iew_impl.hh revision 4632:be5b8f67b8fb
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, Params *params)
43    : issueToExecQueue(params->backComSize, params->forwardComSize),
44      cpu(_cpu),
45      instQueue(_cpu, this, params),
46      ldstQueue(_cpu, this, params),
47      fuPool(params->fuPool),
48      commitToIEWDelay(params->commitToIEWDelay),
49      renameToIEWDelay(params->renameToIEWDelay),
50      issueToExecuteDelay(params->issueToExecuteDelay),
51      dispatchWidth(params->dispatchWidth),
52      issueWidth(params->issueWidth),
53      wbOutstanding(0),
54      wbWidth(params->wbWidth),
55      numThreads(params->numberOfThreads),
56      switchedOut(false)
57{
58    _status = Active;
59    exeStatus = Running;
60    wbStatus = Idle;
61
62    // Setup wire to read instructions coming from issue.
63    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
64
65    // Instruction queue needs the queue between issue and execute.
66    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
67
68    for (int i=0; i < numThreads; i++) {
69        dispatchStatus[i] = Running;
70        stalls[i].commit = false;
71        fetchRedirect[i] = false;
72    }
73
74    wbMax = wbWidth * params->wbDepth;
75
76    updateLSQNextCycle = false;
77
78    ableToIssue = true;
79
80    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
81}
82
83template <class Impl>
84std::string
85DefaultIEW<Impl>::name() const
86{
87    return cpu->name() + ".iew";
88}
89
90template <class Impl>
91void
92DefaultIEW<Impl>::regStats()
93{
94    using namespace Stats;
95
96    instQueue.regStats();
97    ldstQueue.regStats();
98
99    iewIdleCycles
100        .name(name() + ".iewIdleCycles")
101        .desc("Number of cycles IEW is idle");
102
103    iewSquashCycles
104        .name(name() + ".iewSquashCycles")
105        .desc("Number of cycles IEW is squashing");
106
107    iewBlockCycles
108        .name(name() + ".iewBlockCycles")
109        .desc("Number of cycles IEW is blocking");
110
111    iewUnblockCycles
112        .name(name() + ".iewUnblockCycles")
113        .desc("Number of cycles IEW is unblocking");
114
115    iewDispatchedInsts
116        .name(name() + ".iewDispatchedInsts")
117        .desc("Number of instructions dispatched to IQ");
118
119    iewDispSquashedInsts
120        .name(name() + ".iewDispSquashedInsts")
121        .desc("Number of squashed instructions skipped by dispatch");
122
123    iewDispLoadInsts
124        .name(name() + ".iewDispLoadInsts")
125        .desc("Number of dispatched load instructions");
126
127    iewDispStoreInsts
128        .name(name() + ".iewDispStoreInsts")
129        .desc("Number of dispatched store instructions");
130
131    iewDispNonSpecInsts
132        .name(name() + ".iewDispNonSpecInsts")
133        .desc("Number of dispatched non-speculative instructions");
134
135    iewIQFullEvents
136        .name(name() + ".iewIQFullEvents")
137        .desc("Number of times the IQ has become full, causing a stall");
138
139    iewLSQFullEvents
140        .name(name() + ".iewLSQFullEvents")
141        .desc("Number of times the LSQ has become full, causing a stall");
142
143    memOrderViolationEvents
144        .name(name() + ".memOrderViolationEvents")
145        .desc("Number of memory order violations");
146
147    predictedTakenIncorrect
148        .name(name() + ".predictedTakenIncorrect")
149        .desc("Number of branches that were predicted taken incorrectly");
150
151    predictedNotTakenIncorrect
152        .name(name() + ".predictedNotTakenIncorrect")
153        .desc("Number of branches that were predicted not taken incorrectly");
154
155    branchMispredicts
156        .name(name() + ".branchMispredicts")
157        .desc("Number of branch mispredicts detected at execute");
158
159    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
160
161    iewExecutedInsts
162        .name(name() + ".iewExecutedInsts")
163        .desc("Number of executed instructions");
164
165    iewExecLoadInsts
166        .init(cpu->number_of_threads)
167        .name(name() + ".iewExecLoadInsts")
168        .desc("Number of load instructions executed")
169        .flags(total);
170
171    iewExecSquashedInsts
172        .name(name() + ".iewExecSquashedInsts")
173        .desc("Number of squashed instructions skipped in execute");
174
175    iewExecutedSwp
176        .init(cpu->number_of_threads)
177        .name(name() + ".EXEC:swp")
178        .desc("number of swp insts executed")
179        .flags(total);
180
181    iewExecutedNop
182        .init(cpu->number_of_threads)
183        .name(name() + ".EXEC:nop")
184        .desc("number of nop insts executed")
185        .flags(total);
186
187    iewExecutedRefs
188        .init(cpu->number_of_threads)
189        .name(name() + ".EXEC:refs")
190        .desc("number of memory reference insts executed")
191        .flags(total);
192
193    iewExecutedBranches
194        .init(cpu->number_of_threads)
195        .name(name() + ".EXEC:branches")
196        .desc("Number of branches executed")
197        .flags(total);
198
199    iewExecStoreInsts
200        .name(name() + ".EXEC:stores")
201        .desc("Number of stores executed")
202        .flags(total);
203    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
204
205    iewExecRate
206        .name(name() + ".EXEC:rate")
207        .desc("Inst execution rate")
208        .flags(total);
209
210    iewExecRate = iewExecutedInsts / cpu->numCycles;
211
212    iewInstsToCommit
213        .init(cpu->number_of_threads)
214        .name(name() + ".WB:sent")
215        .desc("cumulative count of insts sent to commit")
216        .flags(total);
217
218    writebackCount
219        .init(cpu->number_of_threads)
220        .name(name() + ".WB:count")
221        .desc("cumulative count of insts written-back")
222        .flags(total);
223
224    producerInst
225        .init(cpu->number_of_threads)
226        .name(name() + ".WB:producers")
227        .desc("num instructions producing a value")
228        .flags(total);
229
230    consumerInst
231        .init(cpu->number_of_threads)
232        .name(name() + ".WB:consumers")
233        .desc("num instructions consuming a value")
234        .flags(total);
235
236    wbPenalized
237        .init(cpu->number_of_threads)
238        .name(name() + ".WB:penalized")
239        .desc("number of instrctions required to write to 'other' IQ")
240        .flags(total);
241
242    wbPenalizedRate
243        .name(name() + ".WB:penalized_rate")
244        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
245        .flags(total);
246
247    wbPenalizedRate = wbPenalized / writebackCount;
248
249    wbFanout
250        .name(name() + ".WB:fanout")
251        .desc("average fanout of values written-back")
252        .flags(total);
253
254    wbFanout = producerInst / consumerInst;
255
256    wbRate
257        .name(name() + ".WB:rate")
258        .desc("insts written-back per cycle")
259        .flags(total);
260    wbRate = writebackCount / cpu->numCycles;
261}
262
263template<class Impl>
264void
265DefaultIEW<Impl>::initStage()
266{
267    for (int tid=0; tid < numThreads; tid++) {
268        toRename->iewInfo[tid].usedIQ = true;
269        toRename->iewInfo[tid].freeIQEntries =
270            instQueue.numFreeEntries(tid);
271
272        toRename->iewInfo[tid].usedLSQ = true;
273        toRename->iewInfo[tid].freeLSQEntries =
274            ldstQueue.numFreeEntries(tid);
275    }
276
277    cpu->activateStage(O3CPU::IEWIdx);
278}
279
280template<class Impl>
281void
282DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
283{
284    timeBuffer = tb_ptr;
285
286    // Setup wire to read information from time buffer, from commit.
287    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
288
289    // Setup wire to write information back to previous stages.
290    toRename = timeBuffer->getWire(0);
291
292    toFetch = timeBuffer->getWire(0);
293
294    // Instruction queue also needs main time buffer.
295    instQueue.setTimeBuffer(tb_ptr);
296}
297
298template<class Impl>
299void
300DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
301{
302    renameQueue = rq_ptr;
303
304    // Setup wire to read information from rename queue.
305    fromRename = renameQueue->getWire(-renameToIEWDelay);
306}
307
308template<class Impl>
309void
310DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
311{
312    iewQueue = iq_ptr;
313
314    // Setup wire to write instructions to commit.
315    toCommit = iewQueue->getWire(0);
316}
317
318template<class Impl>
319void
320DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
321{
322    activeThreads = at_ptr;
323
324    ldstQueue.setActiveThreads(at_ptr);
325    instQueue.setActiveThreads(at_ptr);
326}
327
328template<class Impl>
329void
330DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
331{
332    scoreboard = sb_ptr;
333}
334
335template <class Impl>
336bool
337DefaultIEW<Impl>::drain()
338{
339    // IEW is ready to drain at any time.
340    cpu->signalDrained();
341    return true;
342}
343
344template <class Impl>
345void
346DefaultIEW<Impl>::resume()
347{
348}
349
350template <class Impl>
351void
352DefaultIEW<Impl>::switchOut()
353{
354    // Clear any state.
355    switchedOut = true;
356    assert(insts[0].empty());
357    assert(skidBuffer[0].empty());
358
359    instQueue.switchOut();
360    ldstQueue.switchOut();
361    fuPool->switchOut();
362
363    for (int i = 0; i < numThreads; i++) {
364        while (!insts[i].empty())
365            insts[i].pop();
366        while (!skidBuffer[i].empty())
367            skidBuffer[i].pop();
368    }
369}
370
371template <class Impl>
372void
373DefaultIEW<Impl>::takeOverFrom()
374{
375    // Reset all state.
376    _status = Active;
377    exeStatus = Running;
378    wbStatus = Idle;
379    switchedOut = false;
380
381    instQueue.takeOverFrom();
382    ldstQueue.takeOverFrom();
383    fuPool->takeOverFrom();
384
385    initStage();
386    cpu->activityThisCycle();
387
388    for (int i=0; i < numThreads; i++) {
389        dispatchStatus[i] = Running;
390        stalls[i].commit = false;
391        fetchRedirect[i] = false;
392    }
393
394    updateLSQNextCycle = false;
395
396    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
397        issueToExecQueue.advance();
398    }
399}
400
401template<class Impl>
402void
403DefaultIEW<Impl>::squash(unsigned tid)
404{
405    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
406            tid);
407
408    // Tell the IQ to start squashing.
409    instQueue.squash(tid);
410
411    // Tell the LDSTQ to start squashing.
412    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
413    updatedQueues = true;
414
415    // Clear the skid buffer in case it has any data in it.
