPRINTF(IEW, "Violation will not be handled because " 1348 "already squashing\n"); 1349 1350 ++memOrderViolationEvents; 1351 } 1352 if (ldstQueue.loadBlocked(tid) && 1353 !ldstQueue.isLoadBlockedHandled(tid)) { 1354 DPRINTF(IEW, "Load operation couldn't execute because the " 1355 "memory system is blocked. PC: %s [sn:%lli]\n", 1356 inst->pcState(), inst->seqNum); 1357 DPRINTF(IEW, "Blocked load will not be handled because " 1358 "already squashing\n"); 1359 1360 ldstQueue.setLoadBlockedHandled(tid); 1361 } 1362 1363 } 1364 } 1365 1366 // Update and record activity if we processed any instructions. 1367 if (inst_num) { 1368 if (exeStatus == Idle) { 1369 exeStatus = Running; 1370 } 1371 1372 updatedQueues = true; 1373 1374 cpu->activityThisCycle(); 1375 } 1376 1377 // Need to reset this in case a writeback event needs to write into the 1378 // iew queue. That way the writeback event will write into the correct 1379 // spot in the queue. 1380 wbNumInst = 0; 1381} 1382 1383template <class Impl> 1384void 1385DefaultIEW<Impl>::writebackInsts() 1386{ 1387 // Loop through the head of the time buffer and wake any 1388 // dependents. These instructions are about to write back. Also 1389 // mark scoreboard that this instruction is finally complete. 1390 // Either have IEW have direct access to scoreboard, or have this 1391 // as part of backwards communication. 1392 for (int inst_num = 0; inst_num < wbWidth && 1393 toCommit->insts[inst_num]; inst_num++) { 1394 DynInstPtr inst = toCommit->insts[inst_num]; 1395 ThreadID tid = inst->threadNumber; 1396 1397 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n", 1398 inst->seqNum, inst->pcState()); 1399 1400 iewInstsToCommit[tid]++; 1401 1402 // Some instructions will be sent to commit without having 1403 // executed because they need commit to handle them. 1404 // E.g. Uncached loads have not actually executed when they 1405 // are first sent to commit. Instead commit must tell the LSQ 1406 // when it's ready to execute the uncached load. 1407 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) { 1408 int dependents = instQueue.wakeDependents(inst); 1409 1410 for (int i = 0; i < inst->numDestRegs(); i++) { 1411 //mark as Ready 1412 DPRINTF(IEW,"Setting Destination Register %i\n", 1413 inst->renamedDestRegIdx(i)); 1414 scoreboard->setReg(inst->renamedDestRegIdx(i)); 1415 } 1416 1417 if (dependents) { 1418 producerInst[tid]++; 1419 consumerInst[tid]+= dependents; 1420 } 1421 writebackCount[tid]++; 1422 } 1423 1424 decrWb(inst->seqNum); 1425 } 1426} 1427 1428template<class Impl> 1429void 1430DefaultIEW<Impl>::tick() 1431{ 1432 wbNumInst = 0; 1433 wbCycle = 0; 1434 1435 wroteToTimeBuffer = false; 1436 updatedQueues = false; 1437 1438 sortInsts(); 1439 1440 // Free function units marked as being freed this cycle. 1441 fuPool->processFreeUnits(); 1442 1443 list<ThreadID>::iterator threads = activeThreads->begin(); 1444 list<ThreadID>::iterator end = activeThreads->end(); 1445 1446 // Check stall and squash signals, dispatch any instructions. 1447 while (threads != end) { 1448 ThreadID tid = *threads++; 1449 1450 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid); 1451 1452 checkSignalsAndUpdate(tid); 1453 dispatch(tid); 1454 } 1455 1456 if (exeStatus != Squashing) { 1457 executeInsts(); 1458 1459 writebackInsts(); 1460 1461 // Have the instruction queue try to schedule any ready instructions. 1462 // (In actuality, this scheduling is for instructions that will 1463 // be executed next cycle.) 1464 instQueue.scheduleReadyInsts(); 1465 1466 // Also should advance its own time buffers if the stage ran. 1467 // Not the best place for it, but this works (hopefully). 1468 issueToExecQueue.advance(); 1469 } 1470 1471 bool broadcast_free_entries = false; 1472 1473 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) { 1474 exeStatus = Idle; 1475 updateLSQNextCycle = false; 1476 1477 broadcast_free_entries = true; 1478 } 1479 1480 // Writeback any stores using any leftover bandwidth. 1481 ldstQueue.writebackStores(); 1482 1483 // Check the committed load/store signals to see if there's a load 1484 // or store to commit. Also check if it's being told to execute a 1485 // nonspeculative instruction. 1486 // This is pretty inefficient... 1487 1488 threads = activeThreads->begin(); 1489 while (threads != end) { 1490 ThreadID tid = (*threads++); 1491 1492 DPRINTF(IEW,"Processing [tid:%i]\n",tid); 1493 1494 // Update structures based on instructions committed. 1495 if (fromCommit->commitInfo[tid].doneSeqNum != 0 && 1496 !fromCommit->commitInfo[tid].squash && 1497 !fromCommit->commitInfo[tid].robSquashing) { 1498 1499 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid); 1500 1501 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid); 1502 1503 updateLSQNextCycle = true; 1504 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid); 1505 } 1506 1507 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) { 1508 1509 //DPRINTF(IEW,"NonspecInst from thread %i",tid); 1510 if (fromCommit->commitInfo[tid].uncached) { 1511 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad); 1512 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit(); 1513 } else { 1514 instQueue.scheduleNonSpec( 1515 fromCommit->commitInfo[tid].nonSpecSeqNum); 1516 } 1517 } 1518 1519 if (broadcast_free_entries) { 1520 toFetch->iewInfo[tid].iqCount = 1521 instQueue.getCount(tid); 1522 toFetch->iewInfo[tid].ldstqCount = 1523 ldstQueue.getCount(tid); 1524 1525 toRename->iewInfo[tid].usedIQ = true; 1526 toRename->iewInfo[tid].freeIQEntries = 1527 instQueue.numFreeEntries(); 1528 toRename->iewInfo[tid].usedLSQ = true; 1529 toRename->iewInfo[tid].freeLSQEntries = 1530 ldstQueue.numFreeEntries(tid); 1531 1532 wroteToTimeBuffer = true; 1533 } 1534 1535 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n", 1536 tid, toRename->iewInfo[tid].dispatched); 1537 } 1538 1539 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). " 1540 "LSQ has %i free entries.\n", 1541 instQueue.numFreeEntries(), instQueue.hasReadyInsts(), 1542 ldstQueue.numFreeEntries()); 1543 1544 updateStatus(); 1545 1546 if (wroteToTimeBuffer) { 1547 DPRINTF(Activity, "Activity this cycle.\n"); 1548 cpu->activityThisCycle(); 1549 } 1550} 1551 1552template <class Impl> 1553void 1554DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst) 1555{ 1556 ThreadID tid = inst->threadNumber; 1557 1558 // 1559 // Pick off the software prefetches 1560 // 1561#ifdef TARGET_ALPHA 1562 if (inst->isDataPrefetch()) 1563 iewExecutedSwp[tid]++; 1564 else 1565 iewIewExecutedcutedInsts++; 1566#else 1567 iewExecutedInsts++; 1568#endif 1569 1570 // 1571 // Control operations 1572 // 1573 if (inst->isControl()) 1574 iewExecutedBranches[tid]++; 1575 1576 // 1577 // Memory operations 1578 // 1579 if (inst->isMemRef()) { 1580 iewExecutedRefs[tid]++; 1581 1582 if (inst->isLoad()) { 1583 iewExecLoadInsts[tid]++; 1584 } 1585 } 1586} 1587 1588template <class Impl> 1589void 1590DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst) 1591{ 1592 ThreadID tid = inst->threadNumber; 1593 1594 if (!fetchRedirect[tid] || 1595 toCommit->squashedSeqNum[tid] > inst->seqNum) { 1596 1597 if (inst->mispredicted()) { 1598 fetchRedirect[tid] = true; 1599 1600 DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); 1601 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", 1602 inst->predInstAddr(), inst->predNextInstAddr()); 1603 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x," 1604 " NPC: %#x.\n", inst->nextInstAddr(), 1605 inst->nextInstAddr()); 1606 // If incorrect, then signal the ROB that it must be squashed. 1607 squashDueToBranch(inst, tid); 1608 1609 if (inst->readPredTaken()) { 1610 predictedTakenIncorrect++; 1611 } else { 1612 predictedNotTakenIncorrect++; 1613 } 1614 } 1615 } 1616} 1617