iew_impl.hh revision 11213:f0c7b76cadab
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_O3_IEW_IMPL_IMPL_HH__
45#define __CPU_O3_IEW_IMPL_IMPL_HH__
46
47// @todo: Fix the instantaneous communication among all the stages within
48// iew.  There's a clear delay between issue and execute, yet backwards
49// communication happens simultaneously.
50
51#include <queue>
52
53#include "arch/utility.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/fu_pool.hh"
57#include "cpu/o3/iew.hh"
58#include "cpu/timebuf.hh"
59#include "debug/Activity.hh"
60#include "debug/Drain.hh"
61#include "debug/IEW.hh"
62#include "debug/O3PipeView.hh"
63#include "params/DerivO3CPU.hh"
64
65using namespace std;
66
67template<class Impl>
68DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
69    : issueToExecQueue(params->backComSize, params->forwardComSize),
70      cpu(_cpu),
71      instQueue(_cpu, this, params),
72      ldstQueue(_cpu, this, params),
73      fuPool(params->fuPool),
74      commitToIEWDelay(params->commitToIEWDelay),
75      renameToIEWDelay(params->renameToIEWDelay),
76      issueToExecuteDelay(params->issueToExecuteDelay),
77      dispatchWidth(params->dispatchWidth),
78      issueWidth(params->issueWidth),
79      wbWidth(params->wbWidth),
80      numThreads(params->numThreads)
81{
82    if (dispatchWidth > Impl::MaxWidth)
83        fatal("dispatchWidth (%d) is larger than compiled limit (%d),\n"
84             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
85             dispatchWidth, static_cast<int>(Impl::MaxWidth));
86    if (issueWidth > Impl::MaxWidth)
87        fatal("issueWidth (%d) is larger than compiled limit (%d),\n"
88             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
89             issueWidth, static_cast<int>(Impl::MaxWidth));
90    if (wbWidth > Impl::MaxWidth)
91        fatal("wbWidth (%d) is larger than compiled limit (%d),\n"
92             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
93             wbWidth, static_cast<int>(Impl::MaxWidth));
94
95    _status = Active;
96    exeStatus = Running;
97    wbStatus = Idle;
98
99    // Setup wire to read instructions coming from issue.
100    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
101
102    // Instruction queue needs the queue between issue and execute.
103    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
104
105    for (ThreadID tid = 0; tid < numThreads; tid++) {
106        dispatchStatus[tid] = Running;
107        fetchRedirect[tid] = false;
108    }
109
110    updateLSQNextCycle = false;
111
112    skidBufferMax = (renameToIEWDelay + 1) * params->renameWidth;
113}
114
115template <class Impl>
116std::string
117DefaultIEW<Impl>::name() const
118{
119    return cpu->name() + ".iew";
120}
121
122template <class Impl>
123void
124DefaultIEW<Impl>::regProbePoints()
125{
126    ppDispatch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Dispatch");
127    ppMispredict = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Mispredict");
128}
129
130template <class Impl>
131void
132DefaultIEW<Impl>::regStats()
133{
134    using namespace Stats;
135
136    instQueue.regStats();
137    ldstQueue.regStats();
138
139    iewIdleCycles
140        .name(name() + ".iewIdleCycles")
141        .desc("Number of cycles IEW is idle");
142
143    iewSquashCycles
144        .name(name() + ".iewSquashCycles")
145        .desc("Number of cycles IEW is squashing");
146
147    iewBlockCycles
148        .name(name() + ".iewBlockCycles")
149        .desc("Number of cycles IEW is blocking");
150
151    iewUnblockCycles
152        .name(name() + ".iewUnblockCycles")
153        .desc("Number of cycles IEW is unblocking");
154
155    iewDispatchedInsts
156        .name(name() + ".iewDispatchedInsts")
157        .desc("Number of instructions dispatched to IQ");
158
159    iewDispSquashedInsts
160        .name(name() + ".iewDispSquashedInsts")
161        .desc("Number of squashed instructions skipped by dispatch");
162
163    iewDispLoadInsts
164        .name(name() + ".iewDispLoadInsts")
165        .desc("Number of dispatched load instructions");
166
167    iewDispStoreInsts
168        .name(name() + ".iewDispStoreInsts")
169        .desc("Number of dispatched store instructions");
170
171    iewDispNonSpecInsts
172        .name(name() + ".iewDispNonSpecInsts")
173        .desc("Number of dispatched non-speculative instructions");
174
175    iewIQFullEvents
176        .name(name() + ".iewIQFullEvents")
