iew_impl.hh revision 3732:e84a6e9ebd3d
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 */
30
31// @todo: Fix the instantaneous communication among all the stages within
32// iew.  There's a clear delay between issue and execute, yet backwards
33// communication happens simultaneously.
34
35#include <queue>
36
37#include "base/timebuf.hh"
38#include "cpu/o3/fu_pool.hh"
39#include "cpu/o3/iew.hh"
40
41template<class Impl>
42DefaultIEW<Impl>::DefaultIEW(Params *params)
43    : issueToExecQueue(params->backComSize, params->forwardComSize),
44      instQueue(params),
45      ldstQueue(params),
46      fuPool(params->fuPool),
47      commitToIEWDelay(params->commitToIEWDelay),
48      renameToIEWDelay(params->renameToIEWDelay),
49      issueToExecuteDelay(params->issueToExecuteDelay),
50      dispatchWidth(params->dispatchWidth),
51      issueWidth(params->issueWidth),
52      wbOutstanding(0),
53      wbWidth(params->wbWidth),
54      numThreads(params->numberOfThreads),
55      switchedOut(false)
56{
57    _status = Active;
58    exeStatus = Running;
59    wbStatus = Idle;
60
61    // Setup wire to read instructions coming from issue.
62    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64    // Instruction queue needs the queue between issue and execute.
65    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67    instQueue.setIEW(this);
68    ldstQueue.setIEW(this);
69
70    for (int i=0; i < numThreads; i++) {
71        dispatchStatus[i] = Running;
72        stalls[i].commit = false;
73        fetchRedirect[i] = false;
74        bdelayDoneSeqNum[i] = 0;
75    }
76
77    wbMax = wbWidth * params->wbDepth;
78
79    updateLSQNextCycle = false;
80
81    ableToIssue = true;
82
83    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
84}
85
86template <class Impl>
87std::string
88DefaultIEW<Impl>::name() const
89{
90    return cpu->name() + ".iew";
91}
92
93template <class Impl>
94void
95DefaultIEW<Impl>::regStats()
96{
97    using namespace Stats;
98
99    instQueue.regStats();
100    ldstQueue.regStats();
101
102    iewIdleCycles
103        .name(name() + ".iewIdleCycles")
104        .desc("Number of cycles IEW is idle");
105
106    iewSquashCycles
107        .name(name() + ".iewSquashCycles")
108        .desc("Number of cycles IEW is squashing");
109
110    iewBlockCycles
111        .name(name() + ".iewBlockCycles")
112        .desc("Number of cycles IEW is blocking");
113
114    iewUnblockCycles
115        .name(name() + ".iewUnblockCycles")
116        .desc("Number of cycles IEW is unblocking");
117
118    iewDispatchedInsts
119        .name(name() + ".iewDispatchedInsts")
120        .desc("Number of instructions dispatched to IQ");
121
122    iewDispSquashedInsts
123        .name(name() + ".iewDispSquashedInsts")
124        .desc("Number of squashed instructions skipped by dispatch");
125
126    iewDispLoadInsts
127        .name(name() + ".iewDispLoadInsts")
128        .desc("Number of dispatched load instructions");
129
130    iewDispStoreInsts
131        .name(name() + ".iewDispStoreInsts")
132        .desc("Number of dispatched store instructions");
133
134    iewDispNonSpecInsts
135        .name(name() + ".iewDispNonSpecInsts")
136        .desc("Number of dispatched non-speculative instructions");
137
138    iewIQFullEvents
139        .name(name() + ".iewIQFullEvents")
140        .desc("Number of times the IQ has become full, causing a stall");
141
142    iewLSQFullEvents
143        .name(name() + ".iewLSQFullEvents")
144        .desc("Number of times the LSQ has become full, causing a stall");
145
146    memOrderViolationEvents
147        .name(name() + ".memOrderViolationEvents")
148        .desc("Number of memory order violations");
149
150    predictedTakenIncorrect
151        .name(name() + ".predictedTakenIncorrect")
152        .desc("Number of branches that were predicted taken incorrectly");
153
154    predictedNotTakenIncorrect
155        .name(name() + ".predictedNotTakenIncorrect")
156        .desc("Number of branches that were predicted not taken incorrectly");
157
158    branchMispredicts
159        .name(name() + ".branchMispredicts")
160        .desc("Number of branch mispredicts detected at execute");
161
162    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
163
164    iewExecutedInsts
165        .name(name() + ".iewExecutedInsts")
166        .desc("Number of executed instructions");
167
168    iewExecLoadInsts
169        .init(cpu->number_of_threads)
170        .name(name() + ".iewExecLoadInsts")
171        .desc("Number of load instructions executed")
172        .flags(total);
173
174    iewExecSquashedInsts
175        .name(name() + ".iewExecSquashedInsts")
176        .desc("Number of squashed instructions skipped in execute");
177
178    iewExecutedSwp
179        .init(cpu->number_of_threads)
180        .name(name() + ".EXEC:swp")
181        .desc("number of swp insts executed")
182        .flags(total);
183
184    iewExecutedNop
185        .init(cpu->number_of_threads)
186        .name(name() + ".EXEC:nop")
187        .desc("number of nop insts executed")
188        .flags(total);
189
190    iewExecutedRefs
191        .init(cpu->number_of_threads)
192        .name(name() + ".EXEC:refs")
193        .desc("number of memory reference insts executed")
194        .flags(total);
195
196    iewExecutedBranches
197        .init(cpu->number_of_threads)
198        .name(name() + ".EXEC:branches")
199        .desc("Number of branches executed")
200        .flags(total);
201
202    iewExecStoreInsts
203        .name(name() + ".EXEC:stores")
204        .desc("Number of stores executed")
205        .flags(total);
206    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
207
208    iewExecRate