416    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
417            tid, fromCommit->commitInfo[tid].doneSeqNum);
418
419    while (!skidBuffer[tid].empty()) {
420        if (skidBuffer[tid].front()->isLoad() ||
421            skidBuffer[tid].front()->isStore() ) {
422            toRename->iewInfo[tid].dispatchedToLSQ++;
423        }
424
425        toRename->iewInfo[tid].dispatched++;
426
427        skidBuffer[tid].pop();
428    }
429
430    emptyRenameInsts(tid);
431}
432
433template<class Impl>
434void
435DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
436{
437    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
438            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
439
440    toCommit->squash[tid] = true;
441    toCommit->squashedSeqNum[tid] = inst->seqNum;
442    toCommit->mispredPC[tid] = inst->readPC();
443    toCommit->branchMispredict[tid] = true;
444
445#if ISA_HAS_DELAY_SLOT
446    int instSize = sizeof(TheISA::MachInst);
447    toCommit->branchTaken[tid] =
448        !(inst->readNextPC() + instSize == inst->readNextNPC() &&
449          (inst->readNextPC() == inst->readPC() + instSize ||
450           inst->readNextPC() == inst->readPC() + 2 * instSize));
451#else
452    toCommit->branchTaken[tid] = inst->readNextPC() !=
453        (inst->readPC() + sizeof(TheISA::MachInst));
454#endif
455    toCommit->nextPC[tid] = inst->readNextPC();
456    toCommit->nextNPC[tid] = inst->readNextNPC();
457
458    toCommit->includeSquashInst[tid] = false;
459
460    wroteToTimeBuffer = true;
461}
462
463template<class Impl>
464void
465DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
466{
467    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
468            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
469
470    toCommit->squash[tid] = true;
471    toCommit->squashedSeqNum[tid] = inst->seqNum;
472    toCommit->nextPC[tid] = inst->readNextPC();
473    toCommit->nextNPC[tid] = inst->readNextNPC();
474    toCommit->branchMispredict[tid] = false;
475
476    toCommit->includeSquashInst[tid] = false;
477
478    wroteToTimeBuffer = true;
479}
480
481template<class Impl>
482void
483DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
484{
485    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
486            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
487
488    toCommit->squash[tid] = true;
489    toCommit->squashedSeqNum[tid] = inst->seqNum;
490    toCommit->nextPC[tid] = inst->readPC();
491    toCommit->nextNPC[tid] = inst->readNextPC();
492    toCommit->branchMispredict[tid] = false;
493
494    // Must include the broadcasted SN in the squash.
495    toCommit->includeSquashInst[tid] = true;
496
497    ldstQueue.setLoadBlockedHandled(tid);
498
499    wroteToTimeBuffer = true;
500}
501
502template<class Impl>
503void
504DefaultIEW<Impl>::block(unsigned tid)
505{
506    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
507
508    if (dispatchStatus[tid] != Blocked &&
509        dispatchStatus[tid] != Unblocking) {
510        toRename->iewBlock[tid] = true;
511        wroteToTimeBuffer = true;
512    }
513
514    // Add the current inputs to the skid buffer so they can be
515    // reprocessed when this stage unblocks.
516    skidInsert(tid);
517
518    dispatchStatus[tid] = Blocked;
519}
520
521template<class Impl>
522void
523DefaultIEW<Impl>::unblock(unsigned tid)
524{
525    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
526            "buffer %u.\n",tid, tid);
527
528    // If the skid bufffer is empty, signal back to previous stages to unblock.
529    // Also switch status to running.
530    if (skidBuffer[tid].empty()) {
531        toRename->iewUnblock[tid] = true;
532        wroteToTimeBuffer = true;
533        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
534        dispatchStatus[tid] = Running;
535    }
536}
537
538template<class Impl>
539void
540DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
541{
542    instQueue.wakeDependents(inst);
543}
544
545template<class Impl>
546void
547DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
548{
549    instQueue.rescheduleMemInst(inst);
550}
551
552template<class Impl>
553void
554DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
555{
556    instQueue.replayMemInst(inst);
557}
558
559template<class Impl>
560void
561DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
562{
563    // This function should not be called after writebackInsts in a
564    // single cycle.  That will cause problems with an instruction
565    // being added to the queue to commit without being processed by
566    // writebackInsts prior to being sent to commit.
567
568    // First check the time slot that this instruction will write
569    // to.  If there are free write ports at the time, then go ahead
570    // and write the instruction to that time.  If there are not,
571    // keep looking back to see where's the first time there's a
572    // free slot.
573    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
574        ++wbNumInst;
575        if (wbNumInst == wbWidth) {
576            ++wbCycle;
577            wbNumInst = 0;
578        }
579
580        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
581    }
582
583    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
584            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
585    // Add finished instruction to queue to commit.
586    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
587    (*iewQueue)[wbCycle].size++;
588}
589
590template <class Impl>
591unsigned
592DefaultIEW<Impl>::validInstsFromRename()
593{
594    unsigned inst_count = 0;
595
596    for (int i=0; i<fromRename->size; i++) {
597        if (!fromRename->insts[i]->isSquashed())
598            inst_count++;
599    }
600
601    return inst_count;
602}
603
604template<class Impl>
605void
606DefaultIEW<Impl>::skidInsert(unsigned tid)
607{
608    DynInstPtr inst = NULL;
609
610    while (!insts[tid].empty()) {
611        inst = insts[tid].front();
612
613        insts[tid].pop();
614
615        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
616                "dispatch skidBuffer %i\n",tid, inst->seqNum,
617                inst->readPC(),tid);
618
619        skidBuffer[tid].push(inst);
620    }
621
622    assert(skidBuffer[tid].size() <= skidBufferMax &&
623           "Skidbuffer Exceeded Max Size");
624}
625
626template<class Impl>
627int
628DefaultIEW<Impl>::skidCount()
629{
630    int max=0;
631
632    std::list<unsigned>::iterator threads = activeThreads->begin();
633    std::list<unsigned>::iterator end = activeThreads->end();
634
635    while (threads != end) {
636        unsigned tid = *threads++;
637        unsigned thread_count = skidBuffer[tid].size();
638        if (max < thread_count)
639            max = thread_count;
640    }
641
642    return max;
643}
644
645template<class Impl>
646bool
647DefaultIEW<Impl>::skidsEmpty()
648{
649    std::list<unsigned>::iterator threads = activeThreads->begin();
650    std::list<unsigned>::iterator end = activeThreads->end();
651
652    while (threads != end) {
653        unsigned tid = *threads++;
654
655        if (!skidBuffer[tid].empty())
656            return false;
657    }
658
659    return true;
660}
661
662template <class Impl>
663void
664DefaultIEW<Impl>::updateStatus()
665{
666    bool any_unblocking = false;
667
668    std::list<unsigned>::iterator threads = activeThreads->begin();
669    std::list<unsigned>::iterator end = activeThreads->end();
670
671    while (threads != end) {
672        unsigned tid = *threads++;
673
674        if (dispatchStatus[tid] == Unblocking) {
675            any_unblocking = true;
676            break;
677        }
678    }
679
680    // If there are no ready instructions waiting to be scheduled by the IQ,
681    // and there's no stores waiting to write back, and dispatch is not
682    // unblocking, then there is no internal activity for the IEW stage.
683    if (_status == Active && !instQueue.hasReadyInsts() &&
684        !ldstQueue.willWB() && !any_unblocking) {
685        DPRINTF(IEW, "IEW switching to idle\n");
686
687        deactivateStage();
688
689        _status = Inactive;
690    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
691                                       ldstQueue.willWB() ||
692                                       any_unblocking)) {
693        // Otherwise there is internal activity.  Set to active.
694        DPRINTF(IEW, "IEW switching to active\n");
695
696        activateStage();
697
698        _status = Active;
699    }
700}
701
702template <class Impl>
703void
704DefaultIEW<Impl>::resetEntries()
705{
706    instQueue.resetEntries();
707    ldstQueue.resetEntries();
708}
709
710template <class Impl>
711void
712DefaultIEW<Impl>::readStallSignals(unsigned tid)
713{
714    if (fromCommit->commitBlock[tid]) {
715        stalls[tid].commit = true;
716    }
717
718    if (fromCommit->commitUnblock[tid]) {
719        assert(stalls[tid].commit);
720        stalls[tid].commit = false;
721    }
722}
723
724template <class Impl>
725bool
726DefaultIEW<Impl>::checkStall(unsigned tid)
727{
728    bool ret_val(false);
729
730    if (stalls[tid].commit) {
731        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
732        ret_val = true;
733    } else if (instQueue.isFull(tid)) {
734        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
735        ret_val = true;
736    } else if (ldstQueue.isFull(tid)) {
737        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
738
739        if (ldstQueue.numLoads(tid) > 0 ) {
740
741            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
742                    tid,ldstQueue.getLoadHeadSeqNum(tid));
743        }
744
745        if (ldstQueue.numStores(tid) > 0) {
746
747            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
748                    tid,ldstQueue.getStoreHeadSeqNum(tid));
749        }
750
751        ret_val = true;
752    } else if (ldstQueue.isStalled(tid)) {
753        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
754        ret_val = true;
755    }
756
757    return ret_val;
758}
759
760template <class Impl>
761void
762DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
763{
764    // Check if there's a squash signal, squash if there is
765    // Check stall signals, block if there is.
766    // If status was Blocked
767    //     if so then go to unblocking
768    // If status was Squashing
769    //     check if squashing is not high.  Switch to running this cycle.
770
771    readStallSignals(tid);
772
773    if (fromCommit->commitInfo[tid].squash) {
774        squash(tid);
775
776        if (dispatchStatus[tid] == Blocked ||
777            dispatchStatus[tid] == Unblocking) {
778            toRename->iewUnblock[tid] = true;
779            wroteToTimeBuffer = true;
780        }
781
782        dispatchStatus[tid] = Squashing;
783
784        fetchRedirect[tid] = false;
785        return;
786    }
787
788    if (fromCommit->commitInfo[tid].robSquashing) {
789        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
790
791        dispatchStatus[tid] = Squashing;
792
793        emptyRenameInsts(tid);
794        wroteToTimeBuffer = true;
795        return;
796    }
797
798    if (checkStall(tid)) {
799        block(tid);
800        dispatchStatus[tid] = Blocked;
801        return;
802    }
803
804    if (dispatchStatus[tid] == Blocked) {
805        // Status from previous cycle was blocked, but there are no more stall
806        // conditions.  Switch over to unblocking.
807        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
808                tid);
809
810        dispatchStatus[tid] = Unblocking;
811
812        unblock(tid);
813
814        return;
815    }
816
817    if (dispatchStatus[tid] == Squashing) {
818        // Switch status to running if rename isn't being told to block or
819        // squash this cycle.
820        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
821                tid);
822
823        dispatchStatus[tid] = Running;
824
825        return;
826    }
827}
828
829template <class Impl>
830void
831DefaultIEW<Impl>::sortInsts()
832{
833    int insts_from_rename = fromRename->size;
834#ifdef DEBUG
835    for (int i = 0; i < numThreads; i++)
836        assert(insts[i].empty());
837#endif
838    for (int i = 0; i < insts_from_rename; ++i) {
839        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
840    }
841}
842
843template <class Impl>
844void
845DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
846{
847    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
848
849    while (!insts[tid].empty()) {
850
851        if (insts[tid].front()->isLoad() ||
852            insts[tid].front()->isStore() ) {
853            toRename->iewInfo[tid].dispatchedToLSQ++;
854        }
855
856        toRename->iewInfo[tid].dispatched++;
857
858        insts[tid].pop();
859    }
860}
861
862template <class Impl>
863void
864DefaultIEW<Impl>::wakeCPU()
865{
866    cpu->wakeCPU();
867}
868
869template <class Impl>
870void
871DefaultIEW<Impl>::activityThisCycle()
872{
873    DPRINTF(Activity, "Activity this cycle.\n");
874    cpu->activityThisCycle();
875}
876
877template <class Impl>
878inline void
879DefaultIEW<Impl>::activateStage()
880{
881    DPRINTF(Activity, "Activating stage.\n");
882    cpu->activateStage(O3CPU::IEWIdx);
883}
884
885template <class Impl>
886inline void
887DefaultIEW<Impl>::deactivateStage()
888{
889    DPRINTF(Activity, "Deactivating stage.\n");
890    cpu->deactivateStage(O3CPU::IEWIdx);
891}
892
893template<class Impl>
894void
895DefaultIEW<Impl>::dispatch(unsigned tid)
896{
897    // If status is Running or idle,
898    //     call dispatchInsts()
899    // If status is Unblocking,
900    //     buffer any instructions coming from rename
901    //     continue trying to empty skid buffer
902    //     check if stall conditions have passed
903
904    if (dispatchStatus[tid] == Blocked) {
905        ++iewBlockCycles;
906
907    } else if (dispatchStatus[tid] == Squashing) {
908        ++iewSquashCycles;
909    }
910
911    // Dispatch should try to dispatch as many instructions as its bandwidth
912    // will allow, as long as it is not currently blocked.
913    if (dispatchStatus[tid] == Running ||
914        dispatchStatus[tid] == Idle) {
915        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
916                "dispatch.\n", tid);
917
918        dispatchInsts(tid);
919    } else if (dispatchStatus[tid] == Unblocking) {
920        // Make sure that the skid buffer has something in it if the
921        // status is unblocking.
922        assert(!skidsEmpty());
923
924        // If the status was unblocking, then instructions from the skid
925        // buffer were used.  Remove those instructions and handle
926        // the rest of unblocking.
927        dispatchInsts(tid);
928
929        ++iewUnblockCycles;
930
931        if (validInstsFromRename() && dispatchedAllInsts) {
932            // Add the current inputs to the skid buffer so they can be
933            // reprocessed when this stage unblocks.
934            skidInsert(tid);
935        }
936
937        unblock(tid);
938    }
939}
940
941template <class Impl>
942void
943DefaultIEW<Impl>::dispatchInsts(unsigned tid)
944{
945    dispatchedAllInsts = true;
946
947    // Obtain instructions from skid buffer if unblocking, or queue from rename
948    // otherwise.
949    std::queue<DynInstPtr> &insts_to_dispatch =
950        dispatchStatus[tid] == Unblocking ?
951        skidBuffer[tid] : insts[tid];
952
953    int insts_to_add = insts_to_dispatch.size();
954
955    DynInstPtr inst;
956    bool add_to_iq = false;
957    int dis_num_inst = 0;
958
959    // Loop through the instructions, putting them in the instruction
960    // queue.
961    for ( ; dis_num_inst < insts_to_add &&
962              dis_num_inst < dispatchWidth;
963          ++dis_num_inst)
964    {
965        inst = insts_to_dispatch.front();
966
967        if (dispatchStatus[tid] == Unblocking) {
968            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
969                    "buffer\n", tid);
970        }
971
972        // Make sure there's a valid instruction there.
973        assert(inst);
974
975        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
976                "IQ.\n",
977                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
978
979        // Be sure to mark these instructions as ready so that the
980        // commit stage can go ahead and execute them, and mark
981        // them as issued so the IQ doesn't reprocess them.
982
983        // Check for squashed instructions.
984        if (inst->isSquashed()) {
985            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
986                    "not adding to IQ.\n", tid);
987
988            ++iewDispSquashedInsts;
989
990            insts_to_dispatch.pop();
991
992            //Tell Rename That An Instruction has been processed
993            if (inst->isLoad() || inst->isStore()) {
994                toRename->iewInfo[tid].dispatchedToLSQ++;
995            }
996            toRename->iewInfo[tid].dispatched++;
997
998            continue;
999        }
1000
1001        // Check for full conditions.
1002        if (instQueue.isFull(tid)) {
1003            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1004
1005            // Call function to start blocking.
1006            block(tid);
1007
1008            // Set unblock to false. Special case where we are using
1009            // skidbuffer (unblocking) instructions but then we still
1010            // get full in the IQ.
1011            toRename->iewUnblock[tid] = false;
1012
1013            dispatchedAllInsts = false;
1014
1015            ++iewIQFullEvents;
1016            break;
1017        } else if (ldstQueue.isFull(tid)) {
1018            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1019
1020            // Call function to start blocking.
1021            block(tid);
1022
1023            // Set unblock to false. Special case where we are using
1024            // skidbuffer (unblocking) instructions but then we still
1025            // get full in the IQ.
1026            toRename->iewUnblock[tid] = false;
1027
1028            dispatchedAllInsts = false;
1029
1030            ++iewLSQFullEvents;
1031            break;
1032        }
1033
1034        // Otherwise issue the instruction just fine.
1035        if (inst->isLoad()) {
1036            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1037                    "encountered, adding to LSQ.\n", tid);
1038
1039            // Reserve a spot in the load store queue for this
1040            // memory access.
1041            ldstQueue.insertLoad(inst);
1042
1043            ++iewDispLoadInsts;
1044
1045            add_to_iq = true;
1046
1047            toRename->iewInfo[tid].dispatchedToLSQ++;
1048        } else if (inst->isStore()) {
1049            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1050                    "encountered, adding to LSQ.\n", tid);
1051
1052            ldstQueue.insertStore(inst);
1053
1054            ++iewDispStoreInsts;
1055
1056            if (inst->isStoreConditional()) {
1057                // Store conditionals need to be set as "canCommit()"
1058                // so that commit can process them when they reach the
1059                // head of commit.
1060                // @todo: This is somewhat specific to Alpha.
1061                inst->setCanCommit();
1062                instQueue.insertNonSpec(inst);
1063                add_to_iq = false;
1064
1065                ++iewDispNonSpecInsts;
1066            } else {
1067                add_to_iq = true;
1068            }
1069
1070            toRename->iewInfo[tid].dispatchedToLSQ++;
1071        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1072            // Same as non-speculative stores.
1073            inst->setCanCommit();
1074            instQueue.insertBarrier(inst);
1075            add_to_iq = false;
1076        } else if (inst->isNop()) {
1077            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1078                    "skipping.\n", tid);
1079
1080            inst->setIssued();
1081            inst->setExecuted();
1082            inst->setCanCommit();
1083
1084            instQueue.recordProducer(inst);
1085
1086            iewExecutedNop[tid]++;
1087
1088            add_to_iq = false;
1089        } else if (inst->isExecuted()) {
1090            assert(0 && "Instruction shouldn't be executed.\n");
1091            DPRINTF(IEW, "Issue: Executed branch encountered, "
1092                    "skipping.\n");
1093
1094            inst->setIssued();
1095            inst->setCanCommit();
1096
1097            instQueue.recordProducer(inst);
1098
1099            add_to_iq = false;
1100        } else {
1101            add_to_iq = true;
1102        }
1103        if (inst->isNonSpeculative()) {
1104            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1105                    "encountered, skipping.\n", tid);
1106
1107            // Same as non-speculative stores.
1108            inst->setCanCommit();
1109
1110            // Specifically insert it as nonspeculative.
1111            instQueue.insertNonSpec(inst);
1112
1113            ++iewDispNonSpecInsts;
1114
1115            add_to_iq = false;
1116        }
1117
1118        // If the instruction queue is not full, then add the
1119        // instruction.
1120        if (add_to_iq) {
1121            instQueue.insert(inst);
1122        }
1123
1124        insts_to_dispatch.pop();
1125
1126        toRename->iewInfo[tid].dispatched++;
1127
1128        ++iewDispatchedInsts;
1129    }
1130
1131    if (!insts_to_dispatch.empty()) {
1132        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1133        block(tid);
1134        toRename->iewUnblock[tid] = false;
1135    }
1136
1137    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1138        dispatchStatus[tid] = Running;
1139
1140        updatedQueues = true;
1141    }
1142
1143    dis_num_inst = 0;
1144}
1145
1146template <class Impl>
1147void
1148DefaultIEW<Impl>::printAvailableInsts()
1149{
1150    int inst = 0;
1151
1152    std::cout << "Available Instructions: ";
1153
1154    while (fromIssue->insts[inst]) {
1155
1156        if (inst%3==0) std::cout << "\n\t";
1157
1158        std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1159             << " TN: " << fromIssue->insts[inst]->threadNumber
1160             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1161
1162        inst++;
1163
1164    }
1165
1166    std::cout << "\n";
1167}
1168
1169template <class Impl>
1170void
1171DefaultIEW<Impl>::executeInsts()
1172{
1173    wbNumInst = 0;
1174    wbCycle = 0;
1175
1176    std::list<unsigned>::iterator threads = activeThreads->begin();
1177    std::list<unsigned>::iterator end = activeThreads->end();
1178
1179    while (threads != end) {
1180        unsigned tid = *threads++;
1181        fetchRedirect[tid] = false;
1182    }
1183
1184    // Uncomment this if you want to see all available instructions.
1185//    printAvailableInsts();
1186
1187    // Execute/writeback any instructions that are available.
1188    int insts_to_execute = fromIssue->size;
1189    int inst_num = 0;
1190    for (; inst_num < insts_to_execute;
1191          ++inst_num) {
1192
1193        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1194
1195        DynInstPtr inst = instQueue.getInstToExecute();
1196
1197        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1198                inst->readPC(), inst->threadNumber,inst->seqNum);
1199
1200        // Check if the instruction is squashed; if so then skip it
1201        if (inst->isSquashed()) {
1202            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1203
1204            // Consider this instruction executed so that commit can go
1205            // ahead and retire the instruction.
1206            inst->setExecuted();
1207
1208            // Not sure if I should set this here or just let commit try to
1209            // commit any squashed instructions.  I like the latter a bit more.
1210            inst->setCanCommit();
1211
1212            ++iewExecSquashedInsts;
1213
1214            decrWb(inst->seqNum);
1215            continue;
1216        }
1217
1218        Fault fault = NoFault;
1219
1220        // Execute instruction.
1221        // Note that if the instruction faults, it will be handled
1222        // at the commit stage.
1223        if (inst->isMemRef() &&
1224            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1225            DPRINTF(IEW, "Execute: Calculating address for memory "
1226                    "reference.\n");
1227
1228            // Tell the LDSTQ to execute this instruction (if it is a load).
1229            if (inst->isLoad()) {
1230                // Loads will mark themselves as executed, and their writeback
1231                // event adds the instruction to the queue to commit
1232                fault = ldstQueue.executeLoad(inst);
1233            } else if (inst->isStore()) {
1234                fault = ldstQueue.executeStore(inst);
1235
1236                // If the store had a fault then it may not have a mem req
1237                if (!inst->isStoreConditional() && fault == NoFault) {
1238                    inst->setExecuted();
1239
1240                    instToCommit(inst);
1241                } else if (fault != NoFault) {
1242                    // If the instruction faulted, then we need to send it along to commit
1243                    // without the instruction completing.
1244                    DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1245                            fault->name(), inst->seqNum);
1246
1247                    // Send this instruction to commit, also make sure iew stage
1248                    // realizes there is activity.
1249                    inst->setExecuted();
1250
1251                    instToCommit(inst);
1252                    activityThisCycle();
1253                }
1254
1255                // Store conditionals will mark themselves as
1256                // executed, and their writeback event will add the
1257                // instruction to the queue to commit.
1258            } else {
1259                panic("Unexpected memory type!\n");
1260            }
1261
1262        } else {
1263            inst->execute();
1264
1265            inst->setExecuted();
1266
1267            instToCommit(inst);
1268        }
1269
1270        updateExeInstStats(inst);
1271
1272        // Check if branch prediction was correct, if not then we need
1273        // to tell commit to squash in flight instructions.  Only
1274        // handle this if there hasn't already been something that
1275        // redirects fetch in this group of instructions.
1276
1277        // This probably needs to prioritize the redirects if a different
1278        // scheduler is used.  Currently the scheduler schedules the oldest
1279        // instruction first, so the branch resolution order will be correct.
1280        unsigned tid = inst->threadNumber;
1281
1282        if (!fetchRedirect[tid] ||
1283            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1284
1285            if (inst->mispredicted()) {
1286                fetchRedirect[tid] = true;
1287
1288                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1289                DPRINTF(IEW, "Predicted target was %#x, %#x.\n",
1290                        inst->readPredPC(), inst->readPredNPC());
1291                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1292                        " NPC: %#x.\n", inst->readNextPC(),
1293                        inst->readNextNPC());
1294                // If incorrect, then signal the ROB that it must be squashed.
1295                squashDueToBranch(inst, tid);
1296
1297                if (inst->readPredTaken()) {
1298                    predictedTakenIncorrect++;
1299                } else {
1300                    predictedNotTakenIncorrect++;
1301                }
1302            } else if (ldstQueue.violation(tid)) {
1303                assert(inst->isMemRef());
1304                // If there was an ordering violation, then get the
1305                // DynInst that caused the violation.  Note that this
1306                // clears the violation signal.
1307                DynInstPtr violator;
1308                violator = ldstQueue.getMemDepViolator(tid);
1309
1310                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1311                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1312                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1313
1314                // Ensure the violating instruction is older than
1315                // current squash
1316/*                if (fetchRedirect[tid] &&
1317                    violator->seqNum >= toCommit->squashedSeqNum[tid] + 1)
1318                    continue;
1319*/
1320                fetchRedirect[tid] = true;
1321
1322                // Tell the instruction queue that a violation has occured.
1323                instQueue.violation(inst, violator);
1324
1325                // Squash.
1326                squashDueToMemOrder(inst,tid);
1327
1328                ++memOrderViolationEvents;
1329            } else if (ldstQueue.loadBlocked(tid) &&
1330                       !ldstQueue.isLoadBlockedHandled(tid)) {
1331                fetchRedirect[tid] = true;
1332
1333                DPRINTF(IEW, "Load operation couldn't execute because the "
1334                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1335                        inst->readPC(), inst->seqNum);
1336
1337                squashDueToMemBlocked(inst, tid);
1338            }
1339        } else {
1340            // Reset any state associated with redirects that will not
1341            // be used.
1342            if (ldstQueue.violation(tid)) {
1343                assert(inst->isMemRef());
1344
1345                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1346
1347                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1348                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1349                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1350                DPRINTF(IEW, "Violation will not be handled because "
1351                        "already squashing\n");
1352
1353                ++memOrderViolationEvents;
1354            }
1355            if (ldstQueue.loadBlocked(tid) &&
1356                !ldstQueue.isLoadBlockedHandled(tid)) {
1357                DPRINTF(IEW, "Load operation couldn't execute because the "
1358                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1359                        inst->readPC(), inst->seqNum);
1360                DPRINTF(IEW, "Blocked load will not be handled because "
1361                        "already squashing\n");
1362
1363                ldstQueue.setLoadBlockedHandled(tid);
1364            }
1365
1366        }
1367    }
1368
1369    // Update and record activity if we processed any instructions.
1370    if (inst_num) {
1371        if (exeStatus == Idle) {
1372            exeStatus = Running;
1373        }
1374
1375        updatedQueues = true;
1376
1377        cpu->activityThisCycle();
1378    }
1379
1380    // Need to reset this in case a writeback event needs to write into the
1381    // iew queue.  That way the writeback event will write into the correct
1382    // spot in the queue.
1383    wbNumInst = 0;
1384}
1385
1386template <class Impl>
1387void
1388DefaultIEW<Impl>::writebackInsts()
1389{
1390    // Loop through the head of the time buffer and wake any
1391    // dependents.  These instructions are about to write back.  Also
1392    // mark scoreboard that this instruction is finally complete.
1393    // Either have IEW have direct access to scoreboard, or have this
1394    // as part of backwards communication.
1395    for (int inst_num = 0; inst_num < wbWidth &&
1396             toCommit->insts[inst_num]; inst_num++) {
1397        DynInstPtr inst = toCommit->insts[inst_num];
1398        int tid = inst->threadNumber;
1399
1400        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1401                inst->seqNum, inst->readPC());
1402
1403        iewInstsToCommit[tid]++;
1404
1405        // Some instructions will be sent to commit without having
1406        // executed because they need commit to handle them.