177        .desc("Number of times the IQ has become full, causing a stall");
178
179    iewLSQFullEvents
180        .name(name() + ".iewLSQFullEvents")
181        .desc("Number of times the LSQ has become full, causing a stall");
182
183    memOrderViolationEvents
184        .name(name() + ".memOrderViolationEvents")
185        .desc("Number of memory order violations");
186
187    predictedTakenIncorrect
188        .name(name() + ".predictedTakenIncorrect")
189        .desc("Number of branches that were predicted taken incorrectly");
190
191    predictedNotTakenIncorrect
192        .name(name() + ".predictedNotTakenIncorrect")
193        .desc("Number of branches that were predicted not taken incorrectly");
194
195    branchMispredicts
196        .name(name() + ".branchMispredicts")
197        .desc("Number of branch mispredicts detected at execute");
198
199    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
200
201    iewExecutedInsts
202        .name(name() + ".iewExecutedInsts")
203        .desc("Number of executed instructions");
204
205    iewExecLoadInsts
206        .init(cpu->numThreads)
207        .name(name() + ".iewExecLoadInsts")
208        .desc("Number of load instructions executed")
209        .flags(total);
210
211    iewExecSquashedInsts
212        .name(name() + ".iewExecSquashedInsts")
213        .desc("Number of squashed instructions skipped in execute");
214
215    iewExecutedSwp
216        .init(cpu->numThreads)
217        .name(name() + ".exec_swp")
218        .desc("number of swp insts executed")
219        .flags(total);
220
221    iewExecutedNop
222        .init(cpu->numThreads)
223        .name(name() + ".exec_nop")
224        .desc("number of nop insts executed")
225        .flags(total);
226
227    iewExecutedRefs
228        .init(cpu->numThreads)
229        .name(name() + ".exec_refs")
230        .desc("number of memory reference insts executed")
231        .flags(total);
232
233    iewExecutedBranches
234        .init(cpu->numThreads)
235        .name(name() + ".exec_branches")
236        .desc("Number of branches executed")
237        .flags(total);
238
239    iewExecStoreInsts
240        .name(name() + ".exec_stores")
241        .desc("Number of stores executed")
242        .flags(total);
243    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
244
245    iewExecRate
246        .name(name() + ".exec_rate")
247        .desc("Inst execution rate")
248        .flags(total);
249
250    iewExecRate = iewExecutedInsts / cpu->numCycles;
251
252    iewInstsToCommit
253        .init(cpu->numThreads)
254        .name(name() + ".wb_sent")
255        .desc("cumulative count of insts sent to commit")
256        .flags(total);
257
258    writebackCount
259        .init(cpu->numThreads)
260        .name(name() + ".wb_count")
261        .desc("cumulative count of insts written-back")
262        .flags(total);
263
264    producerInst
265        .init(cpu->numThreads)
266        .name(name() + ".wb_producers")
267        .desc("num instructions producing a value")
268        .flags(total);
269
270    consumerInst
271        .init(cpu->numThreads)
272        .name(name() + ".wb_consumers")
273        .desc("num instructions consuming a value")
274        .flags(total);
275
276    wbFanout
277        .name(name() + ".wb_fanout")
278        .desc("average fanout of values written-back")
279        .flags(total);
280
281    wbFanout = producerInst / consumerInst;
282
283    wbRate
284        .name(name() + ".wb_rate")
285        .desc("insts written-back per cycle")
286        .flags(total);
287    wbRate = writebackCount / cpu->numCycles;
288}
289
290template<class Impl>
291void
292DefaultIEW<Impl>::startupStage()
293{
294    for (ThreadID tid = 0; tid < numThreads; tid++) {
295        toRename->iewInfo[tid].usedIQ = true;
296        toRename->iewInfo[tid].freeIQEntries =
297            instQueue.numFreeEntries(tid);
298
299        toRename->iewInfo[tid].usedLSQ = true;
300        toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
301        toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
302    }
303
304    // Initialize the checker's dcache port here
305    if (cpu->checker) {
306        cpu->checker->setDcachePort(&cpu->getDataPort());
307    }
308
309    cpu->activateStage(O3CPU::IEWIdx);
310}
311
312template<class Impl>
313void
314DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
315{
316    timeBuffer = tb_ptr;
317
318    // Setup wire to read information from time buffer, from commit.