209        .name(name() + ".EXEC:rate")
210        .desc("Inst execution rate")
211        .flags(total);
212
213    iewExecRate = iewExecutedInsts / cpu->numCycles;
214
215    iewInstsToCommit
216        .init(cpu->number_of_threads)
217        .name(name() + ".WB:sent")
218        .desc("cumulative count of insts sent to commit")
219        .flags(total);
220
221    writebackCount
222        .init(cpu->number_of_threads)
223        .name(name() + ".WB:count")
224        .desc("cumulative count of insts written-back")
225        .flags(total);
226
227    producerInst
228        .init(cpu->number_of_threads)
229        .name(name() + ".WB:producers")
230        .desc("num instructions producing a value")
231        .flags(total);
232
233    consumerInst
234        .init(cpu->number_of_threads)
235        .name(name() + ".WB:consumers")
236        .desc("num instructions consuming a value")
237        .flags(total);
238
239    wbPenalized
240        .init(cpu->number_of_threads)
241        .name(name() + ".WB:penalized")
242        .desc("number of instrctions required to write to 'other' IQ")
243        .flags(total);
244
245    wbPenalizedRate
246        .name(name() + ".WB:penalized_rate")
247        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
248        .flags(total);
249
250    wbPenalizedRate = wbPenalized / writebackCount;
251
252    wbFanout
253        .name(name() + ".WB:fanout")
254        .desc("average fanout of values written-back")
255        .flags(total);
256
257    wbFanout = producerInst / consumerInst;
258
259    wbRate
260        .name(name() + ".WB:rate")
261        .desc("insts written-back per cycle")
262        .flags(total);
263    wbRate = writebackCount / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultIEW<Impl>::initStage()
269{
270    for (int tid=0; tid < numThreads; tid++) {
271        toRename->iewInfo[tid].usedIQ = true;
272        toRename->iewInfo[tid].freeIQEntries =
273            instQueue.numFreeEntries(tid);
274
275        toRename->iewInfo[tid].usedLSQ = true;
276        toRename->iewInfo[tid].freeLSQEntries =
277            ldstQueue.numFreeEntries(tid);
278    }
279}
280
281template<class Impl>
282void
283DefaultIEW<Impl>::setCPU(O3CPU *cpu_ptr)
284{
285    DPRINTF(IEW, "Setting CPU pointer.\n");
286    cpu = cpu_ptr;
287
288    instQueue.setCPU(cpu_ptr);
289    ldstQueue.setCPU(cpu_ptr);
290
291    cpu->activateStage(O3CPU::IEWIdx);
292}
293
294template<class Impl>
295void
296DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
297{
298    DPRINTF(IEW, "Setting time buffer pointer.\n");
299    timeBuffer = tb_ptr;
300
301    // Setup wire to read information from time buffer, from commit.
302    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
303
304    // Setup wire to write information back to previous stages.
305    toRename = timeBuffer->getWire(0);
306
307    toFetch = timeBuffer->getWire(0);
308
309    // Instruction queue also needs main time buffer.
310    instQueue.setTimeBuffer(tb_ptr);
311}
312
313template<class Impl>
314void
315DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
316{
317    DPRINTF(IEW, "Setting rename queue pointer.\n");
318    renameQueue = rq_ptr;
319
320    // Setup wire to read information from rename queue.
321    fromRename = renameQueue->getWire(-renameToIEWDelay);
322}
323
324template<class Impl>
325void
326DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
327{
328    DPRINTF(IEW, "Setting IEW queue pointer.\n");
329    iewQueue = iq_ptr;
330
331    // Setup wire to write instructions to commit.
332    toCommit = iewQueue->getWire(0);
333}
334
335template<class Impl>
336void
337DefaultIEW<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
338{
339    DPRINTF(IEW, "Setting active threads list pointer.\n");
340    activeThreads = at_ptr;
341
342    ldstQueue.setActiveThreads(at_ptr);
343    instQueue.setActiveThreads(at_ptr);
344}
345
346template<class Impl>
347void
348DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
349{
350    DPRINTF(IEW, "Setting scoreboard pointer.\n");
351    scoreboard = sb_ptr;
352}
353
354template <class Impl>
355bool
356DefaultIEW<Impl>::drain()
357{
358    // IEW is ready to drain at any time.
359    cpu->signalDrained();
360    return true;
361}
362
363template <class Impl>
364void
365DefaultIEW<Impl>::resume()
366{
367}
368
369template <class Impl>
370void
371DefaultIEW<Impl>::switchOut()
372{
373    // Clear any state.
374    switchedOut = true;
375    assert(insts[0].empty());
376    assert(skidBuffer[0].empty());
377
378    instQueue.switchOut();
379    ldstQueue.switchOut();
380    fuPool->switchOut();
381
382    for (int i = 0; i < numThreads; i++) {
383        while (!insts[i].empty())
384            insts[i].pop();
385        while (!skidBuffer[i].empty())
386            skidBuffer[i].pop();
387    }
388}
389
390template <class Impl>
391void
392DefaultIEW<Impl>::takeOverFrom()
393{
394    // Reset all state.
395    _status = Active;
396    exeStatus = Running;
397    wbStatus = Idle;
398    switchedOut = false;
399
400    instQueue.takeOverFrom();
401    ldstQueue.takeOverFrom();
402    fuPool->takeOverFrom();
403
404    initStage();
405    cpu->activityThisCycle();
406
407    for (int i=0; i < numThreads; i++) {
408        dispatchStatus[i] = Running;
409        stalls[i].commit = false;
410        fetchRedirect[i] = false;
411    }
412
413    updateLSQNextCycle = false;
414
415    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
416        issueToExecQueue.advance();
417    }
418}
419
420template<class Impl>
421void
422DefaultIEW<Impl>::squash(unsigned tid)
423{
424    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
425            tid);
426
427    // Tell the IQ to start squashing.
