iew_impl.hh revision 6036
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40#include "params/DerivO3CPU.hh"
41
42template<class Impl>
43DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
44    : issueToExecQueue(params->backComSize, params->forwardComSize),
45      cpu(_cpu),
46      instQueue(_cpu, this, params),
47      ldstQueue(_cpu, this, params),
48      fuPool(params->fuPool),
49      commitToIEWDelay(params->commitToIEWDelay),
50      renameToIEWDelay(params->renameToIEWDelay),
51      issueToExecuteDelay(params->issueToExecuteDelay),
52      dispatchWidth(params->dispatchWidth),
53      issueWidth(params->issueWidth),
54      wbOutstanding(0),
55      wbWidth(params->wbWidth),
56      numThreads(params->numThreads),
57      switchedOut(false)
58{
59    _status = Active;
60    exeStatus = Running;
61    wbStatus = Idle;
62
63    // Setup wire to read instructions coming from issue.
64    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
65
66    // Instruction queue needs the queue between issue and execute.
67    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
68
69    for (int i=0; i < numThreads; i++) {
70        dispatchStatus[i] = Running;
71        stalls[i].commit = false;
72        fetchRedirect[i] = false;
73    }
74
75    wbMax = wbWidth * params->wbDepth;
76
77    updateLSQNextCycle = false;
78
79    ableToIssue = true;
80
81    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
82}
83
84template <class Impl>
85std::string
86DefaultIEW<Impl>::name() const
87{
88    return cpu->name() + ".iew";
89}
90
91template <class Impl>
92void
93DefaultIEW<Impl>::regStats()
94{
95    using namespace Stats;
96
97    instQueue.regStats();
98    ldstQueue.regStats();
99
100    iewIdleCycles
101        .name(name() + ".iewIdleCycles")
102        .desc("Number of cycles IEW is idle");
103
104    iewSquashCycles
105        .name(name() + ".iewSquashCycles")
106        .desc("Number of cycles IEW is squashing");
107
108    iewBlockCycles
109        .name(name() + ".iewBlockCycles")
110        .desc("Number of cycles IEW is blocking");
111
112    iewUnblockCycles
113        .name(name() + ".iewUnblockCycles")
114        .desc("Number of cycles IEW is unblocking");
115
116    iewDispatchedInsts
117        .name(name() + ".iewDispatchedInsts")
118        .desc("Number of instructions dispatched to IQ");
119
120    iewDispSquashedInsts
121        .name(name() + ".iewDispSquashedInsts")
122        .desc("Number of squashed instructions skipped by dispatch");
123
124    iewDispLoadInsts
125        .name(name() + ".iewDispLoadInsts")
126        .desc("Number of dispatched load instructions");
127
128    iewDispStoreInsts
129        .name(name() + ".iewDispStoreInsts")
130        .desc("Number of dispatched store instructions");
131
132    iewDispNonSpecInsts
133        .name(name() + ".iewDispNonSpecInsts")
134        .desc("Number of dispatched non-speculative instructions");
135
136    iewIQFullEvents
137        .name(name() + ".iewIQFullEvents")
138        .desc("Number of times the IQ has become full, causing a stall");
139
140    iewLSQFullEvents
141        .name(name() + ".iewLSQFullEvents")
142        .desc("Number of times the LSQ has become full, causing a stall");
143
144    memOrderViolationEvents
145        .name(name() + ".memOrderViolationEvents")
146        .desc("Number of memory order violations");
147
148    predictedTakenIncorrect
149        .name(name() + ".predictedTakenIncorrect")
150        .desc("Number of branches that were predicted taken incorrectly");
151
152    predictedNotTakenIncorrect
153        .name(name() + ".predictedNotTakenIncorrect")
154        .desc("Number of branches that were predicted not taken incorrectly");
155
156    branchMispredicts
157        .name(name() + ".branchMispredicts")
158        .desc("Number of branch mispredicts detected at execute");
159
160    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
161
162    iewExecutedInsts
163        .name(name() + ".iewExecutedInsts")
164        .desc("Number of executed instructions");
165
166    iewExecLoadInsts
167        .init(cpu->number_of_threads)
168        .name(name() + ".iewExecLoadInsts")
169        .desc("Number of load instructions executed")
170        .flags(total);
171
172    iewExecSquashedInsts
173        .name(name() + ".iewExecSquashedInsts")
174        .desc("Number of squashed instructions skipped in execute");
175
176    iewExecutedSwp
177        .init(cpu->number_of_threads)
178        .name(name() + ".EXEC:swp")
179        .desc("number of swp insts executed")
180        .flags(total);
181
182    iewExecutedNop
183        .init(cpu->number_of_threads)
184        .name(name() + ".EXEC:nop")
185        .desc("number of nop insts executed")
186        .flags(total);
187
188    iewExecutedRefs
189        .init(cpu->number_of_threads)
190        .name(name() + ".EXEC:refs")
191        .desc("number of memory reference insts executed")
192        .flags(total);
193
194    iewExecutedBranches
195        .init(cpu->number_of_threads)
196        .name(name() + ".EXEC:branches")
197        .desc("Number of branches executed")
198        .flags(total);
199
200    iewExecStoreInsts
201        .name(name() + ".EXEC:stores")
202        .desc("Number of stores executed")
203        .flags(total);
204    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
205
206    iewExecRate