319    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
320
321    // Setup wire to write information back to previous stages.
322    toRename = timeBuffer->getWire(0);
323
324    toFetch = timeBuffer->getWire(0);
325
326    // Instruction queue also needs main time buffer.
327    instQueue.setTimeBuffer(tb_ptr);
328}
329
330template<class Impl>
331void
332DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
333{
334    renameQueue = rq_ptr;
335
336    // Setup wire to read information from rename queue.
337    fromRename = renameQueue->getWire(-renameToIEWDelay);
338}
339
340template<class Impl>
341void
342DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
343{
344    iewQueue = iq_ptr;
345
346    // Setup wire to write instructions to commit.
347    toCommit = iewQueue->getWire(0);
348}
349
350template<class Impl>
351void
352DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
353{
354    activeThreads = at_ptr;
355
356    ldstQueue.setActiveThreads(at_ptr);
357    instQueue.setActiveThreads(at_ptr);
358}
359
360template<class Impl>
361void
362DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
363{
364    scoreboard = sb_ptr;
365}
366
367template <class Impl>
368bool
369DefaultIEW<Impl>::isDrained() const
370{
371    bool drained = ldstQueue.isDrained() && instQueue.isDrained();
372
373    for (ThreadID tid = 0; tid < numThreads; tid++) {
374        if (!insts[tid].empty()) {
375            DPRINTF(Drain, "%i: Insts not empty.\n", tid);
376            drained = false;
377        }
378        if (!skidBuffer[tid].empty()) {
379            DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
380            drained = false;
381        }
382    }
383
384    // Also check the FU pool as instructions are "stored" in FU
385    // completion events until they are done and not accounted for
386    // above
387    if (drained && !fuPool->isDrained()) {
388        DPRINTF(Drain, "FU pool still busy.\n");
389        drained = false;
390    }
391
392    return drained;
393}
394
395template <class Impl>
396void
397DefaultIEW<Impl>::drainSanityCheck() const
398{
399    assert(isDrained());
400
401    instQueue.drainSanityCheck();
402    ldstQueue.drainSanityCheck();
403}
404
405template <class Impl>
406void
407DefaultIEW<Impl>::takeOverFrom()
408{
409    // Reset all state.
410    _status = Active;
411    exeStatus = Running;
412    wbStatus = Idle;
413
414    instQueue.takeOverFrom();
415    ldstQueue.takeOverFrom();
416    fuPool->takeOverFrom();
417
418    startupStage();
419    cpu->activityThisCycle();
420
421    for (ThreadID tid = 0; tid < numThreads; tid++) {
422        dispatchStatus[tid] = Running;
423        fetchRedirect[tid] = false;
424    }
425
426    updateLSQNextCycle = false;
427
428    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
429        issueToExecQueue.advance();
430    }
431}
432
433template<class Impl>
434void
435DefaultIEW<Impl>::squash(ThreadID tid)
436{
437    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", tid);
438
439    // Tell the IQ to start squashing.
440    instQueue.squash(tid);
441
442    // Tell the LDSTQ to start squashing.
443    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
444    updatedQueues = true;
445
446    // Clear the skid buffer in case it has any data in it.