428    instQueue.squash(tid);
429
430    // Tell the LDSTQ to start squashing.
431#if ISA_HAS_DELAY_SLOT
432    ldstQueue.squash(fromCommit->commitInfo[tid].bdelayDoneSeqNum, tid);
433#else
434    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
435#endif
436    updatedQueues = true;
437
438    // Clear the skid buffer in case it has any data in it.
439    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
440            tid, fromCommit->commitInfo[tid].bdelayDoneSeqNum);
441
442    while (!skidBuffer[tid].empty()) {
443#if ISA_HAS_DELAY_SLOT
444        if (skidBuffer[tid].front()->seqNum <=
445            fromCommit->commitInfo[tid].bdelayDoneSeqNum) {
446            DPRINTF(IEW, "[tid:%i]: Cannot remove skidbuffer instructions "
447                    "that occur before delay slot [sn:%i].\n",
448                    fromCommit->commitInfo[tid].bdelayDoneSeqNum,
449                    tid);
450            break;
451        } else {
452            DPRINTF(IEW, "[tid:%i]: Removing instruction [sn:%i] from "
453                    "skidBuffer.\n", tid, skidBuffer[tid].front()->seqNum);
454        }
455#endif
456        if (skidBuffer[tid].front()->isLoad() ||
457            skidBuffer[tid].front()->isStore() ) {
458            toRename->iewInfo[tid].dispatchedToLSQ++;
459        }
460
461        toRename->iewInfo[tid].dispatched++;
462
463        skidBuffer[tid].pop();
464    }
465
466    bdelayDoneSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
467
468    emptyRenameInsts(tid);
469}
470
471template<class Impl>
472void
473DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
474{
475    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
476            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
477
478    toCommit->squash[tid] = true;
479    toCommit->squashedSeqNum[tid] = inst->seqNum;
480    toCommit->mispredPC[tid] = inst->readPC();
481    toCommit->branchMispredict[tid] = true;
482
483#if ISA_HAS_DELAY_SLOT
484    bool branch_taken = inst->readNextNPC() !=
485        (inst->readNextPC() + sizeof(TheISA::MachInst));
486
487    toCommit->branchTaken[tid] = branch_taken;
488
489    toCommit->condDelaySlotBranch[tid] = inst->isCondDelaySlot();
490
491    if (inst->isCondDelaySlot() && branch_taken) {
492        toCommit->nextPC[tid] = inst->readNextPC();
493    } else {
494        toCommit->nextPC[tid] = inst->readNextNPC();
495    }
496#else
497    toCommit->branchTaken[tid] = inst->readNextPC() !=
498        (inst->readPC() + sizeof(TheISA::MachInst));
499    toCommit->nextPC[tid] = inst->readNextPC();
500#endif
501
502    toCommit->includeSquashInst[tid] = false;
503
504    wroteToTimeBuffer = true;
505}
506
507template<class Impl>
508void
509DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
510{
511    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
512            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
513
514    toCommit->squash[tid] = true;
515    toCommit->squashedSeqNum[tid] = inst->seqNum;
516    toCommit->nextPC[tid] = inst->readNextPC();
517    toCommit->branchMispredict[tid] = false;
518
519    toCommit->includeSquashInst[tid] = false;
520
521    wroteToTimeBuffer = true;
522}
523
524template<class Impl>
525void
526DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
527{
528    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
529            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
530
531    toCommit->squash[tid] = true;
532    toCommit->squashedSeqNum[tid] = inst->seqNum;
533    toCommit->nextPC[tid] = inst->readPC();
534    toCommit->branchMispredict[tid] = false;
535
536    // Must include the broadcasted SN in the squash.
537    toCommit->includeSquashInst[tid] = true;
538
539    ldstQueue.setLoadBlockedHandled(tid);
540
541    wroteToTimeBuffer = true;
542}
543
544template<class Impl>
545void
546DefaultIEW<Impl>::block(unsigned tid)
547{
548    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
549
550    if (dispatchStatus[tid] != Blocked &&
551        dispatchStatus[tid] != Unblocking) {
552        toRename->iewBlock[tid] = true;
553        wroteToTimeBuffer = true;
554    }
555
556    // Add the current inputs to the skid buffer so they can be
557    // reprocessed when this stage unblocks.
558    skidInsert(tid);
559
560    dispatchStatus[tid] = Blocked;
561}
562
563template<class Impl>
564void
565DefaultIEW<Impl>::unblock(unsigned tid)
566{
567    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
568            "buffer %u.\n",tid, tid);
569
570    // If the skid bufffer is empty, signal back to previous stages to unblock.
571    // Also switch status to running.
572    if (skidBuffer[tid].empty()) {
573        toRename->iewUnblock[tid] = true;
574        wroteToTimeBuffer = true;
575        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
576        dispatchStatus[tid] = Running;
577    }
578}
579
580template<class Impl>
581void
582DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
583{
584    instQueue.wakeDependents(inst);
585}
586
587template<class Impl>
588void
589DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
590{
591    instQueue.rescheduleMemInst(inst);
592}
593
594template<class Impl>
595void
596DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
597{
598    instQueue.replayMemInst(inst);
599}
600
601template<class Impl>
602void
603DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
604{
605    // This function should not be called after writebackInsts in a
606    // single cycle.  That will cause problems with an instruction
607    // being added to the queue to commit without being processed by
608    // writebackInsts prior to being sent to commit.
609
610    // First check the time slot that this instruction will write
611    // to.  If there are free write ports at the time, then go ahead
612    // and write the instruction to that time.  If there are not,
613    // keep looking back to see where's the first time there's a
614    // free slot.
615    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
616        ++wbNumInst;
617        if (wbNumInst == wbWidth) {
618            ++wbCycle;
619            wbNumInst = 0;
620        }
621
622        assert((wbCycle * wbWidth + wbNumInst) <= wbMax);
623    }
624
625    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
626            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
627    // Add finished instruction to queue to commit.
628    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
629    (*iewQueue)[wbCycle].size++;
630}
631
632template <class Impl>
633unsigned
634DefaultIEW<Impl>::validInstsFromRename()
635{
636    unsigned inst_count = 0;
637
638    for (int i=0; i<fromRename->size; i++) {
639        if (!fromRename->insts[i]->isSquashed())
640            inst_count++;
641    }
642
643    return inst_count;
644}
645
646template<class Impl>
647void
648DefaultIEW<Impl>::skidInsert(unsigned tid)
649{
650    DynInstPtr inst = NULL;
651
652    while (!insts[tid].empty()) {
653        inst = insts[tid].front();
654
655        insts[tid].pop();
656
657        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
658                "dispatch skidBuffer %i\n",tid, inst->seqNum,
659                inst->readPC(),tid);
660
661        skidBuffer[tid].push(inst);
662    }
663
664    assert(skidBuffer[tid].size() <= skidBufferMax &&
665           "Skidbuffer Exceeded Max Size");
666}
667
668template<class Impl>
669int
670DefaultIEW<Impl>::skidCount()
671{
672    int max=0;
673
674    std::list<unsigned>::iterator threads = (*activeThreads).begin();
675
676    while (threads != (*activeThreads).end()) {
677        unsigned thread_count = skidBuffer[*threads++].size();
678        if (max < thread_count)
679            max = thread_count;
680    }
681
682    return max;
683}
684
685template<class Impl>
686bool
687DefaultIEW<Impl>::skidsEmpty()
688{
689    std::list<unsigned>::iterator threads = (*activeThreads).begin();
690
691    while (threads != (*activeThreads).end()) {
692        if (!skidBuffer[*threads++].empty())
693            return false;
694    }
695
696    return true;
697}
698
699template <class Impl>
700void
701DefaultIEW<Impl>::updateStatus()
702{
703    bool any_unblocking = false;
704
705    std::list<unsigned>::iterator threads = (*activeThreads).begin();
706
707    threads = (*activeThreads).begin();
708
709    while (threads != (*activeThreads).end()) {
710        unsigned tid = *threads++;
711
712        if (dispatchStatus[tid] == Unblocking) {
713            any_unblocking = true;
714            break;
715        }
716    }
717
718    // If there are no ready instructions waiting to be scheduled by the IQ,
719    // and there's no stores waiting to write back, and dispatch is not
720    // unblocking, then there is no internal activity for the IEW stage.
721    if (_status == Active && !instQueue.hasReadyInsts() &&
722        !ldstQueue.willWB() && !any_unblocking) {
723        DPRINTF(IEW, "IEW switching to idle\n");
724
725        deactivateStage();
726
727        _status = Inactive;
728    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
729                                       ldstQueue.willWB() ||
730                                       any_unblocking)) {
731        // Otherwise there is internal activity.  Set to active.
732        DPRINTF(IEW, "IEW switching to active\n");
733
734        activateStage();
735
736        _status = Active;
737    }
738}
739
740template <class Impl>
741void
742DefaultIEW<Impl>::resetEntries()
743{
744    instQueue.resetEntries();
745    ldstQueue.resetEntries();
746}
747
748template <class Impl>
749void
750DefaultIEW<Impl>::readStallSignals(unsigned tid)
751{
752    if (fromCommit->commitBlock[tid]) {
753        stalls[tid].commit = true;
754    }
755
756    if (fromCommit->commitUnblock[tid]) {
757        assert(stalls[tid].commit);
758        stalls[tid].commit = false;
759    }
760}
761
762template <class Impl>
763bool
764DefaultIEW<Impl>::checkStall(unsigned tid)
765{
766    bool ret_val(false);
767
768    if (stalls[tid].commit) {
769        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
770        ret_val = true;
771    } else if (instQueue.isFull(tid)) {
772        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
773        ret_val = true;
774    } else if (ldstQueue.isFull(tid)) {
775        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
776
777        if (ldstQueue.numLoads(tid) > 0 ) {
778
779            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
780                    tid,ldstQueue.getLoadHeadSeqNum(tid));
781        }
782
783        if (ldstQueue.numStores(tid) > 0) {
784
785            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
786                    tid,ldstQueue.getStoreHeadSeqNum(tid));
787        }
788
789        ret_val = true;
790    } else if (ldstQueue.isStalled(tid)) {
791        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
792        ret_val = true;
793    }
794
795    return ret_val;
796}
797
798template <class Impl>
799void
800DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
801{
802    // Check if there's a squash signal, squash if there is
803    // Check stall signals, block if there is.
804    // If status was Blocked
805    //     if so then go to unblocking
806    // If status was Squashing
807    //     check if squashing is not high.  Switch to running this cycle.
808
809    readStallSignals(tid);
810
811    if (fromCommit->commitInfo[tid].squash) {
812        squash(tid);
813
814        if (dispatchStatus[tid] == Blocked ||
815            dispatchStatus[tid] == Unblocking) {
816            toRename->iewUnblock[tid] = true;
817            wroteToTimeBuffer = true;
818        }
819
820        dispatchStatus[tid] = Squashing;
821
822        fetchRedirect[tid] = false;
823        return;
824    }
825
826    if (fromCommit->commitInfo[tid].robSquashing) {
827        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
828
829        dispatchStatus[tid] = Squashing;
830
831        emptyRenameInsts(tid);
832        wroteToTimeBuffer = true;
833        return;
834    }
835
836    if (checkStall(tid)) {
837        block(tid);
838        dispatchStatus[tid] = Blocked;
839        return;
840    }
841
842    if (dispatchStatus[tid] == Blocked) {
843        // Status from previous cycle was blocked, but there are no more stall
844        // conditions.  Switch over to unblocking.
845        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
846                tid);
847
848        dispatchStatus[tid] = Unblocking;
849
850        unblock(tid);
851
852        return;
853    }
854
855    if (dispatchStatus[tid] == Squashing) {
856        // Switch status to running if rename isn't being told to block or
857        // squash this cycle.
858        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
859                tid);
860
861        dispatchStatus[tid] = Running;
862
863        return;
864    }
865}
866
867template <class Impl>
868void
869DefaultIEW<Impl>::sortInsts()
870{
871    int insts_from_rename = fromRename->size;
872#ifdef DEBUG
873#if !ISA_HAS_DELAY_SLOT
874    for (int i = 0; i < numThreads; i++)
875        assert(insts[i].empty());
876#endif
877#endif
878    for (int i = 0; i < insts_from_rename; ++i) {
879        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
880    }
881}
882
883template <class Impl>
884void
885DefaultIEW<Impl>::emptyRenameInsts(unsigned tid)
886{
887    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions until "
888            "[sn:%i].\n", tid, bdelayDoneSeqNum[tid]);
889
890    while (!insts[tid].empty()) {
891#if ISA_HAS_DELAY_SLOT
892        if (insts[tid].front()->seqNum <= bdelayDoneSeqNum[tid]) {
893            DPRINTF(IEW, "[tid:%i]: Done removing, cannot remove instruction"
894                    " that occurs at or before delay slot [sn:%i].\n",
895                    tid, bdelayDoneSeqNum[tid]);
896            break;
897        } else {
898            DPRINTF(IEW, "[tid:%i]: Removing incoming rename instruction "
899                    "[sn:%i].\n", tid, insts[tid].front()->seqNum);
900        }
901#endif
902
903        if (insts[tid].front()->isLoad() ||
904            insts[tid].front()->isStore() ) {
905            toRename->iewInfo[tid].dispatchedToLSQ++;
906        }
907
908        toRename->iewInfo[tid].dispatched++;
909
910        insts[tid].pop();
911    }
912}
913
914template <class Impl>
915void
916DefaultIEW<Impl>::wakeCPU()
917{
918    cpu->wakeCPU();
919}
920
921template <class Impl>
922void
923DefaultIEW<Impl>::activityThisCycle()
924{
925    DPRINTF(Activity, "Activity this cycle.\n");
926    cpu->activityThisCycle();
927}
928
929template <class Impl>
930inline void
931DefaultIEW<Impl>::activateStage()
932{
933    DPRINTF(Activity, "Activating stage.\n");
934    cpu->activateStage(O3CPU::IEWIdx);
935}
936
937template <class Impl>
938inline void
939DefaultIEW<Impl>::deactivateStage()
940{
941    DPRINTF(Activity, "Deactivating stage.\n");
942    cpu->deactivateStage(O3CPU::IEWIdx);
943}
944
945template<class Impl>
946void
947DefaultIEW<Impl>::dispatch(unsigned tid)
948{
949    // If status is Running or idle,
950    //     call dispatchInsts()
951    // If status is Unblocking,
952    //     buffer any instructions coming from rename
953    //     continue trying to empty skid buffer
954    //     check if stall conditions have passed
955
956    if (dispatchStatus[tid] == Blocked) {
957        ++iewBlockCycles;
958
959    } else if (dispatchStatus[tid] == Squashing) {
960        ++iewSquashCycles;
961    }
962
963    // Dispatch should try to dispatch as many instructions as its bandwidth
964    // will allow, as long as it is not currently blocked.
965    if (dispatchStatus[tid] == Running ||
966        dispatchStatus[tid] == Idle) {
967        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
968                "dispatch.\n", tid);
969
970        dispatchInsts(tid);
971    } else if (dispatchStatus[tid] == Unblocking) {
972        // Make sure that the skid buffer has something in it if the
973        // status is unblocking.
974        assert(!skidsEmpty());
975
976        // If the status was unblocking, then instructions from the skid
977        // buffer were used.  Remove those instructions and handle
978        // the rest of unblocking.
979        dispatchInsts(tid);
980
981        ++iewUnblockCycles;
982
983        if (validInstsFromRename() && dispatchedAllInsts) {
984            // Add the current inputs to the skid buffer so they can be
985            // reprocessed when this stage unblocks.
986            skidInsert(tid);
987        }
988
989        unblock(tid);
990    }
991}
992
993template <class Impl>
994void
995DefaultIEW<Impl>::dispatchInsts(unsigned tid)
996{
997    dispatchedAllInsts = true;
998
999    // Obtain instructions from skid buffer if unblocking, or queue from rename
1000    // otherwise.
1001    std::queue<DynInstPtr> &insts_to_dispatch =
1002        dispatchStatus[tid] == Unblocking ?
1003        skidBuffer[tid] : insts[tid];
1004
1005    int insts_to_add = insts_to_dispatch.size();
1006
1007    DynInstPtr inst;
1008    bool add_to_iq = false;
1009    int dis_num_inst = 0;
1010
1011    // Loop through the instructions, putting them in the instruction
1012    // queue.
1013    for ( ; dis_num_inst < insts_to_add &&
1014              dis_num_inst < dispatchWidth;
1015          ++dis_num_inst)
1016    {
1017        inst = insts_to_dispatch.front();
1018
1019        if (dispatchStatus[tid] == Unblocking) {
1020            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
1021                    "buffer\n", tid);
1022        }
1023
1024        // Make sure there's a valid instruction there.
1025        assert(inst);
1026
1027        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
1028                "IQ.\n",
1029                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
1030
1031        // Be sure to mark these instructions as ready so that the
1032        // commit stage can go ahead and execute them, and mark
1033        // them as issued so the IQ doesn't reprocess them.
1034
1035        // Check for squashed instructions.