207        .name(name() + ".EXEC:rate")
208        .desc("Inst execution rate")
209        .flags(total);
210
211    iewExecRate = iewExecutedInsts / cpu->numCycles;
212
213    iewInstsToCommit
214        .init(cpu->number_of_threads)
215        .name(name() + ".WB:sent")
216        .desc("cumulative count of insts sent to commit")
217        .flags(total);
218
219    writebackCount
220        .init(cpu->number_of_threads)
221        .name(name() + ".WB:count")
222        .desc("cumulative count of insts written-back")
223        .flags(total);
224
225    producerInst
226        .init(cpu->number_of_threads)
227        .name(name() + ".WB:producers")
228        .desc("num instructions producing a value")
229        .flags(total);
230
231    consumerInst
232        .init(cpu->number_of_threads)
233        .name(name() + ".WB:consumers")
234        .desc("num instructions consuming a value")
235        .flags(total);
236
237    wbPenalized
238        .init(cpu->number_of_threads)
239        .name(name() + ".WB:penalized")
240        .desc("number of instrctions required to write to 'other' IQ")
241        .flags(total);
242
243    wbPenalizedRate
244        .name(name() + ".WB:penalized_rate")
245        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
246        .flags(total);
247
248    wbPenalizedRate = wbPenalized / writebackCount;
249
250    wbFanout
251        .name(name() + ".WB:fanout")
252        .desc("average fanout of values written-back")
253        .flags(total);
254
255    wbFanout = producerInst / consumerInst;
256
257    wbRate
258        .name(name() + ".WB:rate")
259        .desc("insts written-back per cycle")
260        .flags(total);
261    wbRate = writebackCount / cpu->numCycles;
262}
263
264template<class Impl>
265void
266DefaultIEW<Impl>::initStage()
267{
268    for (int tid=0; tid < numThreads; tid++) {
269        toRename->iewInfo[tid].usedIQ = true;
270        toRename->iewInfo[tid].freeIQEntries =
271            instQueue.numFreeEntries(tid);
272
273        toRename->iewInfo[tid].usedLSQ = true;
274        toRename->iewInfo[tid].freeLSQEntries =
275            ldstQueue.numFreeEntries(tid);
276    }
277
278    cpu->activateStage(O3CPU::IEWIdx);
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
284{
285    timeBuffer = tb_ptr;
286
287    // Setup wire to read information from time buffer, from commit.
288    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
289
290    // Setup wire to write information back to previous stages.
291    toRename = timeBuffer->getWire(0);
292
293    toFetch = timeBuffer->getWire(0);
294
295    // Instruction queue also needs main time buffer.
296    instQueue.setTimeBuffer(tb_ptr);
297}
298
299template<class Impl>
300void
301DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
302{
303    renameQueue = rq_ptr;
304
305    // Setup wire to read information from rename queue.
306    fromRename = renameQueue->getWire(-renameToIEWDelay);
307}
308
309template<class Impl>
310void
311DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
312{
313    iewQueue = iq_ptr;
314
315    // Setup wire to write instructions to commit.
316    toCommit = iewQueue->getWire(0);
317}
318
319template<class Impl>
320void
321DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
322{
323    activeThreads = at_ptr;
324
325    ldstQueue.setActiveThreads(at_ptr);
326    instQueue.setActiveThreads(at_ptr);
327}
328
329template<class Impl>
330void
331DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
332{
333    scoreboard = sb_ptr;
334}
335
336template <class Impl>
337bool
338DefaultIEW<Impl>::drain()
339{
340    // IEW is ready to drain at any time.
341    cpu->signalDrained();
342    return true;
343}
344
345template <class Impl>
346void
347DefaultIEW<Impl>::resume()
348{
349}
350
351template <class Impl>
352void
353DefaultIEW<Impl>::switchOut()
354{
355    // Clear any state.
356    switchedOut = true;
357    assert(insts[0].empty());
358    assert(skidBuffer[0].empty());
359
360    instQueue.switchOut();
361    ldstQueue.switchOut();
362    fuPool->switchOut();
363
364    for (int i = 0; i < numThreads; i++) {
365        while (!insts[i].empty())
366            insts[i].pop();
367        while (!skidBuffer[i].empty())
368            skidBuffer[i].pop();
369    }
370}
371
372template <class Impl>
373void
374DefaultIEW<Impl>::takeOverFrom()
375{
376    // Reset all state.
377    _status = Active;
378    exeStatus = Running;
379    wbStatus = Idle;
380    switchedOut = false;
381
382    instQueue.takeOverFrom();
383    ldstQueue.takeOverFrom();
384    fuPool->takeOverFrom();
385
386    initStage();
387    cpu->activityThisCycle();
388
389    for (int i=0; i < numThreads; i++) {
390        dispatchStatus[i] = Running;
391        stalls[i].commit = false;
392        fetchRedirect[i] = false;
393    }
394
395    updateLSQNextCycle = false;
396
397    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
398        issueToExecQueue.advance();
399    }
400}
401
402template<class Impl>
403void
404DefaultIEW<Impl>::squash(unsigned tid)
405{
406    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
407            tid);
408
409    // Tell the IQ to start squashing.
410    instQueue.squash(tid);
411
412    // Tell the LDSTQ to start squashing.
413    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
414    updatedQueues = true;
415
416    // Clear the skid buffer in case it has any data in it.
417    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
418            tid, fromCommit->commitInfo[tid].doneSeqNum);
419
420    while (!skidBuffer[tid].empty()) {
421        if (skidBuffer[tid].front()->isLoad() ||
422            skidBuffer[tid].front()->isStore() ) {
423            toRename->iewInfo[tid].dispatchedToLSQ++;
424        }
425
426        toRename->iewInfo[tid].dispatched++;
427
428        skidBuffer[tid].pop();
429    }
430
431    emptyRenameInsts(tid);
432}
433
434template<class Impl>
435void
436DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
437{
438    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
439            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
440
441    toCommit->squash[tid] = true;
442    toCommit->squashedSeqNum[tid] = inst->seqNum;
443    toCommit->mispredPC[tid] = inst->readPC();
444    toCommit->branchMispredict[tid] = true;
445
446#if ISA_HAS_DELAY_SLOT
447    int instSize = sizeof(TheISA::MachInst);
448    toCommit->branchTaken[tid] =
449        !(inst->readNextPC() + instSize == inst->readNextNPC() &&
450          (inst->readNextPC() == inst->readPC() + instSize ||
451           inst->readNextPC() == inst->readPC() + 2 * instSize));
452#else
453    toCommit->branchTaken[tid] = inst->readNextPC() !=
454        (inst->readPC() + sizeof(TheISA::MachInst));
455#endif
456    toCommit->nextPC[tid] = inst->readNextPC();
457    toCommit->nextNPC[tid] = inst->readNextNPC();
458    toCommit->nextMicroPC[tid] = inst->readNextMicroPC();
459
460    toCommit->includeSquashInst[tid] = false;
461
462    wroteToTimeBuffer = true;
463}
464
465template<class Impl>
466void
467DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
468{
469    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
470            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
471
472    toCommit->squash[tid] = true;
473    toCommit->squashedSeqNum[tid] = inst->seqNum;
474    toCommit->nextPC[tid] = inst->readNextPC();
475    toCommit->nextNPC[tid] = inst->readNextNPC();
476    toCommit->branchMispredict[tid] = false;
477
478    toCommit->includeSquashInst[tid] = false;
479
480    wroteToTimeBuffer = true;
481}
482
483template<class Impl>
484void
485DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
486{
487    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
488            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
489
490    toCommit->squash[tid] = true;
491    toCommit->squashedSeqNum[tid] = inst->seqNum;
492    toCommit->nextPC[tid] = inst->readPC();
493    toCommit->nextNPC[tid] = inst->readNextPC();
494    toCommit->branchMispredict[tid] = false;
495
496    // Must include the broadcasted SN in the squash.
497    toCommit->includeSquashInst[tid] = true;
498
499    ldstQueue.setLoadBlockedHandled(tid);
500
501    wroteToTimeBuffer = true;
502}
503
504template<class Impl>
505void
506DefaultIEW<Impl>::block(unsigned tid)
507{
508    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
509
510    if (dispatchStatus[tid] != Blocked &&
511        dispatchStatus[tid] != Unblocking) {
512        toRename->iewBlock[tid] = true;
513        wroteToTimeBuffer = true;
514    }
515
516    // Add the current inputs to the skid buffer so they can be
517    // reprocessed when this stage unblocks.
518    skidInsert(tid);
519
520    dispatchStatus[tid] = Blocked;
521}
522
523template<class Impl>
524void
525DefaultIEW<Impl>::unblock(unsigned tid)
526{
527    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
528            "buffer %u.\n",tid, tid);
529
530    // If the skid bufffer is empty, signal back to previous stages to unblock.
531    // Also switch status to running.
532    if (skidBuffer[tid].empty()) {
533        toRename->iewUnblock[tid] = true;
534        wroteToTimeBuffer = true;
535        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
536        dispatchStatus[tid] = Running;
537    }
538}
539
540template<class Impl>
541void
542DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
543{
544    instQueue.wakeDependents(inst);
545}
546
547template<class Impl>
548void
549DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
550{
551    instQueue.rescheduleMemInst(inst);
552}
553
554template<class Impl>
555void
556DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
557{
558    instQueue.replayMemInst(inst);
559}
560
561template<class Impl>
562void
563DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
564{
565    // This function should not be called after writebackInsts in a
566    // single cycle.  That will cause problems with an instruction
567    // being added to the queue to commit without being processed by
568    // writebackInsts prior to being sent to commit.
569
570    // First check the time slot that this instruction will write
571    // to.  If there are free write ports at the time, then go ahead
572    // and write the instruction to that time.  If there are not,
573    // keep looking back to see where's the first time there's a
574    // free slot.
575    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
576        ++wbNumInst;
577        if (wbNumInst == wbWidth) {
578            ++wbCycle;
579            wbNumInst = 0;
580        }
581
582        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
583    }
584
585    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
586            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
587    // Add finished instruction to queue to commit.
588    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
589    (*iewQueue)[wbCycle].size++;
590}
591
592template <class Impl>
593unsigned
594DefaultIEW<Impl>::validInstsFromRename()
595{
596    unsigned inst_count = 0;
597
598    for (int i=0; i<fromRename->size; i++) {
599        if (!fromRename->insts[i]->isSquashed())
600            inst_count++;
601    }
602
603    return inst_count;
604}
605
606template<class Impl>
607void
608DefaultIEW<Impl>::skidInsert(unsigned tid)
609{
610    DynInstPtr inst = NULL;
611
612    while (!insts[tid].empty()) {
613        inst = insts[tid].front();
614
615        insts[tid].pop();
616
617        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
618                "dispatch skidBuffer %i\n",tid, inst->seqNum,
619                inst->readPC(),tid);
620
621        skidBuffer[tid].push(inst);
622    }
623
624    assert(skidBuffer[tid].size() <= skidBufferMax &&
625           "Skidbuffer Exceeded Max Size");
626}
627
628template<class Impl>
629int
630DefaultIEW<Impl>::skidCount()
631{
632    int max=0;
633
634    std::list<unsigned>::iterator threads = activeThreads->begin();
635    std::list<unsigned>::iterator end = activeThreads->end();
636
637    while (threads != end) {
638        unsigned tid = *threads++;
639        unsigned thread_count = skidBuffer[tid].size();
640        if (max < thread_count)
641            max = thread_count;
642    }
643
644    return max;
645}
646
647template<class Impl>
648bool
649DefaultIEW<Impl>::skidsEmpty()
650{
651    std::list<unsigned>::iterator threads = activeThreads->begin();
652    std::list<unsigned>::iterator end = activeThreads->end();
653
654    while (threads != end) {
655        unsigned tid = *threads++;
656
657        if (!skidBuffer[tid].empty())
658            return false;
659    }
660
661    return true;
662}
663
664template <class Impl>
665void
666DefaultIEW<Impl>::updateStatus()
667{
668    bool any_unblocking = false;
669
670    std::list<unsigned>::iterator threads = activeThreads->begin();
671    std::list<unsigned>::iterator end = activeThreads->end();
672
673    while (threads != end) {
674        unsigned tid = *threads++;
675
676        if (dispatchStatus[tid] == Unblocking) {
677            any_unblocking = true;
678            break;
679        }
680    }
681
682    // If there are no ready instructions waiting to be scheduled by the IQ,
683    // and there's no stores waiting to write back, and dispatch is not
684    // unblocking, then there is no internal activity for the IEW stage.
685    if (_status == Active && !instQueue.hasReadyInsts() &&
686        !ldstQueue.willWB() && !any_unblocking) {
687        DPRINTF(IEW, "IEW switching to idle\n");
688
689        deactivateStage();
690
691        _status = Inactive;
692    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
693                                       ldstQueue.willWB() ||
694                                       any_unblocking)) {
695        // Otherwise there is internal activity.  Set to active.
696        DPRINTF(IEW, "IEW switching to active\n");
697
698        activateStage();
699
700        _status = Active;
701    }
702}
703
704template <class Impl>
705void
706DefaultIEW<Impl>::resetEntries()
707{
708    instQueue.resetEntries();
709    ldstQueue.resetEntries();
710}
711
712template <class Impl>
713void
714DefaultIEW<Impl>::readStallSignals(unsigned tid)
715{
716    if (fromCommit->commitBlock[tid]) {
717        stalls[tid].commit = true;
718    }
719
720    if (fromCommit->commitUnblock[tid]) {
721        assert(stalls[tid].commit);
722        stalls[tid].commit = false;
723    }
724}
725
726template <class Impl>
727bool
728DefaultIEW<Impl>::checkStall(unsigned tid)
729{
730    bool ret_val(false);
731
732    if (stalls[tid].commit) {
733        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
734        ret_val = true;
735    } else if (instQueue.isFull(tid)) {
736        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
737        ret_val = true;
738    } else if (ldstQueue.isFull(tid)) {
739        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
740
741        if (ldstQueue.numLoads(tid) > 0 ) {
742
743            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
744                    tid,ldstQueue.getLoadHeadSeqNum(tid));
745        }
746
747        if (ldstQueue.numStores(tid) > 0) {
748
749            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
750                    tid,ldstQueue.getStoreHeadSeqNum(tid));
751        }
752
753        ret_val = true;
754    } else if (ldstQueue.isStalled(tid)) {
755        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
756        ret_val = true;
757    }
758
759    return ret_val;
760}
761
762template <class Impl>
763void
764DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
765{
766    // Check if there's a squash signal, squash if there is
767    // Check stall signals, block if there is.
768    // If status was Blocked
769    //     if so then go to unblocking
770    // If status was Squashing
771    //     check if squashing is not high.  Switch to running this cycle.
772
773    readStallSignals(tid);
774
775    if (fromCommit->commitInfo[tid].squash) {
776        squash(tid);
777
778        if (dispatchStatus[tid] == Blocked ||
779            dispatchStatus[tid] == Unblocking) {
780            toRename->iewUnblock[tid] = true;
781            wroteToTimeBuffer = true;
782        }
783
784        dispatchStatus[tid] = Squashing;
785
786        fetchRedirect[tid] = false;
787        return;
788    }
789
790    if (fromCommit->commitInfo[tid].robSquashing) {
791        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
792
793        dispatchStatus[tid] = Squashing;
794
795        emptyRenameInsts(tid);
796        wroteToTimeBuffer = true;
797        return;
798    }
799
800    if (checkStall(tid)) {
801        block(tid);
802        dispatchStatus[tid] = Blocked;
803        return;
804    }
805
806    if (dispatchStatus[tid] == Blocked) {
807        // Status from previous cycle was blocked, but there are no more stall
808        // conditions.  Switch over to unblocking.
809        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
810                tid);
811
812        dispatchStatus[tid] = Unblocking;
813
814        unblock(tid);
815
816        return;
817    }
818
819    if (dispatchStatus[tid] == Squashing) {
820        // Switch status to running if rename isn't being told to block or
821        // squash this cycle.
822        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
823                tid);
824
825        dispatchStatus[tid] = Running;
826
827        return;
828    }
829}
830
831template <class Impl>
832void
833DefaultIEW<Impl>::sortInsts()
834{
835    int insts_from_rename = fromRename->size;
836#ifdef DEBUG
837    for (int i = 0; i < numThreads; i++)
838        assert(insts[i].empty());
839#endif
840    for (int i = 0; i < insts_from_rename; ++i) {
841        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
842    }
843}
844
845template <class Impl>
846void
847DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
848{
849    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
850
851    while (!insts[tid].empty()) {
852
853        if (insts[tid].front()->isLoad() ||
854            insts[tid].front()->isStore() ) {
855            toRename->iewInfo[tid].dispatchedToLSQ++;
856        }
857
858        toRename->iewInfo[tid].dispatched++;
859
860        insts[tid].pop();
861    }
862}
863
864template <class Impl>
865void
866DefaultIEW<Impl>::wakeCPU()
867{
868    cpu->wakeCPU();
869}
870
871template <class Impl>
872void
873DefaultIEW<Impl>::activityThisCycle()
874{
875    DPRINTF(Activity, "Activity this cycle.\n");
876    cpu->activityThisCycle();
877}
878
879template <class Impl>
880inline void
881DefaultIEW<Impl>::activateStage()
882{
883    DPRINTF(Activity, "Activating stage.\n");
884    cpu->activateStage(O3CPU::IEWIdx);
885}
886
887template <class Impl>
888inline void
889DefaultIEW<Impl>::deactivateStage()
890{
891    DPRINTF(Activity, "Deactivating stage.\n");
892    cpu->deactivateStage(O3CPU::IEWIdx);
893}
894
895template<class Impl>
896void
897DefaultIEW<Impl>::dispatch(unsigned tid)
898{
899    // If status is Running or idle,
900    //     call dispatchInsts()
901    // If status is Unblocking,
902    //     buffer any instructions coming from rename
903    //     continue trying to empty skid buffer
904    //     check if stall conditions have passed
905
906    if (dispatchStatus[tid] == Blocked) {
907        ++iewBlockCycles;
908
909    } else if (dispatchStatus[tid] == Squashing) {
910        ++iewSquashCycles;
911    }
912
913    // Dispatch should try to dispatch as many instructions as its bandwidth
914    // will allow, as long as it is not currently blocked.
915    if (dispatchStatus[tid] == Running ||
916        dispatchStatus[tid] == Idle) {
917        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
918                "dispatch.\n", tid);
919
920        dispatchInsts(tid);
921    } else if (dispatchStatus[tid] == Unblocking) {
922        // Make sure that the skid buffer has something in it if the
923        // status is unblocking.
924        assert(!skidsEmpty());
925
926        // If the status was unblocking, then instructions from the skid
927        // buffer were used.  Remove those instructions and handle
928        // the rest of unblocking.
929        dispatchInsts(tid);
930
931        ++iewUnblockCycles;
932
933        if (validInstsFromRename()) {
934            // Add the current inputs to the skid buffer so they can be
935            // reprocessed when this stage unblocks.
936            skidInsert(tid);
937        }
938
939        unblock(tid);
940    }
941}
942
943template <class Impl>
944void
945DefaultIEW<Impl>::dispatchInsts(unsigned tid)
946{
947    // Obtain instructions from skid buffer if unblocking, or queue from rename
948    // otherwise.
949    std::queue<DynInstPtr> &insts_to_dispatch =
950        dispatchStatus[tid] == Unblocking ?
951        skidBuffer[tid] : insts[tid];
952
953    int insts_to_add = insts_to_dispatch.size();
954
955    DynInstPtr inst;
956    bool add_to_iq = false;
957    int dis_num_inst = 0;
958
959    // Loop through the instructions, putting them in the instruction
960    // queue.
961    for ( ; dis_num_inst < insts_to_add &&
962              dis_num_inst < dispatchWidth;
963          ++dis_num_inst)
964    {
965        inst = insts_to_dispatch.front();
966
967        if (dispatchStatus[tid] == Unblocking) {
968            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
969                    "buffer\n", tid);
970        }
971
972        // Make sure there's a valid instruction there.
973        assert(inst);
974
975        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
976                "IQ.\n",
977                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
978
979        // Be sure to mark these instructions as ready so that the
980        // commit stage can go ahead and execute them, and mark
981        // them as issued so the IQ doesn't reprocess them.
982
983        // Check for squashed instructions.
984        if (inst->isSquashed()) {
985            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
986                    "not adding to IQ.\n", tid);
987
988            ++iewDispSquashedInsts;
989
990            insts_to_dispatch.pop();
991
992            //Tell Rename That An Instruction has been processed
993            if (inst->isLoad() || inst->isStore()) {
994                toRename->iewInfo[tid].dispatchedToLSQ++;
995            }
996            toRename->iewInfo[tid].dispatched++;
997
998            continue;
999        }
1000
1001        // Check for full conditions.
1002        if (instQueue.isFull(tid)) {
1003            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1004
1005            // Call function to start blocking.
1006            block(tid);
1007
1008            // Set unblock to false. Special case where we are using
1009            // skidbuffer (unblocking) instructions but then we still
1010            // get full in the IQ.
1011            toRename->iewUnblock[tid] = false;
1012
1013            ++iewIQFullEvents;
1014            break;
1015        } else if (ldstQueue.isFull(tid)) {
1016            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1017
1018            // Call function to start blocking.
1019            block(tid);
1020
1021            // Set unblock to false. Special case where we are using
1022            // skidbuffer (unblocking) instructions but then we still
1023            // get full in the IQ.
1024            toRename->iewUnblock[tid] = false;
1025
1026            ++iewLSQFullEvents;
1027            break;
1028        }
1029
1030        // Otherwise issue the instruction just fine.
1031        if (inst->isLoad()) {
1032            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1033                    "encountered, adding to LSQ.\n", tid);
1034
1035            // Reserve a spot in the load store queue for this
1036            // memory access.
1037            ldstQueue.insertLoad(inst);
1038
1039            ++iewDispLoadInsts;
1040
1041            add_to_iq = true;
1042
1043            toRename->iewInfo[tid].dispatchedToLSQ++;
1044        } else if (inst->isStore()) {
1045            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1046                    "encountered, adding to LSQ.\n", tid);
1047
1048            ldstQueue.insertStore(inst);
1049
1050            ++iewDispStoreInsts;
1051
1052            if (inst->isStoreConditional()) {
1053                // Store conditionals need to be set as "canCommit()"
1054                // so that commit can process them when they reach the
1055                // head of commit.
1056                // @todo: This is somewhat specific to Alpha.
1057                inst->setCanCommit();
1058                instQueue.insertNonSpec(inst);
1059                add_to_iq = false;
1060
1061                ++iewDispNonSpecInsts;
1062            } else {
1063                add_to_iq = true;
1064            }
1065
1066            toRename->iewInfo[tid].dispatchedToLSQ++;
1067        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1068            // Same as non-speculative stores.
1069            inst->setCanCommit();
1070            instQueue.insertBarrier(inst);
1071            add_to_iq = false;
1072        } else if (inst->isNop()) {
1073            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1074                    "skipping.\n", tid);
1075
1076            inst->setIssued();
1077            inst->setExecuted();
1078            inst->setCanCommit();
1079
1080            instQueue.recordProducer(inst);
1081
1082            iewExecutedNop[tid]++;
1083
1084            add_to_iq = false;
1085        } else if (inst->isExecuted()) {
1086            assert(0 && "Instruction shouldn't be executed.\n");
1087            DPRINTF(IEW, "Issue: Executed branch encountered, "
1088                    "skipping.\n");
1089
1090            inst->setIssued();
1091            inst->setCanCommit();
1092
1093            instQueue.recordProducer(inst);
1094
1095            add_to_iq = false;
1096        } else {
1097            add_to_iq = true;
1098        }
1099        if (inst->isNonSpeculative()) {
1100            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1101                    "encountered, skipping.\n", tid);
1102
1103            // Same as non-speculative stores.
1104            inst->setCanCommit();
1105
1106            // Specifically insert it as nonspeculative.
1107            instQueue.insertNonSpec(inst);
1108
1109            ++iewDispNonSpecInsts;
1110
1111            add_to_iq = false;
1112        }
1113
1114        // If the instruction queue is not full, then add the
1115        // instruction.
1116        if (add_to_iq) {
1117            instQueue.insert(inst);
1118        }
1119
1120        insts_to_dispatch.pop();
1121
1122        toRename->iewInfo[tid].dispatched++;
1123
1124        ++iewDispatchedInsts;
1125    }
1126
1127    if (!insts_to_dispatch.empty()) {
1128        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1129        block(tid);
1130        toRename->iewUnblock[tid] = false;
1131    }
1132
1133    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1134        dispatchStatus[tid] = Running;
1135
1136        updatedQueues = true;
1137    }
1138
1139    dis_num_inst = 0;
1140}
1141
1142template <class Impl>
1143void
1144DefaultIEW<Impl>::printAvailableInsts()
1145{
1146    int inst = 0;
1147
1148    std::cout << "Available Instructions: ";
1149
1150    while (fromIssue->insts[inst]) {
1151
1152        if (inst%3==0) std::cout << "\n\t";
1153
1154        std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1155             << " TN: " << fromIssue->insts[inst]->threadNumber
1156             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1157
1158        inst++;
1159
1160    }
1161
1162    std::cout << "\n";
1163}
1164
1165template <class Impl>
1166void
1167DefaultIEW<Impl>::executeInsts()
1168{
1169    wbNumInst = 0;
1170    wbCycle = 0;
1171
1172    std::list<unsigned>::iterator threads = activeThreads->begin();
1173    std::list<unsigned>::iterator end = activeThreads->end();
1174
1175    while (threads != end) {
1176        unsigned tid = *threads++;
1177        fetchRedirect[tid] = false;
1178    }
1179
1180    // Uncomment this if you want to see all available instructions.
1181//    printAvailableInsts();
1182
1183    // Execute/writeback any instructions that are available.
1184    int insts_to_execute = fromIssue->size;
1185    int inst_num = 0;
1186    for (; inst_num < insts_to_execute;
1187          ++inst_num) {
1188
1189        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1190
1191        DynInstPtr inst = instQueue.getInstToExecute();
1192
1193        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1194                inst->readPC(), inst->threadNumber,inst->seqNum);
1195
1196        // Check if the instruction is squashed; if so then skip it
1197        if (inst->isSquashed()) {
1198            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1199
1200            // Consider this instruction executed so that commit can go
1201            // ahead and retire the instruction.
1202            inst->setExecuted();
1203
1204            // Not sure if I should set this here or just let commit try to
1205            // commit any squashed instructions.  I like the latter a bit more.
1206            inst->setCanCommit();
1207
1208            ++iewExecSquashedInsts;
1209
1210            decrWb(inst->seqNum);
1211            continue;
1212        }
1213
1214        Fault fault = NoFault;
1215
1216        // Execute instruction.
1217        // Note that if the instruction faults, it will be handled
1218        // at the commit stage.
1219        if (inst->isMemRef() &&
1220            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1221            DPRINTF(IEW, "Execute: Calculating address for memory "
1222                    "reference.\n");
1223
1224            // Tell the LDSTQ to execute this instruction (if it is a load).
1225            if (inst->isLoad()) {
1226                // Loads will mark themselves as executed, and their writeback
1227                // event adds the instruction to the queue to commit
1228                fault = ldstQueue.executeLoad(inst);
1229            } else if (inst->isStore()) {
1230                fault = ldstQueue.executeStore(inst);
1231
1232                // If the store had a fault then it may not have a mem req
1233                if (!inst->isStoreConditional() && fault == NoFault) {
1234                    inst->setExecuted();
1235
1236                    instToCommit(inst);
1237                } else if (fault != NoFault) {
1238                    // If the instruction faulted, then we need to send it along to commit
1239                    // without the instruction completing.
1240                    DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1241                            fault->name(), inst->seqNum);
1242
1243                    // Send this instruction to commit, also make sure iew stage
1244                    // realizes there is activity.
1245                    inst->setExecuted();
1246
1247                    instToCommit(inst);
1248                    activityThisCycle();
1249                }
1250
1251                // Store conditionals will mark themselves as
1252                // executed, and their writeback event will add the
1253                // instruction to the queue to commit.
1254            } else {
1255                panic("Unexpected memory type!\n");
1256            }
1257
1258        } else {
1259            inst->execute();
1260
1261            inst->setExecuted();
1262
1263            instToCommit(inst);
1264        }
1265
1266        updateExeInstStats(inst);
1267
1268        // Check if branch prediction was correct, if not then we need
1269        // to tell commit to squash in flight instructions.  Only
1270        // handle this if there hasn't already been something that
1271        // redirects fetch in this group of instructions.
1272
1273        // This probably needs to prioritize the redirects if a different
1274        // scheduler is used.  Currently the scheduler schedules the oldest
1275        // instruction first, so the branch resolution order will be correct.
1276        unsigned tid = inst->threadNumber;
1277
1278        if (!fetchRedirect[tid] ||
1279            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1280
1281            if (inst->mispredicted()) {
1282                fetchRedirect[tid] = true;
1283
1284                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1285                DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1286                        inst->readPredPC(), inst->readPredNPC());
1287                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1288                        " NPC: %#x.\n", inst->readNextPC(),
1289                        inst->readNextNPC());
1290                // If incorrect, then signal the ROB that it must be squashed.
1291                squashDueToBranch(inst, tid);
1292
1293                if (inst->readPredTaken()) {
1294                    predictedTakenIncorrect++;
1295                } else {
1296                    predictedNotTakenIncorrect++;
1297                }
1298            } else if (ldstQueue.violation(tid)) {
1299                assert(inst->isMemRef());
1300                // If there was an ordering violation, then get the
1301                // DynInst that caused the violation.  Note that this
1302                // clears the violation signal.
1303                DynInstPtr violator;
1304                violator = ldstQueue.getMemDepViolator(tid);
1305
1306                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1307                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1308                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1309
1310                // Ensure the violating instruction is older than
1311                // current squash
1312/*                if (fetchRedirect[tid] &&
1313                    violator->seqNum >= toCommit->squashedSeqNum[tid] + 1)
1314                    continue;
1315*/
1316                fetchRedirect[tid] = true;
1317
1318                // Tell the instruction queue that a violation has occured.
1319                instQueue.violation(inst, violator);
1320
1321                // Squash.
1322                squashDueToMemOrder(inst,tid);
1323
1324                ++memOrderViolationEvents;
1325            } else if (ldstQueue.loadBlocked(tid) &&
1326                       !ldstQueue.isLoadBlockedHandled(tid)) {
1327                fetchRedirect[tid] = true;
1328
1329                DPRINTF(IEW, "Load operation couldn't execute because the "
1330                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1331                        inst->readPC(), inst->seqNum);
1332
1333                squashDueToMemBlocked(inst, tid);
1334            }
1335        } else {
1336            // Reset any state associated with redirects that will not
1337            // be used.
1338            if (ldstQueue.violation(tid)) {
1339                assert(inst->isMemRef());
1340
1341                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1342
1343                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1344                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1345                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1346                DPRINTF(IEW, "Violation will not be handled because "
1347                        "already squashing\n");
1348
1349                ++memOrderViolationEvents;
1350            }
1351            if (ldstQueue.loadBlocked(tid) &&
1352                !ldstQueue.isLoadBlockedHandled(tid)) {
1353                DPRINTF(IEW, "Load operation couldn't execute because the "
1354                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1355                        inst->readPC(), inst->seqNum);
1356                DPRINTF(IEW, "Blocked load will not be handled because "
1357                        "already squashing\n");
1358
1359                ldstQueue.setLoadBlockedHandled(tid);
1360            }
1361
1362        }
1363    }
1364
1365    // Update and record activity if we processed any instructions.
1366    if (inst_num) {
1367        if (exeStatus == Idle) {
1368            exeStatus = Running;
1369        }
1370
1371        updatedQueues = true;
1372
1373        cpu->activityThisCycle();
1374    }
1375
1376    // Need to reset this in case a writeback event needs to write into the
1377    // iew queue.  That way the writeback event will write into the correct
1378    // spot in the queue.
1379    wbNumInst = 0;
1380}
1381
1382template <class Impl>
1383void
1384DefaultIEW<Impl>::writebackInsts()
1385{
1386    // Loop through the head of the time buffer and wake any
1387    // dependents.  These instructions are about to write back.  Also
1388    // mark scoreboard that this instruction is finally complete.
1389    // Either have IEW have direct access to scoreboard, or have this
1390    // as part of backwards communication.
1391    for (int inst_num = 0; inst_num < wbWidth &&
1392             toCommit->insts[inst_num]; inst_num++) {
1393        DynInstPtr inst = toCommit->insts[inst_num];
1394        int tid = inst->threadNumber;
1395
1396        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1397                inst->seqNum, inst->readPC());
1398
1399        iewInstsToCommit[tid]++;
1400
1401        // Some instructions will be sent to commit without having
1402        // executed because they need commit to handle them.
1403        // E.g. Uncached loads have not actually executed when they
1404        // are first sent to commit.  Instead commit must tell the LSQ
1405        // when it's ready to execute the uncached load.
1406        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1407            int dependents = instQueue.wakeDependents(inst);
1408
1409            for (int i = 0; i < inst->numDestRegs(); i++) {
1410                //mark as Ready
1411                DPRINTF(IEW,"Setting Destination Register %i\n",
1412                        inst->renamedDestRegIdx(i));
1413                scoreboard->setReg(inst->renamedDestRegIdx(i));
1414            }
1415
1416            if (dependents) {
1417                producerInst[tid]++;
1418                consumerInst[tid]+= dependents;
1419            }
1420            writebackCount[tid]++;
1421        }
1422
1423        decrWb(inst->seqNum);
1424    }
1425}
1426
1427template<class Impl>
1428void
1429DefaultIEW<Impl>::tick()
1430{
1431    wbNumInst = 0;
1432    wbCycle = 0;
1433
1434    wroteToTimeBuffer = false;
1435    updatedQueues = false;
1436
1437    sortInsts();
1438
1439    // Free function units marked as being freed this cycle.
1440    fuPool->processFreeUnits();
1441
1442    std::list<unsigned>::iterator threads = activeThreads->begin();
1443    std::list<unsigned>::iterator end = activeThreads->end();
1444
1445    // Check stall and squash signals, dispatch any instructions.
1446    while (threads != end) {
1447        unsigned tid = *threads++;
1448
1449        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1450
1451        checkSignalsAndUpdate(tid);
1452        dispatch(tid);
1453    }
1454
1455    if (exeStatus != Squashing) {
1456        executeInsts();
1457
1458        writebackInsts();
1459
1460        // Have the instruction queue try to schedule any ready instructions.
1461        // (In actuality, this scheduling is for instructions that will
1462        // be executed next cycle.)
1463        instQueue.scheduleReadyInsts();
1464
1465        // Also should advance its own time buffers if the stage ran.
1466        // Not the best place for it, but this works (hopefully).
1467        issueToExecQueue.advance();
1468    }
1469
1470    bool broadcast_free_entries = false;
1471
1472    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1473        exeStatus = Idle;
1474        updateLSQNextCycle = false;
1475
1476        broadcast_free_entries = true;
1477    }
1478
1479    // Writeback any stores using any leftover bandwidth.
1480    ldstQueue.writebackStores();
1481
1482    // Check the committed load/store signals to see if there's a load
1483    // or store to commit.  Also check if it's being told to execute a
1484    // nonspeculative instruction.
1485    // This is pretty inefficient...
1486
1487    threads = activeThreads->begin();
1488    while (threads != end) {
1489        unsigned tid = (*threads++);
1490
1491        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1492
1493        // Update structures based on instructions committed.
1494        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1495            !fromCommit->commitInfo[tid].squash &&
1496            !fromCommit->commitInfo[tid].robSquashing) {
1497
1498            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1499
1500            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1501
1502            updateLSQNextCycle = true;
1503            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1504        }
1505
1506        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1507
1508            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1509            if (fromCommit->commitInfo[tid].uncached) {
1510                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1511                fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1512            } else {
1513                instQueue.scheduleNonSpec(
1514                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1515            }
1516        }
1517
1518        if (broadcast_free_entries) {
1519            toFetch->iewInfo[tid].iqCount =
1520                instQueue.getCount(tid);
1521            toFetch->iewInfo[tid].ldstqCount =
1522                ldstQueue.getCount(tid);
1523
1524            toRename->iewInfo[tid].usedIQ = true;
1525            toRename->iewInfo[tid].freeIQEntries =
1526                instQueue.numFreeEntries();
1527            toRename->iewInfo[tid].usedLSQ = true;
1528            toRename->iewInfo[tid].freeLSQEntries =
1529                ldstQueue.numFreeEntries(tid);
1530
1531            wroteToTimeBuffer = true;
1532        }
1533
1534        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1535                tid, toRename->iewInfo[tid].dispatched);
1536    }
1537
1538    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1539            "LSQ has %i free entries.\n",
1540            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1541            ldstQueue.numFreeEntries());
1542
1543    updateStatus();
1544
1545    if (wroteToTimeBuffer) {
1546        DPRINTF(Activity, "Activity this cycle.\n");
1547        cpu->activityThisCycle();
1548    }
1549}
1550
1551template <class Impl>
1552void
1553DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1554{
1555    int thread_number = inst->threadNumber;
1556
1557    //
1558    //  Pick off the software prefetches
1559    //
1560#ifdef TARGET_ALPHA
1561    if (inst->isDataPrefetch())
1562        iewExecutedSwp[thread_number]++;
1563    else
1564        iewIewExecutedcutedInsts++;
1565#else
1566    iewExecutedInsts++;
1567#endif
1568
1569    //
1570    //  Control operations
1571    //
1572    if (inst->isControl())
1573        iewExecutedBranches[thread_number]++;
1574
1575    //
1576    //  Memory operations
1577    //
1578    if (inst->isMemRef()) {
1579        iewExecutedRefs[thread_number]++;
1580
1581        if (inst->isLoad()) {
1582            iewExecLoadInsts[thread_number]++;
1583        }
1584    }
1585}
1586