447    DPRINTF(IEW, "[tid:%i]: Removing skidbuffer instructions until [sn:%i].\n",
448            tid, fromCommit->commitInfo[tid].doneSeqNum);
449
450    while (!skidBuffer[tid].empty()) {
451        if (skidBuffer[tid].front()->isLoad()) {
452            toRename->iewInfo[tid].dispatchedToLQ++;
453        }
454        if (skidBuffer[tid].front()->isStore()) {
455            toRename->iewInfo[tid].dispatchedToSQ++;
456        }
457
458        toRename->iewInfo[tid].dispatched++;
459
460        skidBuffer[tid].pop();
461    }
462
463    emptyRenameInsts(tid);
464}
465
466template<class Impl>
467void
468DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, ThreadID tid)
469{
470    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %s "
471            "[sn:%i].\n", tid, inst->pcState(), inst->seqNum);
472
473    if (!toCommit->squash[tid] ||
474            inst->seqNum < toCommit->squashedSeqNum[tid]) {
475        toCommit->squash[tid] = true;
476        toCommit->squashedSeqNum[tid] = inst->seqNum;
477        toCommit->branchTaken[tid] = inst->pcState().branching();
478
479        TheISA::PCState pc = inst->pcState();
480        TheISA::advancePC(pc, inst->staticInst);
481
482        toCommit->pc[tid] = pc;
483        toCommit->mispredictInst[tid] = inst;
484        toCommit->includeSquashInst[tid] = false;
485
486        wroteToTimeBuffer = true;
487    }
488
489}
490
491template<class Impl>
492void
493DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, ThreadID tid)
494{
495    DPRINTF(IEW, "[tid:%i]: Memory violation, squashing violator and younger "
496            "insts, PC: %s [sn:%i].\n", tid, inst->pcState(), inst->seqNum);
497    // Need to include inst->seqNum in the following comparison to cover the
498    // corner case when a branch misprediction and a memory violation for the
499    // same instruction (e.g. load PC) are detected in the same cycle.  In this
500    // case the memory violator should take precedence over the branch
501    // misprediction because it requires the violator itself to be included in
502    // the squash.
503    if (!toCommit->squash[tid] ||
504            inst->seqNum <= toCommit->squashedSeqNum[tid]) {
505        toCommit->squash[tid] = true;
506
507        toCommit->squashedSeqNum[tid] = inst->seqNum;
508        toCommit->pc[tid] = inst->pcState();
509        toCommit->mispredictInst[tid] = NULL;
510
511        // Must include the memory violator in the squash.
512        toCommit->includeSquashInst[tid] = true;
513
514        wroteToTimeBuffer = true;
515    }
516}
517
518template<class Impl>
519void
520DefaultIEW<Impl>::block(ThreadID tid)
521{
522    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
523
524    if (dispatchStatus[tid] != Blocked &&
525        dispatchStatus[tid] != Unblocking) {
526        toRename->iewBlock[tid] = true;
527        wroteToTimeBuffer = true;
528    }
529
530    // Add the current inputs to the skid buffer so they can be
531    // reprocessed when this stage unblocks.
532    skidInsert(tid);
533
534    dispatchStatus[tid] = Blocked;
535}
536
537template<class Impl>
538void
539DefaultIEW<Impl>::unblock(ThreadID tid)
540{
541    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
542            "buffer %u.\n",tid, tid);
543
544    // If the skid bufffer is empty, signal back to previous stages to unblock.
545    // Also switch status to running.
546    if (skidBuffer[tid].empty()) {
547        toRename->iewUnblock[tid] = true;
548        wroteToTimeBuffer = true;
549        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
550        dispatchStatus[tid] = Running;
551    }
552}
553
554template<class Impl>
555void
556DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
557{
558    instQueue.wakeDependents(inst);
559}
560
561template<class Impl>
562void
563DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
564{
565    instQueue.rescheduleMemInst(inst);
566}
567
568template<class Impl>
569void
570DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
571{
572    instQueue.replayMemInst(inst);
573}
574
575template<class Impl>
576void
577DefaultIEW<Impl>::blockMemInst(DynInstPtr& inst)
578{
579    instQueue.blockMemInst(inst);
580}
581
582template<class Impl>
583void
584DefaultIEW<Impl>::cacheUnblocked()
585{
586    instQueue.cacheUnblocked();
587}
588
589template<class Impl>
590void
591DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
592{
593    // This function should not be called after writebackInsts in a
594    // single cycle.  That will cause problems with an instruction
595    // being added to the queue to commit without being processed by
596    // writebackInsts prior to being sent to commit.