1407        // E.g. Uncached loads have not actually executed when they
1408        // are first sent to commit.  Instead commit must tell the LSQ
1409        // when it's ready to execute the uncached load.
1410        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1411            int dependents = instQueue.wakeDependents(inst);
1412
1413            for (int i = 0; i < inst->numDestRegs(); i++) {
1414                //mark as Ready
1415                DPRINTF(IEW,"Setting Destination Register %i\n",
1416                        inst->renamedDestRegIdx(i));
1417                scoreboard->setReg(inst->renamedDestRegIdx(i));
1418            }
1419
1420            if (dependents) {
1421                producerInst[tid]++;
1422                consumerInst[tid]+= dependents;
1423            }
1424            writebackCount[tid]++;
1425        }
1426
1427        decrWb(inst->seqNum);
1428    }
1429}
1430
1431template<class Impl>
1432void
1433DefaultIEW<Impl>::tick()
1434{
1435    wbNumInst = 0;
1436    wbCycle = 0;
1437
1438    wroteToTimeBuffer = false;
1439    updatedQueues = false;
1440
1441    sortInsts();
1442
1443    // Free function units marked as being freed this cycle.
1444    fuPool->processFreeUnits();
1445
1446    std::list<unsigned>::iterator threads = activeThreads->begin();
1447    std::list<unsigned>::iterator end = activeThreads->end();
1448
1449    // Check stall and squash signals, dispatch any instructions.
1450    while (threads != end) {
1451        unsigned tid = *threads++;
1452
1453        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1454
1455        checkSignalsAndUpdate(tid);
1456        dispatch(tid);
1457    }
1458
1459    if (exeStatus != Squashing) {
1460        executeInsts();
1461
1462        writebackInsts();
1463
1464        // Have the instruction queue try to schedule any ready instructions.
1465        // (In actuality, this scheduling is for instructions that will
1466        // be executed next cycle.)
1467        instQueue.scheduleReadyInsts();
1468
1469        // Also should advance its own time buffers if the stage ran.
1470        // Not the best place for it, but this works (hopefully).
1471        issueToExecQueue.advance();
1472    }
1473
1474    bool broadcast_free_entries = false;
1475
1476    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1477        exeStatus = Idle;
1478        updateLSQNextCycle = false;
1479
1480        broadcast_free_entries = true;
1481    }
1482
1483    // Writeback any stores using any leftover bandwidth.
1484    ldstQueue.writebackStores();
1485
1486    // Check the committed load/store signals to see if there's a load
1487    // or store to commit.  Also check if it's being told to execute a
1488    // nonspeculative instruction.
1489    // This is pretty inefficient...
1490
1491    threads = activeThreads->begin();
1492    while (threads != end) {
1493        unsigned tid = (*threads++);
1494
1495        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1496
1497        // Update structures based on instructions committed.
1498        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1499            !fromCommit->commitInfo[tid].squash &&
1500            !fromCommit->commitInfo[tid].robSquashing) {
1501
1502            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1503
1504            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1505
1506            updateLSQNextCycle = true;
1507            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1508        }
1509
1510        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1511
1512            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1513            if (fromCommit->commitInfo[tid].uncached) {
1514                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1515                fromCommit->commitInfo[tid].uncachedLoad->setAtCommit();
1516            } else {
1517                instQueue.scheduleNonSpec(
1518                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1519            }
1520        }
1521
1522        if (broadcast_free_entries) {
1523            toFetch->iewInfo[tid].iqCount =
1524                instQueue.getCount(tid);
1525            toFetch->iewInfo[tid].ldstqCount =
1526                ldstQueue.getCount(tid);
1527
1528            toRename->iewInfo[tid].usedIQ = true;
1529            toRename->iewInfo[tid].freeIQEntries =
1530                instQueue.numFreeEntries();
1531            toRename->iewInfo[tid].usedLSQ = true;
1532            toRename->iewInfo[tid].freeLSQEntries =
1533                ldstQueue.numFreeEntries(tid);
1534
1535            wroteToTimeBuffer = true;
1536        }
1537
1538        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1539                tid, toRename->iewInfo[tid].dispatched);
1540    }
1541
1542    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1543            "LSQ has %i free entries.\n",
1544            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1545            ldstQueue.numFreeEntries());
1546
1547    updateStatus();
1548
1549    if (wroteToTimeBuffer) {
1550        DPRINTF(Activity, "Activity this cycle.\n");
1551        cpu->activityThisCycle();
1552    }
1553}
1554
1555template <class Impl>
1556void
1557DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1558{
1559    int thread_number = inst->threadNumber;
1560
1561    //
1562    //  Pick off the software prefetches
1563    //
1564#ifdef TARGET_ALPHA
1565    if (inst->isDataPrefetch())
1566        iewExecutedSwp[thread_number]++;
1567    else
1568        iewIewExecutedcutedInsts++;
1569#else
1570    iewExecutedInsts++;
1571#endif
1572
1573    //
1574    //  Control operations
1575    //
1576    if (inst->isControl())
1577        iewExecutedBranches[thread_number]++;
1578
1579    //
1580    //  Memory operations
1581    //
1582    if (inst->isMemRef()) {
1583        iewExecutedRefs[thread_number]++;
1584
1585        if (inst->isLoad()) {
1586            iewExecLoadInsts[thread_number]++;
1587        }
1588    }
1589}
1590