iew_impl.hh revision 6221
1/* 2 * Copyright (c) 2004-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Kevin Lim 29 */ 30 31// @todo: Fix the instantaneous communication among all the stages within 32// iew. There's a clear delay between issue and execute, yet backwards 33// communication happens simultaneously. 34 35#include <queue> 36 37#include "base/timebuf.hh" 38#include "cpu/o3/fu_pool.hh" 39#include "cpu/o3/iew.hh" 40#include "params/DerivO3CPU.hh" 41 42using namespace std; 43 44template<class Impl> 45DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params) 46 : issueToExecQueue(params->backComSize, params->forwardComSize), 47 cpu(_cpu), 48 instQueue(_cpu, this, params), 49 ldstQueue(_cpu, this, params), 50 fuPool(params->fuPool), 51 commitToIEWDelay(params->commitToIEWDelay), 52 renameToIEWDelay(params->renameToIEWDelay), 53 issueToExecuteDelay(params->issueToExecuteDelay), 54 dispatchWidth(params->dispatchWidth), 55 issueWidth(params->issueWidth), 56 wbOutstanding(0), 57 wbWidth(params->wbWidth), 58 numThreads(params->numThreads), 59 switchedOut(false) 60{ 61 _status = Active; 62 exeStatus = Running; 63 wbStatus = Idle; 64 65 // Setup wire to read instructions coming from issue. 66 fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay); 67 68 // Instruction queue needs the queue between issue and execute. 69 instQueue.setIssueToExecuteQueue(&issueToExecQueue); 70 71 for (ThreadID tid = 0; tid < numThreads; tid++) { 72 dispatchStatus[tid] = Running; 73 stalls[tid].commit = false; 74 fetchRedirect[tid] = false; 75 } 76 77 wbMax = wbWidth * params->wbDepth; 78 79 updateLSQNextCycle = false; 80 81 ableToIssue = true; 82 83 skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth; 84} 85 86template <class Impl> 87std::string 88DefaultIEW<Impl>::name() const 89{ 90 return cpu->name() + ".iew"; 91} 92 93template <class Impl> 94void 95DefaultIEW<Impl>::regStats() 96{ 97 using namespace Stats; 98 99 instQueue.regStats(); 100 ldstQueue.regStats(); 101 102 iewIdleCycles 103 .name(name() + ".iewIdleCycles") 104 .desc("Number of cycles IEW is idle"); 105 106 iewSquashCycles 107 .name(name() + ".iewSquashCycles") 108 .desc("Number of cycles IEW is squashing"); 109 110 iewBlockCycles 111 .name(name() + ".iewBlockCycles") 112 .desc("Number of cycles IEW is blocking"); 113 114 iewUnblockCycles 115 .name(name() + ".iewUnblockCycles") 116 .desc("Number of cycles IEW is unblocking"); 117 118 iewDispatchedInsts 119 .name(name() + ".iewDispatchedInsts") 120 .desc("Number of instructions dispatched to IQ"); 121 122 iewDispSquashedInsts 123 .name(name() + ".iewDispSquashedInsts") 124 .desc("Number of squashed instructions skipped by dispatch"); 125 126 iewDispLoadInsts 127 .name(name() + ".iewDispLoadInsts") 128 .desc("Number of dispatched load instructions"); 129 130 iewDispStoreInsts 131 .name(name() + ".iewDispStoreInsts") 132 .desc("Number of dispatched store instructions"); 133 134 iewDispNonSpecInsts 135 .name(name() + ".iewDispNonSpecInsts") 136 .desc("Number of dispatched non-speculative instructions"); 137 138 iewIQFullEvents 139 .name(name() + ".iewIQFullEvents") 140 .desc("Number of times the IQ has become full, causing a stall"); 141 142 iewLSQFullEvents 143 .name(name() + ".iewLSQFullEvents") 144 .desc("Number of times the LSQ has become full, causing a stall"); 145 146 memOrderViolationEvents 147 .name(name() + ".memOrderViolationEvents") 148 .desc("Number of memory order violations"); 149 150 predictedTakenIncorrect 151 .name(name() + ".predictedTakenIncorrect") 152 .desc("Number of branches that were predicted taken incorrectly"); 153 154 predictedNotTakenIncorrect 155 .name(name() + ".predictedNotTakenIncorrect") 156 .desc("Number of branches that were predicted not taken incorrectly"); 157 158 branchMispredicts 159 .name(name() + ".branchMispredicts") 160 .desc("Number of branch mispredicts detected at execute"); 161 162 branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect; 163 164 iewExecutedInsts 165 .name(name() + ".iewExecutedInsts") 166 .desc("Number of executed instructions"); 167 168 iewExecLoadInsts 169 .init(cpu->numThreads) 170 .name(name() + ".iewExecLoadInsts") 171 .desc("Number of load instructions executed") 172 .flags(total); 173 174 iewExecSquashedInsts 175 .name(name() + ".iewExecSquashedInsts") 176 .desc("Number of squashed instructions skipped in execute"); 177 178 iewExecutedSwp 179 .init(cpu->numThreads) 180 .name(name() + ".EXEC:swp") 181 .desc("number of swp insts executed") 182 .flags(total); 183 184 iewExecutedNop 185 .init(cpu->numThreads) 186 .name(name() + ".EXEC:nop") 187 .desc("number of nop insts executed") 188 .flags(total); 189 190 iewExecutedRefs 191 .init(cpu->numThreads) 192 .name(name() + ".EXEC:refs") 193 .desc("number of memory reference insts executed") 194 .flags(total); 195 196 iewExecutedBranches 197 .init(cpu->numThreads) 198 .name(name() + ".EXEC:branches") 199 .desc("Number of branches executed") 200 .flags(total); 201 202 iewExecStoreInsts 203 .name(name() + ".EXEC:stores") 204 .desc("Number of stores executed") 205 .flags(total); 206 iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts; 207 208 iewExecRate 209 .name(name() + ".EXEC:rate") 210 .desc("Inst execution rate") 211 .flags(total); 212 213 iewExecRate = iewExecutedInsts / cpu->numCycles; 214 215 iewInstsToCommit 