597
598    // First check the time slot that this instruction will write
599    // to.  If there are free write ports at the time, then go ahead
600    // and write the instruction to that time.  If there are not,
601    // keep looking back to see where's the first time there's a
602    // free slot.
603    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
604        ++wbNumInst;
605        if (wbNumInst == wbWidth) {
606            ++wbCycle;
607            wbNumInst = 0;
608        }
609    }
610
611    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
612            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
613    // Add finished instruction to queue to commit.
614    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
615    (*iewQueue)[wbCycle].size++;
616}
617
618template <class Impl>
619unsigned
620DefaultIEW<Impl>::validInstsFromRename()
621{
622    unsigned inst_count = 0;
623
624    for (int i=0; i<fromRename->size; i++) {
625        if (!fromRename->insts[i]->isSquashed())
626            inst_count++;
627    }
628
629    return inst_count;
630}
631
632template<class Impl>
633void
634DefaultIEW<Impl>::skidInsert(ThreadID tid)
635{
636    DynInstPtr inst = NULL;
637
638    while (!insts[tid].empty()) {
639        inst = insts[tid].front();
640
641        insts[tid].pop();
642
643        DPRINTF(IEW,"[tid:%i]: Inserting [sn:%lli] PC:%s into "
644                "dispatch skidBuffer %i\n",tid, inst->seqNum,
645                inst->pcState(),tid);
646
647        skidBuffer[tid].push(inst);
648    }
649
650    assert(skidBuffer[tid].size() <= skidBufferMax &&
651           "Skidbuffer Exceeded Max Size");
652}
653
654template<class Impl>
655int
656DefaultIEW<Impl>::skidCount()
657{
658    int max=0;
659
660    list<ThreadID>::iterator threads = activeThreads->begin();
661    list<ThreadID>::iterator end = activeThreads->end();
662
663    while (threads != end) {
664        ThreadID tid = *threads++;
665        unsigned thread_count = skidBuffer[tid].size();
666        if (max < thread_count)
667            max = thread_count;
668    }
669
670    return max;
671}
672
673template<class Impl>
674bool
675DefaultIEW<Impl>::skidsEmpty()
676{
677    list<ThreadID>::iterator threads = activeThreads->begin();
678    list<ThreadID>::iterator end = activeThreads->end();
679
680    while (threads != end) {
681        ThreadID tid = *threads++;
682
683        if (!skidBuffer[tid].empty())
684            return false;
685    }
686
687    return true;
688}
689
690template <class Impl>
691void
692DefaultIEW<Impl>::updateStatus()
693{
694    bool any_unblocking = false;
695
696    list<ThreadID>::iterator threads = activeThreads->begin();
697    list<ThreadID>::iterator end = activeThreads->end();
698
699    while (threads != end) {
700        ThreadID tid = *threads++;
701
702        if (dispatchStatus[tid] == Unblocking) {
703            any_unblocking = true;
704            break;
705        }
706    }
707
708    // If there are no ready instructions waiting to be scheduled by the IQ,
709    // and there's no stores waiting to write back, and dispatch is not
710    // unblocking, then there is no internal activity for the IEW stage.
711    instQueue.intInstQueueReads++;
712    if (_status == Active && !instQueue.hasReadyInsts() &&
713        !ldstQueue.willWB() && !any_unblocking) {
714        DPRINTF(IEW, "IEW switching to idle\n");
715
716        deactivateStage();
717
718        _status = Inactive;
719    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
720                                       ldstQueue.willWB() ||
721                                       any_unblocking)) {
722        // Otherwise there is internal activity.  Set to active.