1036        if (inst->isSquashed()) {
1037            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
1038                    "not adding to IQ.\n", tid);
1039
1040            ++iewDispSquashedInsts;
1041
1042            insts_to_dispatch.pop();
1043
1044            //Tell Rename That An Instruction has been processed
1045            if (inst->isLoad() || inst->isStore()) {
1046                toRename->iewInfo[tid].dispatchedToLSQ++;
1047            }
1048            toRename->iewInfo[tid].dispatched++;
1049
1050            continue;
1051        }
1052
1053        // Check for full conditions.
1054        if (instQueue.isFull(tid)) {
1055            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
1056
1057            // Call function to start blocking.
1058            block(tid);
1059
1060            // Set unblock to false. Special case where we are using
1061            // skidbuffer (unblocking) instructions but then we still
1062            // get full in the IQ.
1063            toRename->iewUnblock[tid] = false;
1064
1065            dispatchedAllInsts = false;
1066
1067            ++iewIQFullEvents;
1068            break;
1069        } else if (ldstQueue.isFull(tid)) {
1070            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1071
1072            // Call function to start blocking.
1073            block(tid);
1074
1075            // Set unblock to false. Special case where we are using
1076            // skidbuffer (unblocking) instructions but then we still
1077            // get full in the IQ.
1078            toRename->iewUnblock[tid] = false;
1079
1080            dispatchedAllInsts = false;
1081
1082            ++iewLSQFullEvents;
1083            break;
1084        }
1085
1086        // Otherwise issue the instruction just fine.
1087        if (inst->isLoad()) {
1088            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1089                    "encountered, adding to LSQ.\n", tid);
1090
1091            // Reserve a spot in the load store queue for this
1092            // memory access.
1093            ldstQueue.insertLoad(inst);
1094
1095            ++iewDispLoadInsts;
1096
1097            add_to_iq = true;
1098
1099            toRename->iewInfo[tid].dispatchedToLSQ++;
1100        } else if (inst->isStore()) {
1101            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1102                    "encountered, adding to LSQ.\n", tid);
1103
1104            ldstQueue.insertStore(inst);
1105
1106            ++iewDispStoreInsts;
1107
1108            if (inst->isStoreConditional()) {
1109                // Store conditionals need to be set as "canCommit()"
1110                // so that commit can process them when they reach the
1111                // head of commit.
1112                // @todo: This is somewhat specific to Alpha.
1113                inst->setCanCommit();
1114                instQueue.insertNonSpec(inst);
1115                add_to_iq = false;
1116
1117                ++iewDispNonSpecInsts;
1118            } else {
1119                add_to_iq = true;
1120            }
1121
1122            toRename->iewInfo[tid].dispatchedToLSQ++;
1123#if FULL_SYSTEM
1124        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1125            // Same as non-speculative stores.
1126            inst->setCanCommit();
1127            instQueue.insertBarrier(inst);
1128            add_to_iq = false;
1129#endif
1130        } else if (inst->isNonSpeculative()) {
1131            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1132                    "encountered, skipping.\n", tid);
1133
1134            // Same as non-speculative stores.
1135            inst->setCanCommit();
1136
1137            // Specifically insert it as nonspeculative.
1138            instQueue.insertNonSpec(inst);
1139
1140            ++iewDispNonSpecInsts;
1141
1142            add_to_iq = false;
1143        } else if (inst->isNop()) {
1144            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1145                    "skipping.\n", tid);
1146
1147            inst->setIssued();
1148            inst->setExecuted();
1149            inst->setCanCommit();
1150
1151            instQueue.recordProducer(inst);
1152
1153            iewExecutedNop[tid]++;
1154
1155            add_to_iq = false;
1156        } else if (inst->isExecuted()) {
1157            assert(0 && "Instruction shouldn't be executed.\n");
1158            DPRINTF(IEW, "Issue: Executed branch encountered, "
1159                    "skipping.\n");
1160
1161            inst->setIssued();
1162            inst->setCanCommit();
1163
1164            instQueue.recordProducer(inst);
1165
1166            add_to_iq = false;
1167        } else {
1168            add_to_iq = true;
1169        }
1170
1171        // If the instruction queue is not full, then add the
1172        // instruction.
1173        if (add_to_iq) {
1174            instQueue.insert(inst);
1175        }
1176
1177        insts_to_dispatch.pop();
1178
1179        toRename->iewInfo[tid].dispatched++;
1180
1181        ++iewDispatchedInsts;
1182    }
1183
1184    if (!insts_to_dispatch.empty()) {
1185        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1186        block(tid);
1187        toRename->iewUnblock[tid] = false;
1188    }
1189
1190    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1191        dispatchStatus[tid] = Running;
1192
1193        updatedQueues = true;
1194    }
1195
1196    dis_num_inst = 0;
1197}
1198
1199template <class Impl>
1200void
1201DefaultIEW<Impl>::printAvailableInsts()
1202{
1203    int inst = 0;
1204
1205    std::cout << "Available Instructions: ";
1206
1207    while (fromIssue->insts[inst]) {
1208
1209        if (inst%3==0) std::cout << "\n\t";
1210
1211        std::cout << "PC: " << fromIssue->insts[inst]->readPC()
1212             << " TN: " << fromIssue->insts[inst]->threadNumber
1213             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1214
1215        inst++;
1216
1217    }
1218
1219    std::cout << "\n";
1220}
1221
1222template <class Impl>
1223void
1224DefaultIEW<Impl>::executeInsts()
1225{
1226    wbNumInst = 0;
1227    wbCycle = 0;
1228
1229    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1230
1231    while (threads != (*activeThreads).end()) {
1232        unsigned tid = *threads++;
1233        fetchRedirect[tid] = false;
1234    }
1235
1236    // Uncomment this if you want to see all available instructions.
1237//    printAvailableInsts();
1238
1239    // Execute/writeback any instructions that are available.
1240    int insts_to_execute = fromIssue->size;
1241    int inst_num = 0;
1242    for (; inst_num < insts_to_execute;
1243          ++inst_num) {
1244
1245        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1246
1247        DynInstPtr inst = instQueue.getInstToExecute();
1248
1249        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1250                inst->readPC(), inst->threadNumber,inst->seqNum);
1251
1252        // Check if the instruction is squashed; if so then skip it
1253        if (inst->isSquashed()) {
1254            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1255
1256            // Consider this instruction executed so that commit can go
1257            // ahead and retire the instruction.
1258            inst->setExecuted();
1259
1260            // Not sure if I should set this here or just let commit try to
1261            // commit any squashed instructions.  I like the latter a bit more.
1262            inst->setCanCommit();
1263
1264            ++iewExecSquashedInsts;
1265
1266            decrWb(inst->seqNum);
1267            continue;
1268        }
1269
1270        Fault fault = NoFault;
1271
1272        // Execute instruction.
1273        // Note that if the instruction faults, it will be handled
1274        // at the commit stage.
1275        if (inst->isMemRef() &&
1276            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1277            DPRINTF(IEW, "Execute: Calculating address for memory "
1278                    "reference.\n");
1279
1280            // Tell the LDSTQ to execute this instruction (if it is a load).
1281            if (inst->isLoad()) {
1282                // Loads will mark themselves as executed, and their writeback
1283                // event adds the instruction to the queue to commit
1284                fault = ldstQueue.executeLoad(inst);
1285            } else if (inst->isStore()) {
1286                fault = ldstQueue.executeStore(inst);
1287
1288                // If the store had a fault then it may not have a mem req
1289                if (!inst->isStoreConditional() && fault == NoFault) {
1290                    inst->setExecuted();
1291
1292                    instToCommit(inst);
1293                } else if (fault != NoFault) {
1294                    // If the instruction faulted, then we need to send it along to commit
1295                    // without the instruction completing.
1296                    DPRINTF(IEW, "Store has fault %s! [sn:%lli]\n",
1297                            fault->name(), inst->seqNum);
1298
1299                    // Send this instruction to commit, also make sure iew stage
1300                    // realizes there is activity.
1301                    inst->setExecuted();
1302
1303                    instToCommit(inst);
1304                    activityThisCycle();
1305                }
1306
1307                // Store conditionals will mark themselves as
1308                // executed, and their writeback event will add the
1309                // instruction to the queue to commit.
1310            } else {
1311                panic("Unexpected memory type!\n");
1312            }
1313
1314        } else {
1315            inst->execute();
1316
1317            inst->setExecuted();
1318
1319            instToCommit(inst);
1320        }
1321
1322        updateExeInstStats(inst);
1323
1324        // Check if branch prediction was correct, if not then we need
1325        // to tell commit to squash in flight instructions.  Only
1326        // handle this if there hasn't already been something that
1327        // redirects fetch in this group of instructions.
1328
1329        // This probably needs to prioritize the redirects if a different
1330        // scheduler is used.  Currently the scheduler schedules the oldest
1331        // instruction first, so the branch resolution order will be correct.
1332        unsigned tid = inst->threadNumber;
1333
1334        if (!fetchRedirect[tid] ||
1335            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1336
1337            if (inst->mispredicted()) {
1338                fetchRedirect[tid] = true;
1339
1340                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1341#if ISA_HAS_DELAY_SLOT
1342                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1343                        inst->nextNPC);
1344#else
1345                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1346                        inst->nextPC);
1347#endif
1348                // If incorrect, then signal the ROB that it must be squashed.
1349                squashDueToBranch(inst, tid);
1350
1351                if (inst->predTaken()) {
1352                    predictedTakenIncorrect++;
1353                } else {
1354                    predictedNotTakenIncorrect++;
1355                }
1356            } else if (ldstQueue.violation(tid)) {
1357                // If there was an ordering violation, then get the
1358                // DynInst that caused the violation.  Note that this
1359                // clears the violation signal.
1360                DynInstPtr violator;
1361                violator = ldstQueue.getMemDepViolator(tid);
1362
1363                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1364                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1365                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1366
1367                // Ensure the violating instruction is older than
1368                // current squash
1369                if (fetchRedirect[tid] &&
1370                    violator->seqNum >= toCommit->squashedSeqNum[tid])
1371                    continue;
1372
1373                fetchRedirect[tid] = true;
1374
1375                // Tell the instruction queue that a violation has occured.
1376                instQueue.violation(inst, violator);
1377
1378                // Squash.
1379                squashDueToMemOrder(inst,tid);
1380
1381                ++memOrderViolationEvents;
1382            } else if (ldstQueue.loadBlocked(tid) &&
1383                       !ldstQueue.isLoadBlockedHandled(tid)) {
1384                fetchRedirect[tid] = true;
1385
1386                DPRINTF(IEW, "Load operation couldn't execute because the "
1387                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1388                        inst->readPC(), inst->seqNum);
1389
1390                squashDueToMemBlocked(inst, tid);
1391            }
1392        }
1393    }
1394
1395    // Update and record activity if we processed any instructions.
1396    if (inst_num) {
1397        if (exeStatus == Idle) {
1398            exeStatus = Running;
1399        }
1400
1401        updatedQueues = true;
1402
1403        cpu->activityThisCycle();
1404    }
1405
1406    // Need to reset this in case a writeback event needs to write into the
1407    // iew queue.  That way the writeback event will write into the correct
1408    // spot in the queue.
1409    wbNumInst = 0;
1410}
1411
1412template <class Impl>
1413void
1414DefaultIEW<Impl>::writebackInsts()
1415{
1416    // Loop through the head of the time buffer and wake any
1417    // dependents.  These instructions are about to write back.  Also
1418    // mark scoreboard that this instruction is finally complete.
1419    // Either have IEW have direct access to scoreboard, or have this
1420    // as part of backwards communication.
1421    for (int inst_num = 0; inst_num < issueWidth &&
1422             toCommit->insts[inst_num]; inst_num++) {
1423        DynInstPtr inst = toCommit->insts[inst_num];
1424        int tid = inst->threadNumber;
1425
1426        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %#x.\n",
1427                inst->seqNum, inst->readPC());
1428
1429        iewInstsToCommit[tid]++;
1430
1431        // Some instructions will be sent to commit without having
1432        // executed because they need commit to handle them.
1433        // E.g. Uncached loads have not actually executed when they
1434        // are first sent to commit.  Instead commit must tell the LSQ
1435        // when it's ready to execute the uncached load.
1436        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1437            int dependents = instQueue.wakeDependents(inst);
1438
1439            for (int i = 0; i < inst->numDestRegs(); i++) {
1440                //mark as Ready
1441                DPRINTF(IEW,"Setting Destination Register %i\n",
1442                        inst->renamedDestRegIdx(i));
1443                scoreboard->setReg(inst->renamedDestRegIdx(i));
1444            }
1445
1446            if (dependents) {
1447                producerInst[tid]++;
1448                consumerInst[tid]+= dependents;
1449            }
1450            writebackCount[tid]++;
1451        }
1452
1453        decrWb(inst->seqNum);
1454    }
1455}
1456
1457template<class Impl>
1458void
1459DefaultIEW<Impl>::tick()
1460{
1461    wbNumInst = 0;
1462    wbCycle = 0;
1463
1464    wroteToTimeBuffer = false;
1465    updatedQueues = false;
1466
1467    sortInsts();
1468
1469    // Free function units marked as being freed this cycle.
1470    fuPool->processFreeUnits();
1471
1472    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1473
1474    // Check stall and squash signals, dispatch any instructions.
1475    while (threads != (*activeThreads).end()) {
1476           unsigned tid = *threads++;
1477
1478        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1479
1480        checkSignalsAndUpdate(tid);
1481        dispatch(tid);
1482    }
1483
1484    if (exeStatus != Squashing) {
1485        executeInsts();
1486
1487        writebackInsts();
1488
1489        // Have the instruction queue try to schedule any ready instructions.
1490        // (In actuality, this scheduling is for instructions that will
1491        // be executed next cycle.)
1492        instQueue.scheduleReadyInsts();
1493
1494        // Also should advance its own time buffers if the stage ran.
1495        // Not the best place for it, but this works (hopefully).
1496        issueToExecQueue.advance();
1497    }
1498
1499    bool broadcast_free_entries = false;
1500
1501    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1502        exeStatus = Idle;
1503        updateLSQNextCycle = false;
1504
1505        broadcast_free_entries = true;
1506    }
1507
1508    // Writeback any stores using any leftover bandwidth.
1509    ldstQueue.writebackStores();
1510
1511    // Check the committed load/store signals to see if there's a load
1512    // or store to commit.  Also check if it's being told to execute a
1513    // nonspeculative instruction.
1514    // This is pretty inefficient...
1515
1516    threads = (*activeThreads).begin();
1517    while (threads != (*activeThreads).end()) {
1518        unsigned tid = (*threads++);
1519
1520        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1521
1522        // Update structures based on instructions committed.
1523        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1524            !fromCommit->commitInfo[tid].squash &&
1525            !fromCommit->commitInfo[tid].robSquashing) {
1526
1527            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1528
1529            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1530
1531            updateLSQNextCycle = true;
1532            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1533        }
1534
1535        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1536
1537            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1538            if (fromCommit->commitInfo[tid].uncached) {
1539                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1540            } else {
1541                instQueue.scheduleNonSpec(
1542                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1543            }
1544        }
1545
1546        if (broadcast_free_entries) {
1547            toFetch->iewInfo[tid].iqCount =
1548                instQueue.getCount(tid);
1549            toFetch->iewInfo[tid].ldstqCount =
1550                ldstQueue.getCount(tid);
1551
1552            toRename->iewInfo[tid].usedIQ = true;
1553            toRename->iewInfo[tid].freeIQEntries =
1554                instQueue.numFreeEntries();
1555            toRename->iewInfo[tid].usedLSQ = true;
1556            toRename->iewInfo[tid].freeLSQEntries =
1557                ldstQueue.numFreeEntries(tid);
1558
1559            wroteToTimeBuffer = true;
1560        }
1561
1562        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1563                tid, toRename->iewInfo[tid].dispatched);
1564    }
1565
1566    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1567            "LSQ has %i free entries.\n",
1568            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1569            ldstQueue.numFreeEntries());
1570
1571    updateStatus();
1572
1573    if (wroteToTimeBuffer) {
1574        DPRINTF(Activity, "Activity this cycle.\n");
1575        cpu->activityThisCycle();
1576    }
1577}
1578
1579template <class Impl>
1580void
1581DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1582{
1583    int thread_number = inst->threadNumber;
1584
1585    //
1586    //  Pick off the software prefetches
1587    //
1588#ifdef TARGET_ALPHA
1589    if (inst->isDataPrefetch())
1590        iewExecutedSwp[thread_number]++;
1591    else
1592        iewIewExecutedcutedInsts++;
1593#else
1594    iewExecutedInsts++;
1595#endif
1596
1597    //
1598    //  Control operations
1599    //
1600    if (inst->isControl())
1601        iewExecutedBranches[thread_number]++;
1602
1603    //
1604    //  Memory operations
1605    //
1606    if (inst->isMemRef()) {
1607        iewExecutedRefs[thread_number]++;
1608
1609        if (inst->isLoad()) {
1610            iewExecLoadInsts[thread_number]++;
1611        }
1612    }
1613}
1614