216 .init(cpu->numThreads) 217 .name(name() + ".WB:sent") 218 .desc("cumulative count of insts sent to commit") 219 .flags(total); 220 221 writebackCount 222 .init(cpu->numThreads) 223 .name(name() + ".WB:count") 224 .desc("cumulative count of insts written-back") 225 .flags(total); 226 227 producerInst 228 .init(cpu->numThreads) 229 .name(name() + ".WB:producers") 230 .desc("num instructions producing a value") 231 .flags(total); 232 233 consumerInst 234 .init(cpu->numThreads) 235 .name(name() + ".WB:consumers") 236 .desc("num instructions consuming a value") 237 .flags(total); 238 239 wbPenalized 240 .init(cpu->numThreads) 241 .name(name() + ".WB:penalized") 242 .desc("number of instrctions required to write to 'other' IQ") 243 .flags(total); 244 245 wbPenalizedRate 246 .name(name() + ".WB:penalized_rate") 247 .desc ("fraction of instructions written-back that wrote to 'other' IQ") 248 .flags(total); 249 250 wbPenalizedRate = wbPenalized / writebackCount; 251 252 wbFanout 253 .name(name() + ".WB:fanout") 254 .desc("average fanout of values written-back") 255 .flags(total); 256 257 wbFanout = producerInst / consumerInst; 258 259 wbRate 260 .name(name() + ".WB:rate") 261 .desc("insts written-back per cycle") 262 .flags(total); 263 wbRate = writebackCount / cpu->numCycles; 264} 265 266template<class Impl> 267void 268DefaultIEW<Impl>::initStage() 269{ 270 for (ThreadID tid = 0; tid < numThreads; tid++) { 271 toRename->iewInfo[tid].usedIQ = true; 272 toRename->iewInfo[tid].freeIQEntries = 273 instQueue.numFreeEntries(tid); 274 275 toRename->iewInfo[tid].usedLSQ = true; 276 toRename->iewInfo[tid].freeLSQEntries = 277 ldstQueue.numFreeEntries(tid); 278 } 279 280 cpu->activateStage(O3CPU::IEWIdx); 281} 282 283template<class Impl> 284void 285DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) 286{ 287 timeBuffer = tb_ptr; 288 289 // Setup wire to read information from time buffer, from commit. 290 fromCommit = timeBuffer->getWire(-commitToIEWDelay); 291 292 // Setup wire to write information back to previous stages. 293 toRename = timeBuffer->getWire(0); 294 295 toFetch = timeBuffer->getWire(0); 296 297 // Instruction queue also needs main time buffer. 298 instQueue.setTimeBuffer(tb_ptr); 299} 300 301template<class Impl> 302void 303DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr) 304{ 305 renameQueue = rq_ptr; 306 307 // Setup wire to read information from rename queue. 308 fromRename = renameQueue->getWire(-renameToIEWDelay); 309} 310 311template<class Impl> 312void 313DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr) 314{ 315 iewQueue = iq_ptr; 316 317 // Setup wire to write instructions to commit. 318 toCommit = iewQueue->getWire(0); 319} 320 321template<class Impl> 322void 323DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr) 324{ 325 activeThreads = at_ptr; 326 327 ldstQueue.setActiveThreads(at_ptr); 328 instQueue.setActiveThreads(at_ptr); 329} 330 331template<class Impl> 332void 333DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr) 334{ 335 scoreboard = sb_ptr; 336} 337 338template <class Impl> 339bool 340DefaultIEW<Impl>::drain() 341{ 342 // IEW is ready to drain at any time. 343 cpu->signalDrained(); 344 return true; 345} 346 347template <class Impl> 348void 349DefaultIEW<Impl>::resume() 350{ 351} 352 353template <class Impl> 354void 355DefaultIEW<Impl>::switchOut() 356{ 357 // Clear any state. 358 switchedOut = true; 359 assert(insts[0].empty()); 360 assert(skidBuffer[0].empty()); 361 362 instQueue.switchOut(); 363 ldstQueue.switchOut(); 364 fuPool->switchOut(); 365 366 for (ThreadID tid = 0; tid < numThreads; tid++) { 367 while (!insts[tid].empty()) 368 insts[tid].pop(); 369 while (!skidBuffer[tid].empty()) 370 skidBuffer[tid].pop(); 371 } 372} 373 374template <class Impl> 375void 376DefaultIEW<Impl>::takeOverFrom() 377{ 378 // Reset all state. 379 _status = Active; 380 exeStatus = Running; 381 wbStatus = Idle; 382 switchedOut = false; 383 384 instQueue.takeOverFrom(); 385 ldstQueue.takeOverFrom(); 386 fuPool->takeOverFrom(); 387 388 initStage(); 389 cpu->activityThisCycle(); 390 391 for (ThreadID tid = 0; tid < numThreads; tid++) { 392 dispatchStatus[tid] = Running; 393 stalls[tid].commit = false; 394 fetchRedirect[tid] = false; 395 } 396 397 updateLSQNextCycle = false; 398 399 for (int i = 0; i < issueToExecQueue.getSize(); ++i) { 400 issueToExecQueue.advance(); 401 } 402} 403 404template<class Impl> 405void 406DefaultIEW<Impl>::squash(ThreadID tid) 407{ 408 DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid); 409 410 // Tell the IQ to start squashing. 411 instQueue.squash(tid); 412 413 // Tell the LDSTQ to start squashing. 414 ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid); 415 updatedQueues = true; 416 417 // Clear the skid buffer in case it has any data in it. 418 DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n", 419 tid, fromCommit->commitInfo[tid].doneSeqNum); 420 421 while (!skidBuffer[tid].empty()) { 422 if (skidBuffer[tid].front()->isLoad() || 423 skidBuffer[tid].front()->isStore() ) { 424 toRename->iewInfo[tid].dispatchedToLSQ++; 425 } 426 427 toRename->iewInfo[tid].dispatched++; 428 429 skidBuffer[tid].pop(); 430 } 431 432 emptyRenameInsts(tid); 433} 434 435template<class Impl> 436void 437DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid) 438{ 439 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x " 440 "[sn:%i].\n", tid, inst->readPC(), inst->seqNum); 441 442 toCommit->squash[tid] = true; 443 toCommit->squashedSeqNum[tid] = inst->seqNum; 444 toCommit->mispredPC[tid] = inst->readPC(); 445 toCommit->branchMispredict[tid] = true; 446 447#if ISA_HAS_DELAY_SLOT 448 int instSize = sizeof(TheISA::MachInst); 449 toCommit->branchTaken[tid] = 450 !(inst->readNextPC() + instSize == inst->readNextNPC() && 451 (inst->readNextPC() == inst->readPC() + instSize || 452 inst->readNextPC() == inst->readPC() + 2 * instSize)); 453#else 454 toCommit->branchTaken[tid] = inst->readNextPC() != 455 (inst->readPC() + sizeof(TheISA::MachInst)); 456#endif 457 toCommit->nextPC[tid] = inst->readNextPC(); 458 toCommit->nextNPC[tid] = inst->readNextNPC(); 459 toCommit->nextMicroPC[tid] = inst->readNextMicroPC(); 460 461 toCommit->includeSquashInst[tid] = false; 462 463 wroteToTimeBuffer = true; 464} 465 466template<class Impl> 467void 468DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid) 469{ 470 DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, " 471 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum); 472 473 toCommit->squash[tid] = true; 474 toCommit->squashedSeqNum[tid] = inst->seqNum; 475 toCommit->nextPC[tid] = inst->readNextPC(); 476 toCommit->nextNPC[tid] = inst->readNextNPC(); 477 toCommit->branchMispredict[tid] = false; 478 479 toCommit->includeSquashInst[tid] = false; 480 481 wroteToTimeBuffer = true; 482} 483 484template<class Impl> 485void 486DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid) 487{ 488 DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, " 489 "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum); 490 491 toCommit->squash[tid] = true; 492 toCommit->squashedSeqNum[tid] = inst->seqNum; 493 toCommit->nextPC[tid] = inst->readPC(); 494 toCommit->nextNPC[tid] = inst->readNextPC(); 495 toCommit->branchMispredict[tid] = false; 496 497 // Must include the broadcasted SN in the squash. 498 toCommit->includeSquashInst[tid] = true; 499 500 ldstQueue.setLoadBlockedHandled(tid); 501 502 wroteToTimeBuffer = true; 503} 504 505template<class Impl> 506void 507DefaultIEW<Impl>::block(ThreadID tid) 508{ 509 DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid); 510 511 if (dispatchStatus[tid] != Blocked && 512 dispatchStatus[tid] != Unblocking) { 513 toRename->iewBlock[tid] = true; 514 wroteToTimeBuffer = true; 515 } 516 517 // Add the current inputs to the skid buffer so they can be 518 // reprocessed when this stage unblocks. 519 skidInsert(tid); 520 521 dispatchStatus[tid] = Blocked; 522} 523 524template<class Impl> 525void 526DefaultIEW<Impl>::unblock(ThreadID tid) 527{ 528 DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid " 529 "buffer %u.\n",tid, tid); 530 531 // If the skid bufffer is empty, signal back to previous stages to unblock. 532 // Also switch status to running. 533 if (skidBuffer[tid].empty()) { 534 toRename->iewUnblock[tid] = true; 535 wroteToTimeBuffer = true; 536 DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid); 537 dispatchStatus[tid] = Running; 538 } 539} 540 541template<class Impl> 542void 543DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst) 544{ 545 instQueue.wakeDependents(inst); 546} 547 548template<class Impl> 549void 550DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst) 551{ 552 instQueue.rescheduleMemInst(inst); 553} 554 555template<class Impl> 556void 557DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst) 558{ 559 instQueue.replayMemInst(inst); 560} 561 562template<class Impl> 563void 564DefaultIEW<Impl>::instToCommit(DynInstPtr &inst) 565{ 566 // This function should not be called after writebackInsts in a 567 // single cycle. That will cause problems with an instruction 568 // being added to the queue to commit without being processed by 569 // writebackInsts prior to being sent to commit. 570 571 // First check the time slot that this instruction will write 572 // to. If there are free write ports at the time, then go ahead 573 // and write the instruction to that time. If there are not, 574 // keep looking back to see where's the first time there's a 575 // free slot. 576 while ((*iewQueue)[wbCycle].insts[wbNumInst]) { 577 ++wbNumInst; 578 if (wbNumInst == wbWidth) { 579 ++wbCycle; 580 wbNumInst = 0; 581 } 582 583 assert((wbCycle * wbWidth + wbNumInst) <= wbMax); 584 } 585 586 DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n", 587 wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst); 588 // Add finished instruction to queue to commit. 589 (*iewQueue)[wbCycle].insts[wbNumInst] = inst; 590 (*iewQueue)[wbCycle].size++; 591} 592 593template <class Impl> 594unsigned 595DefaultIEW<Impl>::validInstsFromRename() 596{ 597 unsigned inst_count = 0; 598 599 for (int i=0; i<fromRename->size; i++) { 600 if (!fromRename->insts[i]->isSquashed()) 601 inst_count++; 602 } 603 604 return inst_count; 605} 606 607template<class Impl> 608void 609DefaultIEW<Impl>::skidInsert(ThreadID tid) 610{ 611 DynInstPtr inst = NULL; 612 613 while (!insts[tid].empty()) { 614 inst = insts[tid].front(); 615 616 insts[tid].pop(); 617 618 DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into " 619 "dispatch skidBuffer %i\n",tid, inst->seqNum, 620 inst->readPC(),tid); 621 622 skidBuffer[tid].push(inst); 623 } 624 625 assert(skidBuffer[tid].size() <= skidBufferMax && 626 "Skidbuffer Exceeded Max Size"); 627} 628 629template<class Impl> 630int 631DefaultIEW<Impl>::skidCount() 632{ 633 int max=0; 634 635 list<ThreadID>::iterator threads = activeThreads->begin(); 636 list<ThreadID>::iterator end = activeThreads->end(); 637 638 while (threads != end) { 639 ThreadID tid = *threads++; 640 unsigned thread_count = skidBuffer[tid].size(); 641 if (max < thread_count) 642 max = thread_count; 643 } 644 645 return max; 646} 647 648template<class Impl> 649bool 650DefaultIEW<Impl>::skidsEmpty() 651{ 652 list<ThreadID>::iterator threads = activeThreads->begin(); 653 list<ThreadID>::iterator end = activeThreads->end(); 654 655 while (threads != end) { 656 ThreadID tid = *threads++; 657 658 if (!skidBuffer[tid].empty()) 659 return false; 660 } 661 662 return true; 663} 664 665template <class Impl> 666void 667DefaultIEW<Impl>::updateStatus() 668{ 669 bool any_unblocking = false; 670 671 list<ThreadID>::iterator threads = activeThreads->begin(); 672 list<ThreadID>::iterator end = activeThreads->end(); 673 674 while (threads != end) { 675 ThreadID tid = *threads++; 676 677 if (dispatchStatus[tid] == Unblocking) { 678 any_unblocking = true; 679 break; 680 } 681 } 682 683 // If there are no ready instructions waiting to be scheduled by the IQ, 684 // and there's no stores waiting to write back, and dispatch is not 685 // unblocking, then there is no internal activity for the IEW stage. 686 if (_status == Active && !instQueue.hasReadyInsts() && 687 !ldstQueue.willWB() && !any_unblocking) { 688 DPRINTF(IEW, "IEW switching to idle\n"); 689 690 deactivateStage(); 691 692 _status = Inactive; 693 } else if (_status == Inactive && (instQueue.hasReadyInsts() || 694 ldstQueue.willWB() || 695 any_unblocking)) { 696 // Otherwise there is internal activity. Set to active. 697 DPRINTF(IEW, "IEW switching to active\n"); 698 699 activateStage(); 700 701 _status = Active; 702 } 703} 704 705template <class Impl> 706void 707DefaultIEW<Impl>::resetEntries() 708{ 709 instQueue.resetEntries(); 710 ldstQueue.resetEntries(); 711} 712 713template <class Impl> 714void 715DefaultIEW<Impl>::readStallSignals(ThreadID tid) 716{ 717 if (fromCommit->commitBlock[tid]) { 718 stalls[tid].commit = true; 719 } 720 721 if (fromCommit->commitUnblock[tid]) { 722 assert(stalls[tid].commit); 723 stalls[tid].commit = false; 724 } 725} 726 727template <class Impl> 728bool 729DefaultIEW<Impl>::checkStall(ThreadID tid) 730{ 731 bool ret_val(false); 732 733 if (stalls[tid].commit) { 734 DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid); 735 ret_val = true; 736 } else if (instQueue.isFull(tid)) { 737 DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid); 738 ret_val = true; 739 } else if (ldstQueue.isFull(tid)) { 740 DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid); 741 742 if (ldstQueue.numLoads(tid) > 0 ) { 743 744 DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n", 745 tid,ldstQueue.getLoadHeadSeqNum(tid)); 746 } 747 748 if (ldstQueue.numStores(tid) > 0) { 749 750 DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n", 751 tid,ldstQueue.getStoreHeadSeqNum(tid)); 752 } 753 754 ret_val = true; 755 } else if (ldstQueue.isStalled(tid)) { 756 DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid); 757 ret_val = true; 758 } 759 760 return ret_val; 761} 762 763template <class Impl> 764void 765DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid) 766{ 767 // Check if there's a squash signal, squash if there is 768 // Check stall signals, block if there is. 769 // If status was Blocked 770 // if so then go to unblocking 771 // If status was Squashing 772 // check if squashing is not high. Switch to running this cycle. 773 774 readStallSignals(tid); 775 776 if (fromCommit->commitInfo[tid].squash) { 777 squash(tid); 778 779 if (dispatchStatus[tid] == Blocked || 780 dispatchStatus[tid] == Unblocking) { 781 toRename->iewUnblock[tid] = true; 782 wroteToTimeBuffer = true; 783 } 784 785 dispatchStatus[tid] = Squashing; 786 787 fetchRedirect[tid] = false; 788 return; 789 } 790 791 if (fromCommit->commitInfo[tid].robSquashing) { 792 DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid); 793 794 dispatchStatus[tid] = Squashing; 795 796 emptyRenameInsts(tid); 797 wroteToTimeBuffer = true; 798 return; 799 } 800 801 if (checkStall(tid)) { 802 block(tid); 803 dispatchStatus[tid] = Blocked; 804 return; 805 } 806 807 if (dispatchStatus[tid] == Blocked) { 808 // Status from previous cycle was blocked, but there are no more stall 809 // conditions. Switch over to unblocking. 810 DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n", 811 tid); 812 813 dispatchStatus[tid] = Unblocking; 814 815 unblock(tid); 816 817 return; 818 } 819 820 if (dispatchStatus[tid] == Squashing) { 821 // Switch status to running if rename isn't being told to block or 822 // squash this cycle. 823 DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n", 824 tid); 825 826 dispatchStatus[tid] = Running; 827 828 return; 829 } 830} 831 832template <class Impl> 833void 834DefaultIEW<Impl>::sortInsts() 835{ 836 int insts_from_rename = fromRename->size; 837#ifdef DEBUG 838 for (ThreadID tid = 0; tid < numThreads; tid++) 839 assert(insts[tid].empty()); 840#endif 841 for (int i = 0; i < insts_from_rename; ++i) { 842 insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]); 843 } 844} 845 846template <class Impl> 847void 848DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid) 849{ 850 DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid); 851 852 while (!insts[tid].empty()) { 853 854 if (insts[tid].front()->isLoad() || 855 insts[tid].front()->isStore() ) { 856 toRename->iewInfo[tid].dispatchedToLSQ++; 857 } 858 859 toRename->iewInfo[tid].dispatched++; 860 861 insts[tid].pop(); 862 } 863} 864 865template <class Impl> 866void 867DefaultIEW<Impl>::wakeCPU() 868{ 869 cpu->wakeCPU(); 870} 871 872template <class Impl> 873void 874DefaultIEW<Impl>::activityThisCycle() 875{ 876 DPRINTF(Activity, "Activity this cycle.\n"); 877 cpu->activityThisCycle(); 878} 879 880template <class Impl> 881inline void 882DefaultIEW<Impl>::activateStage() 883{ 884 DPRINTF(Activity, "Activating stage.\n"); 885 cpu->activateStage(O3CPU::IEWIdx); 886} 887 888template <class Impl> 889inline void 890DefaultIEW<Impl>::deactivateStage() 891{ 892 DPRINTF(Activity, "Deactivating stage.\n"); 893 cpu->deactivateStage(O3CPU::IEWIdx); 894} 895 896template<class Impl> 897void 898DefaultIEW<Impl>::dispatch(ThreadID tid) 899{ 900 // If status is Running or idle, 901 // call dispatchInsts() 902 // If status is Unblocking, 903 // buffer any instructions coming from rename 904 // continue trying to empty skid buffer 905 // check if stall conditions have passed 906 907 if (dispatchStatus[tid] == Blocked) { 908 ++iewBlockCycles; 909 910 } else if (dispatchStatus[tid] == Squashing) { 911 ++iewSquashCycles; 912 } 913 914 // Dispatch should try to dispatch as many instructions as its bandwidth 915 // will allow, as long as it is not currently blocked. 916 if (dispatchStatus[tid] == Running || 917 dispatchStatus[tid] == Idle) { 918 DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run " 919 "dispatch.\n", tid); 920 921 dispatchInsts(tid); 922 } else if (dispatchStatus[tid] == Unblocking) { 923 // Make sure that the skid buffer has something in it if the 924 // status is unblocking. 925 assert(!skidsEmpty()); 926 927 // If the status was unblocking, then instructions from the skid 928 // buffer were used. Remove those instructions and handle 929 // the rest of unblocking. 930 dispatchInsts(tid); 931 932 ++iewUnblockCycles; 933 934 if (validInstsFromRename()) { 935 // Add the current inputs to the skid buffer so they can be 936 // reprocessed when this stage unblocks. 937 skidInsert(tid); 938 } 939 940 unblock(tid); 941 } 942} 943 944template <class Impl> 945void 946DefaultIEW<Impl>::dispatchInsts(ThreadID tid) 947{ 948 // Obtain instructions from skid buffer if unblocking, or queue from rename 949 // otherwise. 950 std::queue<DynInstPtr> &insts_to_dispatch = 951 dispatchStatus[tid] == Unblocking ? 952 skidBuffer[tid] : insts[tid]; 953 954 int insts_to_add = insts_to_dispatch.size(); 955 956 DynInstPtr inst; 957 bool add_to_iq = false; 958 int dis_num_inst = 0; 959 960 // Loop through the instructions, putting them in the instruction 961 // queue. 962 for ( ; dis_num_inst < insts_to_add && 963 dis_num_inst < dispatchWidth; 964 ++dis_num_inst) 965 { 966 inst = insts_to_dispatch.front(); 967 968 if (dispatchStatus[tid] == Unblocking) { 969 DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid " 970 "buffer\n", tid); 971 } 972 973 // Make sure there's a valid instruction there. 974 assert(inst); 975 976 DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to " 977 "IQ.\n", 978 tid, inst->readPC(), inst->seqNum, inst->threadNumber); 979 980 // Be sure to mark these instructions as ready so that the 981 // commit stage can go ahead and execute them, and mark 982 // them as issued so the IQ doesn't reprocess them. 983 984 // Check for squashed instructions. 985 if (inst->isSquashed()) { 986 DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, " 987 "not adding to IQ.\n", tid); 988 989 ++iewDispSquashedInsts; 990 991 insts_to_dispatch.pop(); 992 993 //Tell Rename That An Instruction has been processed 994 if (inst->isLoad() || inst->isStore()) { 995 toRename->iewInfo[tid].dispatchedToLSQ++; 996 } 997 toRename->iewInfo[tid].dispatched++; 998 999 continue; 1000 } 1001 1002 // Check for full conditions. 1003 if (instQueue.isFull(tid)) { 1004 DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid); 1005 1006 // Call function to start blocking. 1007 block(tid); 1008 1009 // Set unblock to false. Special case where we are using 1010 // skidbuffer (unblocking) instructions but then we still 1011 // get full in the IQ. 1012 toRename->iewUnblock[tid] = false; 1013 1014 ++iewIQFullEvents; 1015 break; 1016 } else if (ldstQueue.isFull(tid)) { 1017 DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid); 1018 1019 // Call function to start blocking. 1020 block(tid); 1021 1022 // Set unblock to false. Special case where we are using 1023 // skidbuffer (unblocking) instructions but then we still 1024 // get full in the IQ. 1025 toRename->iewUnblock[tid] = false; 1026 1027 ++iewLSQFullEvents; 1028 break; 1029 } 1030 1031 // Otherwise issue the instruction just fine. 1032 if (inst->isLoad()) { 1033 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1034 "encountered, adding to LSQ.\n", tid); 1035 1036 // Reserve a spot in the load store queue for this 1037 // memory access. 1038 ldstQueue.insertLoad(inst); 1039 1040 ++iewDispLoadInsts; 1041 1042 add_to_iq = true; 1043 1044 toRename->iewInfo[tid].dispatchedToLSQ++; 1045 } else if (inst->isStore()) { 1046 DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " 1047 "encountered, adding to LSQ.\n", tid); 1048 1049 ldstQueue.insertStore(inst); 1050 1051 ++iewDispStoreInsts; 1052 1053 if (inst->isStoreConditional()) { 1054 // Store conditionals need to be set as "canCommit()" 1055 // so that commit can process them when they reach the 1056 // head of commit. 1057 // @todo: This is somewhat specific to Alpha. 1058 inst->setCanCommit(); 1059 instQueue.insertNonSpec(inst); 1060 add_to_iq = false; 1061 1062 ++iewDispNonSpecInsts; 1063 } else { 1064 add_to_iq = true; 1065 } 1066 1067 toRename->iewInfo[tid].dispatchedToLSQ++; 1068 } else if (inst->isMemBarrier() || inst->isWriteBarrier()) { 1069 // Same as non-speculative stores. 1070 inst->setCanCommit(); 1071 instQueue.insertBarrier(inst); 1072 add_to_iq = false; 1073 } else if (inst->isNop()) { 1074 DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, " 1075 "skipping.\n", tid); 1076 1077 inst->setIssued(); 1078 inst->setExecuted(); 1079 inst->setCanCommit(); 1080 1081 instQueue.recordProducer(inst); 1082 1083 iewExecutedNop[tid]++; 1084 1085 add_to_iq = false; 1086 } else if (inst->isExecuted()) { 1087 assert(0 && "Instruction shouldn't be executed.\n"); 1088 DPRINTF(IEW, "Issue: Executed branch encountered, " 1089 "skipping.\n"); 1090 1091 inst->setIssued(); 1092 inst->setCanCommit(); 1093 1094 instQueue.recordProducer(inst); 1095 1096 add_to_iq = false; 1097 } else { 1098 add_to_iq = true; 1099 } 1100 if (inst->isNonSpeculative()) { 1101 DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction " 1102 "encountered, skipping.\n", tid); 1103 1104 // Same as non-speculative stores. 1105 inst->setCanCommit(); 1106 1107 // Specifically insert it as nonspeculative. 1108 instQueue.insertNonSpec(inst); 1109 1110 ++iewDispNonSpecInsts; 1111 1112 add_to_iq = false; 1113 } 1114 1115 // If the instruction queue is not full, then add the 1116 // instruction. 1117 if (add_to_iq) { 1118 instQueue.insert(inst); 1119 } 1120 1121 insts_to_dispatch.pop(); 1122 1123 toRename->iewInfo[tid].dispatched++; 1124 1125 ++iewDispatchedInsts; 1126 } 1127 1128 if (!insts_to_dispatch.empty()) { 1129 DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid); 1130 block(tid); 1131 toRename->iewUnblock[tid] = false; 1132 } 1133 1134 if (dispatchStatus[tid] == Idle && dis_num_inst) { 1135 dispatchStatus[tid] = Running; 1136 1137 updatedQueues = true; 1138 } 1139 1140 dis_num_inst = 0; 1141} 1142 1143template <class Impl> 1144void 1145DefaultIEW<Impl>::printAvailableInsts() 1146{ 1147 int inst = 0; 1148 1149 std::cout << "Available Instructions: "; 1150 1151 while (fromIssue->insts[inst]) { 1152 1153 if (inst%3==0) std::cout << "\n\t"; 1154 1155 std::cout << "PC: " << fromIssue->insts[inst]->readPC() 1156 << " TN: " << fromIssue->insts[inst]->threadNumber 1157 << " SN: " << fromIssue->insts[inst]->seqNum << " | "; 1158 1159 inst++; 1160 1161 } 1162 1163 std::cout << "\n"; 1164} 1165 1166template <class Impl> 1167void 1168DefaultIEW<Impl>::executeInsts() 1169{ 1170 wbNumInst = 0; 1171 wbCycle = 0; 1172 1173 list<ThreadID>::iterator threads = activeThreads->begin(); 1174 list<ThreadID>::iterator end = activeThreads->end(); 1175 1176 while (threads != end) { 1177 ThreadID tid = *threads++; 1178 fetchRedirect[tid] = false; 1179 } 1180 1181 // Uncomment this if you want to see all available instructions. 1182// printAvailableInsts(); 1183 1184 // Execute/writeback any instructions that are available. 1185 int insts_to_execute = fromIssue->size; 1186 int inst_num = 0; 1187 for (; inst_num < insts_to_execute; 1188 ++inst_num) { 1189 1190 DPRINTF(IEW, "Execute: Executing instructions from IQ.\n"); 1191 1192 DynInstPtr inst = instQueue.getInstToExecute(); 1193 1194 DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n", 1195 inst->readPC(), inst->threadNumber,inst->seqNum); 1196 1197 // Check if the instruction is squashed; if so then skip it 1198 if (inst->isSquashed()) { 1199 DPRINTF(IEW, "Execute: Instruction was squashed.\n"); 1200 1201 // Consider this instruction executed so that commit can go 1202 // ahead and retire the instruction. 1203 inst->setExecuted(); 1204 1205 // Not sure if I should set this here or just let commit try to 1206 // commit any squashed instructions. I like the latter a bit more. 1207 inst->setCanCommit(); 1208 1209 ++iewExecSquashedInsts; 1210 1211 decrWb(inst->seqNum); 1212 continue; 1213 } 1214 1215 Fault fault = NoFault; 1216 1217 // Execute instruction. 1218 // Note that if the instruction faults, it will be handled 1219 // at the commit stage. 1220 if (inst->isMemRef() && 1221 (!inst->isDataPrefetch() && !inst->isInstPrefetch())) { 1222 DPRINTF(IEW, "Execute: Calculating address for memory " 1223 "reference.\n"); 1224 1225 // Tell the LDSTQ to execute this instruction (if it is a load). 1226 if (inst->isLoad()) { 1227 // Loads will mark themselves as executed, and their writeback 1228 // event adds the instruction to the queue to commit 1229 fault = ldstQueue.executeLoad(inst); 1230 } else if (inst->isStore()) { 1231 fault = ldstQueue.executeStore(inst); 1232 1233 // If the store had a fault then it may not have a mem req 1234 if (!inst->isStoreConditional() && fault == NoFault) { 1235 inst->setExecuted(); 1236 1237 instToCommit(inst); 1238 } else if (fault != NoFault) { 1239 // If the instruction faulted, then we need to send it along to commit 1240 // without the instruction completing. 1241 DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n", 1242 fault->name(), inst->seqNum); 1243 1244 // Send this instruction to commit, also make sure iew stage 1245 // realizes there is activity. 1246 inst->setExecuted(); 1247 1248 instToCommit(inst); 1249 activityThisCycle(); 1250 } 1251 1252 // Store conditionals will mark themselves as 1253 // executed, and their writeback event will add the 1254 // instruction to the queue to commit. 1255 } else { 1256 panic("Unexpected memory type!\n"); 1257 } 1258 1259 } else { 1260 inst->execute(); 1261 1262 inst->setExecuted(); 1263 1264 instToCommit(inst); 1265 } 1266 1267 updateExeInstStats(inst); 1268 1269 // Check if branch prediction was correct, if not then we need 1270 // to tell commit to squash in flight instructions. Only 1271 // handle this if there hasn't already been something that 1272 // redirects fetch in this group of instructions. 1273 1274 // This probably needs to prioritize the redirects if a different 1275 // scheduler is used. Currently the scheduler schedules the oldest 1276 // instruction first, so the branch resolution order will be correct. 1277 ThreadID tid = inst->threadNumber; 1278 1279 if (!fetchRedirect[tid] || 1280 toCommit->squashedSeqNum[tid] > inst->seqNum) { 1281 1282 if (inst->mispredicted()) { 1283 fetchRedirect[tid] = true; 1284 1285 DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); 1286 DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n", 1287 inst->readPredPC(), inst->readPredNPC()); 1288 DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x," 1289 " NPC: %#x.\n", inst->readNextPC(), 1290 inst->readNextNPC()); 1291 // If incorrect, then signal the ROB that it must be squashed. 1292 squashDueToBranch(inst, tid); 1293 1294 if (inst->readPredTaken()) { 1295 predictedTakenIncorrect++; 1296 } else { 1297 predictedNotTakenIncorrect++; 1298 } 1299 } else if (ldstQueue.violation(tid)) { 1300 assert(inst->isMemRef()); 1301 // If there was an ordering violation, then get the 1302 // DynInst that caused the violation. Note that this 1303 // clears the violation signal. 1304 DynInstPtr violator; 1305 violator = ldstQueue.getMemDepViolator(tid); 1306 1307 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: " 1308 "%#x, inst PC: %#x. Addr is: %#x.\n", 1309 violator->readPC(), inst->readPC(), inst->physEffAddr); 1310 1311 // Ensure the violating instruction is older than 1312 // current squash 1313/* if (fetchRedirect[tid] && 1314 violator->seqNum >= toCommit->squashedSeqNum[tid] + 1) 1315 continue; 1316*/ 1317 fetchRedirect[tid] = true; 1318 1319 // Tell the instruction queue that a violation has occured. 1320 instQueue.violation(inst, violator); 1321 1322 // Squash. 1323 squashDueToMemOrder(inst,tid); 1324 1325 ++memOrderViolationEvents; 1326 } else if (ldstQueue.loadBlocked(tid) && 1327 !ldstQueue.isLoadBlockedHandled(tid)) { 1328 fetchRedirect[tid] = true; 1329 1330 DPRINTF(IEW, "Load operation couldn't execute because the " 1331 "memory system is blocked. PC: %#x [sn:%lli]\n", 1332 inst->readPC(), inst->seqNum); 1333 1334 squashDueToMemBlocked(inst, tid); 1335 } 1336 } else { 1337 // Reset any state associated with redirects that will not 1338 // be used. 1339 if (ldstQueue.violation(tid)) { 1340 assert(inst->isMemRef()); 1341 1342 DynInstPtr violator = ldstQueue.getMemDepViolator(tid); 1343 1344 DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: " 1345 "%#x, inst PC: %#x. Addr is: %#x.\n", 1346 violator->readPC(), inst->readPC(), inst->physEffAddr); 1347 DPRINTF(IEW, "Violation will not be handled because " 1348 "already squashing\n"); 1349 1350 ++memOrderViolationEvents; 1351 } 1352 if (ldstQueue.loadBlocked(tid) && 1353 !ldstQueue.isLoadBlockedHandled(tid)) { 1354 DPRINTF(IEW, "Load operation couldn't execute because the " 1355 "memory system is blocked. PC: %#x [sn:%lli]\n", 1356 inst->readPC(), inst->seqNum); 1357 DPRINTF(IEW, "Blocked load will not be handled because " 1358 "already squashing\n"); 1359 1360 ldstQueue.setLoadBlockedHandled(tid); 1361 } 1362 1363 } 1364 } 1365 1366 // Update and record activity if we processed any instructions. 1367 if (inst_num) { 1368 if (exeStatus == Idle) { 1369 exeStatus = Running; 1370 } 1371 1372 updatedQueues = true; 1373 1374 cpu->activityThisCycle(); 1375 } 1376 1377 // Need to reset this in case a writeback event needs to write into the 1378 // iew queue. That way the writeback event will write into the correct 1379 // spot in the queue. 1380 wbNumInst = 0; 1381} 1382 1383template <class Impl> 1384void 1385DefaultIEW<Impl>::writebackInsts() 1386{ 1387 // Loop through the head of the time buffer and wake any 1388 // dependents. These instructions are about to write back. Also 1389 // mark scoreboard that this instruction is finally complete. 1390 // Either have IEW have direct access to scoreboard, or have this 1391 // as part of backwards communication. 1392 for (int inst_num = 0; inst_num < wbWidth && 1393 toCommit->insts[inst_num]; inst_num++) { 1394 DynInstPtr inst = toCommit->insts[inst_num]; 1395 ThreadID tid = inst->threadNumber; 1396 1397 DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n", 1398 inst->seqNum, inst->readPC()); 1399 1400 iewInstsToCommit[tid]++; 1401 1402 // Some instructions will be sent to commit without having 1403 // executed because they need commit to handle them. 1404 // E.g. Uncached loads have not actually executed when they 1405 // are first sent to commit. Instead commit must tell the LSQ 1406 // when it's ready to execute the uncached load. 1407 if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) { 1408 int dependents = instQueue.wakeDependents(inst); 1409 1410 for (int i = 0; i < inst->numDestRegs(); i++) { 1411 //mark as Ready 1412 DPRINTF(IEW,"Setting Destination Register %i\n", 1413 inst->renamedDestRegIdx(i)); 1414 scoreboard->setReg(inst->renamedDestRegIdx(i)); 1415 } 1416 1417 if (dependents) { 1418 producerInst[tid]++; 1419 consumerInst[tid]+= dependents; 1420 } 1421 writebackCount[tid]++; 1422 } 1423 1424 decrWb(inst->seqNum); 1425 } 1426} 1427 1428template<class Impl> 1429void 1430DefaultIEW<Impl>::tick() 1431{ 1432 wbNumInst = 0; 1433 wbCycle = 0; 1434 1435 wroteToTimeBuffer = false; 1436 updatedQueues = false; 1437 1438 sortInsts(); 1439 1440 // Free function units marked as being freed this cycle. 1441 fuPool->processFreeUnits(); 1442 1443 list<ThreadID>::iterator threads = activeThreads->begin(); 1444 list<ThreadID>::iterator end = activeThreads->end(); 1445 1446 // Check stall and squash signals, dispatch any instructions. 1447 while (threads != end) { 1448 ThreadID tid = *threads++; 1449 1450 DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid); 1451 1452 checkSignalsAndUpdate(tid); 1453 dispatch(tid); 1454 } 1455 1456 if (exeStatus != Squashing) { 1457 executeInsts(); 1458 1459 writebackInsts(); 1460 1461 // Have the instruction queue try to schedule any ready instructions. 1462 // (In actuality, this scheduling is for instructions that will 1463 // be executed next cycle.) 1464 instQueue.scheduleReadyInsts(); 1465 1466 // Also should advance its own time buffers if the stage ran. 1467 // Not the best place for it, but this works (hopefully). 1468 issueToExecQueue.advance(); 1469 } 1470 1471 bool broadcast_free_entries = false; 1472 1473 if (updatedQueues || exeStatus == Running || updateLSQNextCycle) { 1474 exeStatus = Idle; 1475 updateLSQNextCycle = false; 1476 1477 broadcast_free_entries = true; 1478 } 1479 1480 // Writeback any stores using any leftover bandwidth. 1481 ldstQueue.writebackStores(); 1482 1483 // Check the committed load/store signals to see if there's a load 1484 // or store to commit. Also check if it's being told to execute a 1485 // nonspeculative instruction. 1486 // This is pretty inefficient... 1487 1488 threads = activeThreads->begin(); 1489 while (threads != end) { 1490 ThreadID tid = (*threads++); 1491 1492 DPRINTF(IEW,"Processing [tid:%i]\n",tid); 1493 1494 // Update structures based on instructions committed. 1495 if (fromCommit->commitInfo[tid].doneSeqNum != 0 && 1496 !fromCommit->commitInfo[tid].squash && 1497 !fromCommit->commitInfo[tid].robSquashing) { 1498 1499 ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid); 1500 1501 ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid); 1502 1503 updateLSQNextCycle = true; 1504 instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid); 1505 } 1506 1507 if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) { 1508 1509 //DPRINTF(IEW,"NonspecInst from thread %i",tid); 1510 if (fromCommit->commitInfo[tid].uncached) { 1511 instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad); 1512 fromCommit->commitInfo[tid].uncachedLoad->setAtCommit(); 1513 } else { 1514 instQueue.scheduleNonSpec( 1515 fromCommit->commitInfo[tid].nonSpecSeqNum); 1516 } 1517 } 1518 1519 if (broadcast_free_entries) { 1520 toFetch->iewInfo[tid].iqCount = 1521 instQueue.getCount(tid); 1522 toFetch->iewInfo[tid].ldstqCount = 1523 ldstQueue.getCount(tid); 1524 1525 toRename->iewInfo[tid].usedIQ = true; 1526 toRename->iewInfo[tid].freeIQEntries = 1527 instQueue.numFreeEntries(); 1528 toRename->iewInfo[tid].usedLSQ = true; 1529 toRename->iewInfo[tid].freeLSQEntries = 1530 ldstQueue.numFreeEntries(tid); 1531 1532 wroteToTimeBuffer = true; 1533 } 1534 1535 DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n", 1536 tid, toRename->iewInfo[tid].dispatched); 1537 } 1538 1539 DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). " 1540 "LSQ has %i free entries.\n", 1541 instQueue.numFreeEntries(), instQueue.hasReadyInsts(), 1542 ldstQueue.numFreeEntries()); 1543 1544 updateStatus(); 1545 1546 if (wroteToTimeBuffer) { 1547 DPRINTF(Activity, "Activity this cycle.\n"); 1548 cpu->activityThisCycle(); 1549 } 1550} 1551 1552template <class Impl> 1553void 1554DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst) 1555{ 1556 ThreadID tid = inst->threadNumber; 1557 1558 // 1559 // Pick off the software prefetches 1560 // 1561#ifdef TARGET_ALPHA 1562 if (inst->isDataPrefetch()) 1563 iewExecutedSwp[tid]++; 1564 else 1565 iewIewExecutedcutedInsts++; 1566#else 1567 iewExecutedInsts++; 1568#endif 1569 1570 // 1571 // Control operations 1572 // 1573 if (inst->isControl()) 1574 iewExecutedBranches[tid]++; 1575 1576 // 1577 // Memory operations 1578 // 1579 if (inst->isMemRef()) { 1580 iewExecutedRefs[tid]++; 1581 1582 if (inst->isLoad()) { 1583 iewExecLoadInsts[tid]++; 1584 } 1585 } 1586} 1587