723        DPRINTF(IEW, "IEW switching to active\n");
724
725        activateStage();
726
727        _status = Active;
728    }
729}
730
731template <class Impl>
732void
733DefaultIEW<Impl>::resetEntries()
734{
735    instQueue.resetEntries();
736    ldstQueue.resetEntries();
737}
738
739template <class Impl>
740bool
741DefaultIEW<Impl>::checkStall(ThreadID tid)
742{
743    bool ret_val(false);
744
745    if (fromCommit->commitInfo[tid].robSquashing) {
746        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
747        ret_val = true;
748    } else if (instQueue.isFull(tid)) {
749        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
750        ret_val = true;
751    }
752
753    return ret_val;
754}
755
756template <class Impl>
757void
758DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
759{
760    // Check if there's a squash signal, squash if there is
761    // Check stall signals, block if there is.
762    // If status was Blocked
763    //     if so then go to unblocking
764    // If status was Squashing
765    //     check if squashing is not high.  Switch to running this cycle.
766
767    if (fromCommit->commitInfo[tid].squash) {
768        squash(tid);
769
770        if (dispatchStatus[tid] == Blocked ||
771            dispatchStatus[tid] == Unblocking) {
772            toRename->iewUnblock[tid] = true;
773            wroteToTimeBuffer = true;
774        }
775
776        dispatchStatus[tid] = Squashing;
777        fetchRedirect[tid] = false;
778        return;
779    }
780
781    if (fromCommit->commitInfo[tid].robSquashing) {
782        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n", tid);
783
784        dispatchStatus[tid] = Squashing;
785        emptyRenameInsts(tid);
786        wroteToTimeBuffer = true;
787    }
788
789    if (checkStall(tid)) {
790        block(tid);
791        dispatchStatus[tid] = Blocked;
792        return;
793    }
794
795    if (dispatchStatus[tid] == Blocked) {
796        // Status from previous cycle was blocked, but there are no more stall
797        // conditions.  Switch over to unblocking.
798        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
799                tid);
800
801        dispatchStatus[tid] = Unblocking;
802
803        unblock(tid);
804
805        return;
806    }
807
808    if (dispatchStatus[tid] == Squashing) {
809        // Switch status to running if rename isn't being told to block or
810        // squash this cycle.
811        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
812                tid);
813
814        dispatchStatus[tid] = Running;
815
816        return;
817    }
818}
819
820template <class Impl>
821void
822DefaultIEW<Impl>::sortInsts()
823{
824    int insts_from_rename = fromRename->size;
825#ifdef DEBUG
826    for (ThreadID tid = 0; tid < numThreads; tid++)
827        assert(insts[tid].empty());
828#endif
829    for (int i = 0; i < insts_from_rename; ++i) {
830        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
831    }
832}
833
834template <class Impl>
835void
836DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
837{
838    DPRINTF(IEW, "[tid:%i]: Removing incoming rename instructions\n", tid);
839
840    while (!insts[tid].empty()) {
841
842        if (insts[tid].front()->isLoad()) {
843            toRename->iewInfo[tid].dispatchedToLQ++;
844        }
845        if (insts[tid].front()->isStore()) {
846            toRename->iewInfo[tid].dispatchedToSQ++;
847        }
848
849        toRename->iewInfo[tid].dispatched++;
850
851        insts[tid].pop();
852    }
853}
854
855template <class Impl>
856void
857DefaultIEW<Impl>::wakeCPU()
858{
859    cpu->wakeCPU();
860}
861
862template <class Impl>
863void
864DefaultIEW<Impl>::activityThisCycle()
865{
866    DPRINTF(Activity, "Activity this cycle.\n");
867    cpu->activityThisCycle();
868}
869
870template <class Impl>
871inline void
872DefaultIEW<Impl>::activateStage()
873{
874    DPRINTF(Activity, "Activating stage.\n");
875    cpu->activateStage(O3CPU::IEWIdx);
876}
877
878template <class Impl>
879inline void
880DefaultIEW<Impl>::deactivateStage()
881{
882    DPRINTF(Activity, "Deactivating stage.\n");
883    cpu->deactivateStage(O3CPU::IEWIdx);
884}
885
886template<class Impl>
887void
888DefaultIEW<Impl>::dispatch(ThreadID tid)
889{
890    // If status is Running or idle,
891    //     call dispatchInsts()
892    // If status is Unblocking,
893    //     buffer any instructions coming from rename
894    //     continue trying to empty skid buffer
895    //     check if stall conditions have passed
896
897    if (dispatchStatus[tid] == Blocked) {
898        ++iewBlockCycles;
899
900    } else if (dispatchStatus[tid] == Squashing) {
901        ++iewSquashCycles;
902    }
903
904    // Dispatch should try to dispatch as many instructions as its bandwidth
905    // will allow, as long as it is not currently blocked.
906    if (dispatchStatus[tid] == Running ||
907        dispatchStatus[tid] == Idle) {
908        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
909                "dispatch.\n", tid);
910
911        dispatchInsts(tid);
912    } else if (dispatchStatus[tid] == Unblocking) {
913        // Make sure that the skid buffer has something in it if the
914        // status is unblocking.
915        assert(!skidsEmpty());
916
917        // If the status was unblocking, then instructions from the skid
918        // buffer were used.  Remove those instructions and handle
919        // the rest of unblocking.
920        dispatchInsts(tid);
921
922        ++iewUnblockCycles;
923
924        if (validInstsFromRename()) {
925            // Add the current inputs to the skid buffer so they can be
926            // reprocessed when this stage unblocks.
927            skidInsert(tid);
928        }
929
930        unblock(tid);
931    }
932}
933
934template <class Impl>
935void
936DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
937{
938    // Obtain instructions from skid buffer if unblocking, or queue from rename
939    // otherwise.
940    std::queue<DynInstPtr> &insts_to_dispatch =
941        dispatchStatus[tid] == Unblocking ?
942        skidBuffer[tid] : insts[tid];
943
944    int insts_to_add = insts_to_dispatch.size();
945
946    DynInstPtr inst;
947    bool add_to_iq = false;
948    int dis_num_inst = 0;
949
950    // Loop through the instructions, putting them in the instruction
951    // queue.
952    for ( ; dis_num_inst < insts_to_add &&
953              dis_num_inst < dispatchWidth;
954          ++dis_num_inst)
955    {
956        inst = insts_to_dispatch.front();
957
958        if (dispatchStatus[tid] == Unblocking) {
959            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
960                    "buffer\n", tid);
961        }
962
963        // Make sure there's a valid instruction there.
964        assert(inst);
965
966        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %s [sn:%lli] [tid:%i] to "
967                "IQ.\n",
968                tid, inst->pcState(), inst->seqNum, inst->threadNumber);
969
970        // Be sure to mark these instructions as ready so that the
971        // commit stage can go ahead and execute them, and mark
972        // them as issued so the IQ doesn't reprocess them.
973
974        // Check for squashed instructions.
975        if (inst->isSquashed()) {
976            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
977                    "not adding to IQ.\n", tid);
978
979            ++iewDispSquashedInsts;
980
981            insts_to_dispatch.pop();
982
983            //Tell Rename That An Instruction has been processed
984            if (inst->isLoad()) {
985                toRename->iewInfo[tid].dispatchedToLQ++;
986            }
987            if (inst->isStore()) {
988                toRename->iewInfo[tid].dispatchedToSQ++;
989            }
990
991            toRename->iewInfo[tid].dispatched++;
992
993            continue;
994        }
995
996        // Check for full conditions.
997        if (instQueue.isFull(tid)) {
998            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
999
1000            // Call function to start blocking.
1001            block(tid);
1002
1003            // Set unblock to false. Special case where we are using
1004            // skidbuffer (unblocking) instructions but then we still
1005            // get full in the IQ.
1006            toRename->iewUnblock[tid] = false;
1007
1008            ++iewIQFullEvents;
1009            break;
1010        }
1011
1012        // Check LSQ if inst is LD/ST
1013        if ((inst->isLoad() && ldstQueue.lqFull(tid)) ||
1014            (inst->isStore() && ldstQueue.sqFull(tid))) {
1015            DPRINTF(IEW, "[tid:%i]: Issue: %s has become full.\n",tid,
1016                    inst->isLoad() ? "LQ" : "SQ");
1017
1018            // Call function to start blocking.
1019            block(tid);
1020
1021            // Set unblock to false. