iew_impl.hh revision 3795:60ecc96c3cee
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43    : issueToExecQueue(params->backComSize, params->forwardComSize),
44      instQueue(params),
45      ldstQueue(params),
46      fuPool(params->fuPool),
47      commitToIEWDelay(params->commitToIEWDelay),
48      renameToIEWDelay(params->renameToIEWDelay),
49      issueToExecuteDelay(params->issueToExecuteDelay),
50      dispatchWidth(params->dispatchWidth),
51      issueWidth(params->issueWidth),
52      wbOutstanding(0),
53      wbWidth(params->wbWidth),
54      numThreads(params->numberOfThreads),
55      switchedOut(false)
56{
57    _status = Active;
58    exeStatus = Running;
59    wbStatus = Idle;
60
61    // Setup wire to read instructions coming from issue.
62    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64    // Instruction queue needs the queue between issue and execute.
65    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67    instQueue.setIEW(this);
68    ldstQueue.setIEW(this);
69
70    for (int i=0; i < numThreads; i++) {
71        dispatchStatus[i] = Running;
72        stalls[i].commit = false;
73        fetchRedirect[i] = false;
74        bdelayDoneSeqNum[i] = 0;
75    }
76
77    wbMax = wbWidth * params->wbDepth;
78
79    updateLSQNextCycle = false;
80
81    ableToIssue = true;
82
83    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90    return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97    using namespace Stats;
98
99    instQueue.regStats();
100    ldstQueue.regStats();
101
102    iewIdleCycles
103        .name(name() + ".iewIdleCycles")
104        .desc("Number of cycles IEW is idle");
105
106    iewSquashCycles
107        .name(name() + ".iewSquashCycles")
108        .desc("Number of cycles IEW is squashing");
109
110    iewBlockCycles
111        .name(name() + ".iewBlockCycles")
112        .desc("Number of cycles IEW is blocking");
113
114    iewUnblockCycles
115        .name(name() + ".iewUnblockCycles")
116        .desc("Number of cycles IEW is unblocking");
117
118    iewDispatchedInsts
119        .name(name() + ".iewDispatchedInsts")
120        .desc("Number of instructions dispatched to IQ");
121
122    iewDispSquashedInsts
123        .name(name() + ".iewDispSquashedInsts")
124        .desc("Number of squashed instructions skipped by dispatch");
125
126    iewDispLoadInsts
127        .name(name() + ".iewDispLoadInsts")
128        .desc("Number of dispatched load instructions");
129
130    iewDispStoreInsts
131        .name(name() + ".iewDispStoreInsts")
132        .desc("Number of dispatched store instructions");
133
134    iewDispNonSpecInsts
135        .name(name() + ".iewDispNonSpecInsts")
136        .desc("Number of dispatched non-speculative instructions");
137
138    iewIQFullEvents
139        .name(name() + ".iewIQFullEvents")
140        .desc("Number of times the IQ has become full, causing a stall");
141
142    iewLSQFullEvents
143        .name(name() + ".iewLSQFullEvents")
144        .desc("Number of times the LSQ has become full, causing a stall");
145
146    memOrderViolationEvents
147        .name(name() + ".memOrderViolationEvents")
148        .desc("Number of memory order violations");
149
150    predictedTakenIncorrect
151        .name(name() + ".predictedTakenIncorrect")
152        .desc("Number of branches that were predicted taken incorrectly");
153
154    predictedNotTakenIncorrect
155        .name(name() + ".predictedNotTakenIncorrect")
156        .desc("Number of branches that were predicted not taken incorrectly");
157
158    branchMispredicts
159        .name(name() + ".branchMispredicts")
160        .desc("Number of branch mispredicts detected at execute");
161
162    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164    iewExecutedInsts
165        .name(name() + ".iewExecutedInsts")
166        .desc("Number of executed instructions");
167
168    iewExecLoadInsts
169        .init(cpu->number_of_threads)
170        .name(name() + ".iewExecLoadInsts")
171        .desc("Number of load instructions executed")
172        .flags(total);
173
174    iewExecSquashedInsts
175        .name(name() + ".iewExecSquashedInsts")
176        .desc("Number of squashed instructions skipped in execute");
177
178    iewExecutedSwp
179        .init(cpu->number_of_threads)
180        .name(name() + ".EXEC:swp")
181        .desc("number of swp insts executed")
182        .flags(total);
183
184    iewExecutedNop
185        .init(cpu->number_of_threads)
186        .name(name() + ".EXEC:nop")
187        .desc("number of nop insts executed")
188        .flags(total);
189
190    iewExecutedRefs
191        .init(cpu->number_of_threads)
192        .name(name() + ".EXEC:refs")
193        .desc("number of memory reference insts executed")
194        .flags(total);
195
196    iewExecutedBranches
197        .init(cpu->number_of_threads)
198        .name(name() + ".EXEC:branches")
199        .desc("Number of branches executed")
200        .flags(total);
201
202    iewExecStoreInsts
203        .name(name() + ".EXEC:stores")
204        .desc("Number of stores executed")
205        .flags(total);
206    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208    iewExecRate
209        .name(name() + ".EXEC:rate")
210        .desc("Inst execution rate")
211        .flags(total);
212
213    iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215    iewInstsToCommit
216        .init(cpu->number_of_threads)
217        .name(name() + ".WB:sent")
218        .desc("cumulative count of insts sent to commit")
219        .flags(total);
220
221    writebackCount
222        .init(cpu->number_of_threads)
223        .name(name() + ".WB:count")
224        .desc("cumulative count of insts written-back")
225        .flags(total);
226
227    producerInst
228        .init(cpu->number_of_threads)
229        .name(name() + ".WB:producers")
230        .desc("num instructions producing a value")
231        .flags(total);
232
233    consumerInst
234        .init(cpu->number_of_threads)
235        .name(name() + ".WB:consumers")
236        .desc("num instructions consuming a value")
237        .flags(total);
238
239    wbPenalized
240        .init(cpu->number_of_threads)
241        .name(name() + ".WB:penalized")
242        .desc("number of instrctions required to write to 'other' IQ")
243        .flags(total);
244
245    wbPenalizedRate
246        .name(name() + ".WB:penalized_rate")
247        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248        .flags(total);
249
250    wbPenalizedRate = wbPenalized / writebackCount;
251
252    wbFanout
253        .name(name() + ".WB:fanout")
254        .desc("average fanout of values written-back")
255        .flags(total);
256
257    wbFanout = producerInst / consumerInst;
258
259    wbRate
260        .name(name() + ".WB:rate")
261        .desc("insts written-back per cycle")
262        .flags(total);
263    wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270    for (int tid=0; tid < numThreads; tid++) {
271        toRename->iewInfo[tid].usedIQ = true;
272        toRename->iewInfo[tid].freeIQEntries =
273            instQueue.numFreeEntries(tid);
274
275        toRename->iewInfo[tid].usedLSQ = true;
276        toRename->iewInfo[tid].freeLSQEntries =
277            ldstQueue.numFreeEntries(tid);
278    }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285    DPRINTF(IEW, "Setting CPU pointer.\n");
286    cpu = cpu_ptr;
287
288    instQueue.setCPU(cpu_ptr);
289    ldstQueue.setCPU(cpu_ptr);
290
291    cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298    DPRINTF(IEW, "Setting time buffer pointer.\n");
299    timeBuffer = tb_ptr;
300
301    // Setup wire to read information from time buffer, from commit.
302    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304    // Setup wire to write information back to previous stages.
305    toRename = timeBuffer->getWire(0);
306
307    toFetch = timeBuffer->getWire(0);
308
309    // Instruction queue also needs main time buffer.
310    instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
317    DPRINTF(IEW, "Setting rename queue pointer.\n");
318    renameQueue = rq_ptr;
319
320    // Setup wire to read information from rename queue.
321    fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328    DPRINTF(IEW, "Setting IEW queue pointer.\n");
329    iewQueue = iq_ptr;
330
331    // Setup wire to write instructions to commit.
332    toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
339    DPRINTF(IEW, "Setting active threads list pointer.\n");
340    activeThreads = at_ptr;
341
342    ldstQueue.setActiveThreads(at_ptr);
343    instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
350    DPRINTF(IEW, "Setting scoreboard pointer.\n");
351    scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358    // IEW is ready to drain at any time.
359    cpu->signalDrained();
360    return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373    // Clear any state.
374    switchedOut = true;
375    assert(insts[0].empty());
376    assert(skidBuffer[0].empty());
377
378    instQueue.switchOut();
379    ldstQueue.switchOut();
380    fuPool->switchOut();
381
382    for (int i = 0; i < numThreads; i++) {
383        while (!insts[i].empty())
384            insts[i].pop();
385        while (!skidBuffer[i].empty())
386            skidBuffer[i].pop();
387    }
388}
389
390template <class Impl>
391void
392DefaultIEW<Impl>::takeOverFrom()
393{
394    // Reset all state.
395    _status = Active;
396    exeStatus = Running;
397    wbStatus = Idle;
398    switchedOut = false;
399
400    instQueue.takeOverFrom();
401    ldstQueue.takeOverFrom();
402    fuPool->takeOverFrom();
403
404    initStage();
405    cpu->activityThisCycle();
406
407    for (int i=0; i < numThreads; i++) {
408        dispatchStatus[i] = Running;
409        stalls[i].commit = false;
410        fetchRedirect[i] = false;
411    }
412
413    updateLSQNextCycle = false;
414
415    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
416        issueToExecQueue.advance();
417    }
418}
419
420template<class Impl>
421void
422DefaultIEW<Impl>::squash(unsigned tid)
423{
424    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
425            tid);
426
427    // Tell the IQ to start squashing.
428    instQueue.squash(tid);
429
430    // Tell the LDSTQ to start squashing.
431#if ISA_HAS_DELAY_SLOT
432    ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
433#else
434    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
435#endif
436    updatedQueues = true;
437
438    // Clear the skid buffer in case it has any data in it.
439    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
440            tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
441
442    while (!skidBuffer[tid].empty()) {
443#if ISA_HAS_DELAY_SLOT
444        if (skidBuffer[tid].front()->seqNum <=
445            fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
446            DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
447                    "that occur before delay slot [sn:%i].\n",
448                    fromCommit->commitInfo[tid].bdelayDoneSeqNum,
449                    tid);
450            break;
451        } else {
452            DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
453                    "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
454        }
455#endif
456        if (skidBuffer[tid].front()->isLoad() ||
457            skidBuffer[tid].front()->isStore() ) {
458            toRename->iewInfo[tid].dispatchedToLSQ++;
459        }
460
461        toRename->iewInfo[tid].dispatched++;
462
463        skidBuffer[tid].pop();
464    }
465
466    bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
467
468    emptyRenameInsts(tid);
469}
470
471template<class Impl>
472void
473DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
474{
475    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
476            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
477
478    toCommit->squash[tid] = true;
479    toCommit->squashedSeqNum[tid] = inst->seqNum;
480    toCommit->mispredPC[tid] = inst->readPC();
481    toCommit->branchMispredict[tid] = true;
482
483#if ISA_HAS_DELAY_SLOT
484    int instSize = sizeof(TheISA::MachInst);
485    bool branch_taken =
486        !(inst->readNextPC() + instSize == inst->readNextNPC() &&
487          (inst->readNextPC() == inst->readPC() + instSize ||
488           inst->readNextPC() == inst->readPC() + 2 * instSize));
489    DPRINTF(Sparc, "Branch taken = %s [sn:%i]\n",
490            branch_taken ? "true": "false", inst->seqNum);
491
492    toCommit->branchTaken[tid] = branch_taken;
493
494    bool squashDelaySlot = true;
495//	(inst->readNextPC() != inst->readPC() + sizeof(TheISA::MachInst));
496    DPRINTF(Sparc, "Squash delay slot = %s [sn:%i]\n",
497            squashDelaySlot ? "true": "false", inst->seqNum);
498    toCommit->squashDelaySlot[tid] = squashDelaySlot;
499    //If we're squashing the delay slot, we need to pick back up at NextPC.
500    //Otherwise, NextPC isn't being squashed, so we should pick back up at
501    //NextNPC.
502    if (squashDelaySlot) {
503        toCommit->nextPC[tid] = inst->readNextPC();
504        toCommit->nextNPC[tid] = inst->readNextNPC();
505    } else
506        toCommit->nextPC[tid] = inst->readNextNPC();
507#else
508    toCommit->branchTaken[tid] = inst->readNextPC() !=
509        (inst->readPC() + sizeof(TheISA::MachInst));
510    toCommit->nextPC[tid] = inst->readNextPC();
511#endif
512
513    toCommit->includeSquashInst[tid] = false;
514
515    wroteToTimeBuffer = true;
516}
517
518template<class Impl>
519void
520DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
521{
522    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
523            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
524
525    toCommit->squash[tid] = true;
526    toCommit->squashedSeqNum[tid] = inst->seqNum;
527    toCommit->nextPC[tid] = inst->readNextPC();
528#if ISA_HAS_DELAY_SLOT
529    toCommit->nextNPC[tid] = inst->readNextNPC();
530#endif
531
532    toCommit->includeSquashInst[tid] = false;
533
534    wroteToTimeBuffer = true;
535}
536
537template<class Impl>
538void
539DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
540{
541    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
542            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
543
544    toCommit->squash[tid] = true;
545    toCommit->squashedSeqNum[tid] = inst->seqNum;
546    toCommit->nextPC[tid] = inst->readPC();
547#if ISA_HAS_DELAY_SLOT
548    toCommit->nextNPC[tid] = inst->readNextNPC();
549#endif
550
551    // Must include the broadcasted SN in the squash.
552    toCommit->includeSquashInst[tid] = true;
553
554    ldstQueue.setLoadBlockedHandled(tid);
555
556    wroteToTimeBuffer = true;
557}
558
559template<class Impl>
560void
561DefaultIEW<Impl>::block(unsigned tid)
562{
563    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
564
565    if (dispatchStatus[tid] != Blocked &&
566        dispatchStatus[tid] != Unblocking) {
567        toRename->iewBlock[tid] = true;
568        wroteToTimeBuffer = true;
569    }
570
571    // Add the current inputs to the skid buffer so they can be
572    // reprocessed when this stage unblocks.
573    skidInsert(tid);
574
575    dispatchStatus[tid] = Blocked;
576}
577
578template<class Impl>
579void
580DefaultIEW<Impl>::unblock(unsigned tid)
581{
582    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
583            "buffer %u.\n",tid, tid);
584
585    // If the skid bufffer is empty, signal back to previous stages to unblock.
586    // Also switch status to running.
587    if (skidBuffer[tid].empty()) {
588        toRename->iewUnblock[tid] = true;
589        wroteToTimeBuffer = true;
590        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
591        dispatchStatus[tid] = Running;
592    }
593}
594
595template<class Impl>
596void
597DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
598{
599    instQueue.wakeDependents(inst);
600}
601
602template<class Impl>
603void
604DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
605{
606    instQueue.rescheduleMemInst(inst);
607}
608
609template<class Impl>
610void
611DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
612{
613    instQueue.replayMemInst(inst);
614}
615
616template<class Impl>
617void
618DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
619{
620    // This function should not be called after writebackInsts in a
621    // single cycle.  That will cause problems with an instruction
622    // being added to the queue to commit without being processed by
623    // writebackInsts prior to being sent to commit.
624
625    // First check the time slot that this instruction will write
626    // to.  If there are free write ports at the time, then go ahead
627    // and write the instruction to that time.  If there are not,
628    // keep looking back to see where's the first time there's a
629    // free slot.
630    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
631        ++wbNumInst;
632        if (wbNumInst == wbWidth) {
633            ++wbCycle;
634            wbNumInst = 0;
635        }
636
637        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
638    }
639
640    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
641            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
642    // Add finished instruction to queue to commit.
643    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
644    (*iewQueue)[wbCycle].size++;
645}
646
647template <class Impl>
648unsigned
649DefaultIEW<Impl>::validInstsFromRename()
650{
651    unsigned inst_count = 0;
652
653    for (int i=0; i<fromRename->size; i++) {
654        if (!fromRename->insts[i]->isSquashed())
655            inst_count++;
656    }
657
658    return inst_count;
659}
660
661template<class Impl>
662void
663DefaultIEW<Impl>::skidInsert(unsigned tid)
664{
665    DynInstPtr inst = NULL;
666
667    while (!insts[tid].empty()) {
668        inst = insts[tid].front();
669
670        insts[tid].pop();
671
672        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
673                "dispatch skidBuffer %i\n",tid, inst->seqNum,
674                inst->readPC(),tid);
675
676        skidBuffer[tid].push(inst);
677    }
678
679    assert(skidBuffer[tid].size() <= skidBufferMax &&
680           "Skidbuffer Exceeded Max Size");
681}
682
683template<class Impl>
684int
685DefaultIEW<Impl>::skidCount()
686{
687    int max=0;
688
689    std::list<unsigned>::iterator threads = (*activeThreads).begin();
690
691    while (threads != (*activeThreads).end()) {
692        unsigned thread_count = skidBuffer[*threads++].size();
693        if (max < thread_count)
694            max = thread_count;
695    }
696
697    return max;
698}
699
700template<class Impl>
701bool
702DefaultIEW<Impl>::skidsEmpty()
703{
704    std::list<unsigned>::iterator threads = (*activeThreads).begin();
705
706    while (threads != (*activeThreads).end()) {
707        if (!skidBuffer[*threads++].empty())
708            return false;
709    }
710
711    return true;
712}
713
714template <class Impl>
715void
716DefaultIEW<Impl>::updateStatus()
717{
718    bool any_unblocking = false;
719
720    std::list<unsigned>::iterator threads = (*activeThreads).begin();
721
722    threads = (*activeThreads).begin();
723
724    while (threads != (*activeThreads).end()) {
725        unsigned tid = *threads++;
726
727        if (dispatchStatus[tid] == Unblocking) {
728            any_unblocking = true;
729            break;
730        }
731    }
732
733    // If there are no ready instructions waiting to be scheduled by the IQ,
734    // and there's no stores waiting to write back, and dispatch is not
735    // unblocking, then there is no internal activity for the IEW stage.
736    if (_status == Active && !instQueue.hasReadyInsts() &&
737        !ldstQueue.willWB() && !any_unblocking) {
738        DPRINTF(IEW, "IEW switching to idle\n");
739
740        deactivateStage();
741
742        _status = Inactive;
743    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
744                                       ldstQueue.willWB() ||
745                                       any_unblocking)) {
746        // Otherwise there is internal activity.  Set to active.
747        DPRINTF(IEW, "IEW switching to active\n");
748
749        activateStage();
750
751        _status = Active;
752    }
753}
754
755template <class Impl>
756void
757DefaultIEW<Impl>::resetEntries()
758{
759    instQueue.resetEntries();
760    ldstQueue.resetEntries();
761}
762
763template <class Impl>
764void
765DefaultIEW<Impl>::readStallSignals(unsigned tid)
766{
767    if (fromCommit->commitBlock[tid]) {
768        stalls[tid].commit = true;
769    }
770
771    if (fromCommit->commitUnblock[tid]) {
772        assert(stalls[tid].commit);
773        stalls[tid].commit = false;
774    }
775}
776
777template <class Impl>
778bool
779DefaultIEW<Impl>::checkStall(unsigned tid)
780{
781    bool ret_val(false);
782
783    if (stalls[tid].commit) {
784        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
785        ret_val = true;
786    } else if (instQueue.isFull(tid)) {
787        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
788        ret_val = true;
789    } else if (ldstQueue.isFull(tid)) {
790        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
791
792        if (ldstQueue.numLoads(tid) > 0 ) {
793
794            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
795                    tid,ldstQueue.getLoadHeadSeqNum(tid));
796        }
797
798        if (ldstQueue.numStores(tid) > 0) {
799
800            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
801                    tid,ldstQueue.getStoreHeadSeqNum(tid));
802        }
803
804        ret_val = true;
805    } else if (ldstQueue.isStalled(tid)) {
806        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
807        ret_val = true;
808    }
809
810    return ret_val;
811}
812
813template <class Impl>
814void
815DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
816{
817    // Check if there's a squash signal, squash if there is
818    // Check stall signals, block if there is.
819    // If status was Blocked
820    //     if so then go to unblocking
821    // If status was Squashing
822    //     check if squashing is not high.  Switch to running this cycle.
823
824    readStallSignals(tid);
825
826    if (fromCommit->commitInfo[tid].squash) {
827        squash(tid);
828
829        if (dispatchStatus[tid] == Blocked ||
830            dispatchStatus[tid] == Unblocking) {
831            toRename->iewUnblock[tid] = true;
832            wroteToTimeBuffer = true;
833        }
834
835        dispatchStatus[tid] = Squashing;
836
837        fetchRedirect[tid] = false;
838        return;
839    }
840
841    if (fromCommit->commitInfo[tid].robSquashing) {
842        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
843
844        dispatchStatus[tid] = Squashing;
845
846        emptyRenameInsts(tid);
847        wroteToTimeBuffer = true;
848        return;
849    }
850
851    if (checkStall(tid)) {
852        block(tid);
853        dispatchStatus[tid] = Blocked;
854        return;
855    }
856
857    if (dispatchStatus[tid] == Blocked) {
858        // Status from previous cycle was blocked, but there are no more stall
859        // conditions.  Switch over to unblocking.
860        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
861                tid);
862
863        dispatchStatus[tid] = Unblocking;
864
865        unblock(tid);
866
867        return;
868    }
869
870    if (dispatchStatus[tid] == Squashing) {
871        // Switch status to running if rename isn't being told to block or
872        // squash this cycle.
873        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
874                tid);
875
876        dispatchStatus[tid] = Running;
877
878        return;
879    }
880}
881
882template <class Impl>
883void
884DefaultIEW<Impl>::sortInsts()
885{
886    int insts_from_rename = fromRename->size;
887#ifdef DEBUG
888#if !ISA_HAS_DELAY_SLOT
889    for (int i = 0; i < numThreads; i++)
890        assert(insts[i].empty());
891#endif
892#endif
893    for (int i = 0; i < insts_from_rename; ++i) {
894        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
895    }
896}
897
898template <class Impl>
899void
900DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
901{
902    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
903            "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
904
905    while (!insts[tid].empty()) {
906#if ISA_HAS_DELAY_SLOT
907        if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
908            DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
909                    " that occurs at or before delay slot [sn:%i].\n",
910                    tid, bdelayDoneSeqNum[tid]);
911            break;
912        } else {
913            DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
914                    "[sn:%i].\n", tid, insts[tid].front()->seqNum);
915        }
916#endif
917
918        if (insts[tid].front()->isLoad() ||
919            insts[tid].front()->isStore() ) {
920            toRename->iewInfo[tid].dispatchedToLSQ++;
921        }
922
923        toRename->iewInfo[tid].dispatched++;
924
925        insts[tid].pop();
926    }
927}
928
929template <class Impl>
930void
931DefaultIEW<Impl>::wakeCPU()
932{
933    cpu->wakeCPU();
934}
935
936template <class Impl>
937void
938DefaultIEW<Impl>::activityThisCycle()
939{
940    DPRINTF(Activity, "Activity this cycle.\n");
941    cpu->activityThisCycle();
942}
943
944template <class Impl>
945inline void
946DefaultIEW<Impl>::activateStage()
947{
948    DPRINTF(Activity, "Activating stage.\n");
949    cpu->activateStage(O3CPU::IEWIdx);
950}
951
952template <class Impl>
953inline void
954DefaultIEW<Impl>::deactivateStage()
955{
956    DPRINTF(Activity, "Deactivating stage.\n");
957    cpu->deactivateStage(O3CPU::IEWIdx);
958}
959
960template<class Impl>
961void
962DefaultIEW<Impl>::dispatch(unsigned tid)
963{
964    // If status is Running or idle,
965    //     call dispatchInsts()
966    // If status is Unblocking,
967    //     buffer any instructions coming from rename
968    //     continue trying to empty skid buffer
969    //     check if stall conditions have passed
970
971    if (dispatchStatus[tid] == Blocked) {
972        ++iewBlockCycles;
973
974    } else if (dispatchStatus[tid] == Squashing) {
975        ++iewSquashCycles;
976    }
977
978    // Dispatch should try to dispatch as many instructions as its bandwidth
979    // will allow, as long as it is not currently blocked.
980    if (dispatchStatus[tid] == Running ||
981        dispatchStatus[tid] == Idle) {
982        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
983                "dispatch.\n", tid);
984
985        dispatchInsts(tid);
986    } else if (dispatchStatus[tid] == Unblocking) {
987        // Make sure that the skid buffer has something in it if the
988        // status is unblocking.
989        assert(!skidsEmpty());
990
991        // If the status was unblocking, then instructions from the skid
992        // buffer were used.  Remove those instructions and handle
993        // the rest of unblocking.
994        dispatchInsts(tid);
995
996        ++iewUnblockCycles;
997
998        if (validInstsFromRename() && dispatchedAllInsts) {
999            // Add the current inputs to the skid buffer so they can be
1000            // reprocessed when this stage unblocks.
1001            skidInsert(tid);
1002        }
1003
1004        unblock(tid);
1005    }
1006}
1007
1008template <class Impl>
1009void
1010DefaultIEW<Impl>::dispatchInsts(unsigned tid)
1011{
1012    dispatchedAllInsts = true;
1013
1014    // Obtain instructions from skid buffer if unblocking, or queue from rename
1015    // otherwise.
1016    std::queue<DynInstPtr> &insts_to_dispatch =
1017        dispatchStatus[tid] == Unblocking ?
1018        skidBuffer[tid] : insts[tid];
1019
1020    int insts_to_add = insts_to_dispatch.size();
1021
1022    DynInstPtr inst;
1023    bool add_to_iq = false;
1024    int dis_num_inst = 0;
1025
1026    // Loop through the instructions, putting them in the instruction
1027    // queue.
1028    for ( ; dis_num_inst < insts_to_add &&
1029              dis_num_inst < dispatchWidth;
1030          ++dis_num_inst)
1031    {
1032        inst = insts_to_dispatch.front();
1033
1034        if (dispatchStatus[tid] == Unblocking) {
1035            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1036                    "buffer\n", tid);
1037        }
1038
1039        // Make sure there's a valid instruction there.
1040        assert(inst);
1041
1042        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1043                "IQ.\n",
1044                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1045
1046        // Be sure to mark these instructions as ready so that the
1047        // commit stage can go ahead and execute them, and mark
1048        // them as issued so the IQ doesn't reprocess them.
1049
1050        // Check for squashed instructions.
1051        if (inst->isSquashed()) {
1052            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1053                    "not adding to IQ.\n", tid);
1054
1055            ++iewDispSquashedInsts;
1056
1057            insts_to_dispatch.pop();
1058
1059            //Tell Rename That An Instruction has been processed
1060            if (inst->isLoad() || inst->isStore()) {
1061                toRename->iewInfo[tid].dispatchedToLSQ++;
1062            }
1063            toRename->iewInfo[tid].dispatched++;
1064
1065            continue;
1066        }
1067
1068        // Check for full conditions.
1069        if (instQueue.isFull(tid)) {
1070            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1071
1072            // Call function to start blocking.
1073            block(tid);
1074
1075            // Set unblock to false. Special case where we are using
1076            // skidbuffer (unblocking) instructions but then we still
1077            // get full in the IQ.
1078            toRename->iewUnblock[tid] = false;
1079
1080            dispatchedAllInsts = false;
1081
1082            ++iewIQFullEvents;
1083            break;
1084        } else if (ldstQueue.isFull(tid)) {
1085            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1086
1087            // Call function to start blocking.
1088            block(tid);
1089
1090            // Set unblock to false. Special case where we are using
1091            // skidbuffer (unblocking) instructions but then we still
1092            // get full in the IQ.
1093            toRename->iewUnblock[tid] = false;
1094
1095            dispatchedAllInsts = false;
1096
1097            ++iewLSQFullEvents;
1098            break;
1099        }
1100
1101        // Otherwise issue the instruction just fine.
1102        if (inst->isLoad()) {
1103            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1104                    "encountered, adding to LSQ.\n", tid);
1105
1106            // Reserve a spot in the load store queue for this
1107            // memory access.
1108            ldstQueue.insertLoad(inst);
1109
1110            ++iewDispLoadInsts;
1111
1112            add_to_iq = true;
1113
1114            toRename->iewInfo[tid].dispatchedToLSQ++;
1115        } else if (inst->isStore()) {
1116            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1117                    "encountered, adding to LSQ.\n", tid);
1118
1119            ldstQueue.insertStore(inst);
1120
1121            ++iewDispStoreInsts;
1122
1123            if (inst->isStoreConditional()) {
1124                // Store conditionals need to be set as "canCommit()"
1125                // so that commit can process them when they reach the
1126                // head of commit.
1127                // @todo: This is somewhat specific to Alpha.
1128                inst->setCanCommit();
1129                instQueue.insertNonSpec(inst);
1130                add_to_iq = false;
1131
1132                ++iewDispNonSpecInsts;
1133            } else {
1134                add_to_iq = true;
1135            }
1136
1137            toRename->iewInfo[tid].dispatchedToLSQ++;
1138#if FULL_SYSTEM
1139        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1140            // Same as non-speculative stores.
1141            inst->setCanCommit();
1142            instQueue.insertBarrier(inst);
1143            add_to_iq = false;
1144#endif
1145        } else if (inst->isNonSpeculative()) {
1146            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1147                    "encountered, skipping.\n", tid);
1148
1149            // Same as non-speculative stores.
1150            inst->setCanCommit();
1151
1152            // Specifically insert it as nonspeculative.
1153            instQueue.insertNonSpec(inst);
1154
1155            ++iewDispNonSpecInsts;
1156
1157            add_to_iq = false;
1158        } else if (inst->isNop()) {
1159            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1160                    "skipping.\n", tid);
1161
1162            inst->setIssued();
1163            inst->setExecuted();
1164            inst->setCanCommit();
1165
1166            instQueue.recordProducer(inst);
1167
1168            iewExecutedNop[tid]++;
1169
1170            add_to_iq = false;
1171        } else if (inst->isExecuted()) {
1172            assert(0 && "Instruction shouldn't be executed.\n");
1173            DPRINTF(IEW, "Issue: Executed branch encountered, "
1174                    "skipping.\n");
1175
1176            inst->setIssued();
1177            inst->setCanCommit();
1178
1179            instQueue.recordProducer(inst);
1180
1181            add_to_iq = false;
1182        } else {
1183            add_to_iq = true;
1184        }
1185
1186        // If the instruction queue is not full, then add the
1187        // instruction.
1188        if (add_to_iq) {
1189            instQueue.insert(inst);
1190        }
1191
1192        insts_to_dispatch.pop();
1193
1194        toRename->iewInfo[tid].dispatched++;
1195
1196        ++iewDispatchedInsts;
1197    }
1198
1199    if (!insts_to_dispatch.empty()) {
1200        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1201        block(tid);
1202        toRename->iewUnblock[tid] = false;
1203    }
1204
1205    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1206        dispatchStatus[tid] = Running;
1207
1208        updatedQueues = true;
1209    }
1210
1211    dis_num_inst = 0;
1212}
1213
1214template <class Impl>
1215void
1216DefaultIEW<Impl>::printAvailableInsts()
1217{
1218    int inst = 0;
1219
1220    std::cout << "Available Instructions: ";
1221
1222    while (fromIssue->insts[inst]) {
1223
1224        if (inst%3==0) std::cout << "\n\t";
1225
1226        std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1227             << " TN: " << fromIssue->insts[inst]->threadNumber
1228             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1229
1230        inst++;
1231
1232    }
1233
1234    std::cout << "\n";
1235}
1236
1237template <class Impl>
1238void
1239DefaultIEW<Impl>::executeInsts()
1240{
1241    wbNumInst = 0;
1242    wbCycle = 0;
1243
1244    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1245
1246    while (threads != (*activeThreads).end()) {
1247        unsigned tid = *threads++;
1248        fetchRedirect[tid] = false;
1249    }
1250
1251    // Uncomment this if you want to see all available instructions.
1252//    printAvailableInsts();
1253
1254    // Execute/writeback any instructions that are available.
1255    int insts_to_execute = fromIssue->size;
1256    int inst_num = 0;
1257    for (; inst_num < insts_to_execute;
1258          ++inst_num) {
1259
1260        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1261
1262        DynInstPtr inst = instQueue.getInstToExecute();
1263
1264        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1265                inst->readPC(), inst->threadNumber,inst->seqNum);
1266
1267        // Check if the instruction is squashed; if so then skip it
1268        if (inst->isSquashed()) {
1269            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1270
1271            // Consider this instruction executed so that commit can go
1272            // ahead and retire the instruction.
1273            inst->setExecuted();
1274
1275            // Not sure if I should set this here or just let commit try to
1276            // commit any squashed instructions.  I like the latter a bit more.
1277            inst->setCanCommit();
1278
1279            ++iewExecSquashedInsts;
1280
1281            decrWb(inst->seqNum);
1282            continue;
1283        }
1284
1285        Fault fault = NoFault;
1286
1287        // Execute instruction.
1288        // Note that if the instruction faults, it will be handled
1289        // at the commit stage.
1290        if (inst->isMemRef() &&
1291            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1292            DPRINTF(IEW, "Execute: Calculating address for memory "
1293                    "reference.\n");
1294
1295            // Tell the LDSTQ to execute this instruction (if it is a load).
1296            if (inst->isLoad()) {
1297                // Loads will mark themselves as executed, and their writeback
1298                // event adds the instruction to the queue to commit
1299                fault = ldstQueue.executeLoad(inst);
1300            } else if (inst->isStore()) {
1301                fault = ldstQueue.executeStore(inst);
1302
1303                // If the store had a fault then it may not have a mem req
1304                if (!inst->isStoreConditional() && fault == NoFault) {
1305                    inst->setExecuted();
1306
1307                    instToCommit(inst);
1308                } else if (fault != NoFault) {
1309                    // If the instruction faulted, then we need to send it along to commit
1310                    // without the instruction completing.
1311                    DPRINTF(IEW, "Store has fault! [sn:%lli]\n", inst->seqNum);
1312
1313                    // Send this instruction to commit, also make sure iew stage
1314                    // realizes there is activity.
1315                    inst->setExecuted();
1316
1317                    instToCommit(inst);
1318                    activityThisCycle();
1319                }
1320
1321                // Store conditionals will mark themselves as
1322                // executed, and their writeback event will add the
1323                // instruction to the queue to commit.
1324            } else {
1325                panic("Unexpected memory type!\n");
1326            }
1327
1328        } else {
1329            inst->execute();
1330
1331            inst->setExecuted();
1332
1333            instToCommit(inst);
1334        }
1335
1336        updateExeInstStats(inst);
1337
1338        // Check if branch prediction was correct, if not then we need
1339        // to tell commit to squash in flight instructions.  Only
1340        // handle this if there hasn't already been something that
1341        // redirects fetch in this group of instructions.
1342
1343        // This probably needs to prioritize the redirects if a different
1344        // scheduler is used.  Currently the scheduler schedules the oldest
1345        // instruction first, so the branch resolution order will be correct.
1346        unsigned tid = inst->threadNumber;
1347
1348        if (!fetchRedirect[tid]) {
1349
1350            if (inst->mispredicted()) {
1351                fetchRedirect[tid] = true;
1352
1353                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1354                DPRINTF(IEW, "Predicted target was %#x.\n", inst->predPC);
1355#if ISA_HAS_DELAY_SLOT
1356                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1357                        inst->nextNPC);
1358#else
1359                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1360                        inst->nextPC);
1361#endif
1362                // If incorrect, then signal the ROB that it must be squashed.
1363                squashDueToBranch(inst, tid);
1364
1365                if (inst->readPredTaken()) {
1366                    predictedTakenIncorrect++;
1367                } else {
1368                    predictedNotTakenIncorrect++;
1369                }
1370            } else if (ldstQueue.violation(tid)) {
1371                fetchRedirect[tid] = true;
1372
1373                // If there was an ordering violation, then get the
1374                // DynInst that caused the violation.  Note that this
1375                // clears the violation signal.
1376                DynInstPtr violator;
1377                violator = ldstQueue.getMemDepViolator(tid);
1378
1379                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1380                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1381                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1382
1383                // Tell the instruction queue that a violation has occured.
1384                instQueue.violation(inst, violator);
1385
1386                // Squash.
1387                squashDueToMemOrder(inst,tid);
1388
1389                ++memOrderViolationEvents;
1390            } else if (ldstQueue.loadBlocked(tid) &&
1391                       !ldstQueue.isLoadBlockedHandled(tid)) {
1392                fetchRedirect[tid] = true;
1393
1394                DPRINTF(IEW, "Load operation couldn't execute because the "
1395                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1396                        inst->readPC(), inst->seqNum);
1397
1398                squashDueToMemBlocked(inst, tid);
1399            }
1400        }
1401    }
1402
1403    // Update and record activity if we processed any instructions.
1404    if (inst_num) {
1405        if (exeStatus == Idle) {
1406            exeStatus = Running;
1407        }
1408
1409        updatedQueues = true;
1410
1411        cpu->activityThisCycle();
1412    }
1413
1414    // Need to reset this in case a writeback event needs to write into the
1415    // iew queue.  That way the writeback event will write into the correct
1416    // spot in the queue.
1417    wbNumInst = 0;
1418}
1419
1420template <class Impl>
1421void
1422DefaultIEW<Impl>::writebackInsts()
1423{
1424    // Loop through the head of the time buffer and wake any
1425    // dependents.  These instructions are about to write back.  Also
1426    // mark scoreboard that this instruction is finally complete.
1427    // Either have IEW have direct access to scoreboard, or have this
1428    // as part of backwards communication.
1429    for (int inst_num = 0; inst_num < issueWidth &&
1430             toCommit->insts[inst_num]; inst_num++) {
1431        DynInstPtr inst = toCommit->insts[inst_num];
1432        int tid = inst->threadNumber;
1433
1434        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1435                inst->seqNum, inst->readPC());
1436
1437        iewInstsToCommit[tid]++;
1438
1439        // Some instructions will be sent to commit without having
1440        // executed because they need commit to handle them.
1441        // E.g. Uncached loads have not actually executed when they
1442        // are first sent to commit.  Instead commit must tell the LSQ
1443        // when it's ready to execute the uncached load.
1444        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1445            int dependents = instQueue.wakeDependents(inst);
1446
1447            for (int i = 0; i < inst->numDestRegs(); i++) {
1448                //mark as Ready
1449                DPRINTF(IEW,"Setting Destination Register %i\n",
1450                        inst->renamedDestRegIdx(i));
1451                scoreboard->setReg(inst->renamedDestRegIdx(i));
1452            }
1453
1454            if (dependents) {
1455                producerInst[tid]++;
1456                consumerInst[tid]+= dependents;
1457            }
1458            writebackCount[tid]++;
1459        }
1460
1461        decrWb(inst->seqNum);
1462    }
1463}
1464
1465template<class Impl>
1466void
1467DefaultIEW<Impl>::tick()
1468{
1469    wbNumInst = 0;
1470    wbCycle = 0;
1471
1472    wroteToTimeBuffer = false;
1473    updatedQueues = false;
1474
1475    sortInsts();
1476
1477    // Free function units marked as being freed this cycle.
1478    fuPool->processFreeUnits();
1479
1480    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1481
1482    // Check stall and squash signals, dispatch any instructions.
1483    while (threads != (*activeThreads).end()) {
1484           unsigned tid = *threads++;
1485
1486        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1487
1488        checkSignalsAndUpdate(tid);
1489        dispatch(tid);
1490    }
1491
1492    if (exeStatus != Squashing) {
1493        executeInsts();
1494
1495        writebackInsts();
1496
1497        // Have the instruction queue try to schedule any ready instructions.
1498        // (In actuality, this scheduling is for instructions that will
1499        // be executed next cycle.)
1500        instQueue.scheduleReadyInsts();
1501
1502        // Also should advance its own time buffers if the stage ran.
1503        // Not the best place for it, but this works (hopefully).
1504        issueToExecQueue.advance();
1505    }
1506
1507    bool broadcast_free_entries = false;
1508
1509    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1510        exeStatus = Idle;
1511        updateLSQNextCycle = false;
1512
1513        broadcast_free_entries = true;
1514    }
1515
1516    // Writeback any stores using any leftover bandwidth.
1517    ldstQueue.writebackStores();
1518
1519    // Check the committed load/store signals to see if there's a load
1520    // or store to commit.  Also check if it's being told to execute a
1521    // nonspeculative instruction.
1522    // This is pretty inefficient...
1523
1524    threads = (*activeThreads).begin();
1525    while (threads != (*activeThreads).end()) {
1526        unsigned tid = (*threads++);
1527
1528        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1529
1530        // Update structures based on instructions committed.
1531        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1532            !fromCommit->commitInfo[tid].squash &&
1533            !fromCommit->commitInfo[tid].robSquashing) {
1534
1535            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1536
1537            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1538
1539            updateLSQNextCycle = true;
1540            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1541        }
1542
1543        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1544
1545            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1546            if (fromCommit->commitInfo[tid].uncached) {
1547                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1548            } else {
1549                instQueue.scheduleNonSpec(
1550                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1551            }
1552        }
1553
1554        if (broadcast_free_entries) {
1555            toFetch->iewInfo[tid].iqCount =
1556                instQueue.getCount(tid);
1557            toFetch->iewInfo[tid].ldstqCount =
1558                ldstQueue.getCount(tid);
1559
1560            toRename->iewInfo[tid].usedIQ = true;
1561            toRename->iewInfo[tid].freeIQEntries =
1562                instQueue.numFreeEntries();
1563            toRename->iewInfo[tid].usedLSQ = true;
1564            toRename->iewInfo[tid].freeLSQEntries =
1565                ldstQueue.numFreeEntries(tid);
1566
1567            wroteToTimeBuffer = true;
1568        }
1569
1570        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1571                tid, toRename->iewInfo[tid].dispatched);
1572    }
1573
1574    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1575            "LSQ has %i free entries.\n",
1576            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1577            ldstQueue.numFreeEntries());
1578
1579    updateStatus();
1580
1581    if (wroteToTimeBuffer) {
1582        DPRINTF(Activity, "Activity this cycle.\n");
1583        cpu->activityThisCycle();
1584    }
1585}
1586
1587template <class Impl>
1588void
1589DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1590{
1591    int thread_number = inst->threadNumber;
1592
1593    //
1594    //  Pick off the software prefetches
1595    //
1596#ifdef TARGET_ALPHA
1597    if (inst->isDataPrefetch())
1598        iewExecutedSwp[thread_number]++;
1599    else
1600        iewIewExecutedcutedInsts++;
1601#else
1602    iewExecutedInsts++;
1603#endif
1604
1605    //
1606    //  Control operations
1607    //
1608    if (inst->isControl())
1609        iewExecutedBranches[thread_number]++;
1610
1611    //
1612    //  Memory operations
1613    //
1614    if (inst->isMemRef()) {
1615        iewExecutedRefs[thread_number]++;
1616
1617        if (inst->isLoad()) {
1618            iewExecLoadInsts[thread_number]++;
1619        }
1620    }
1621}
1622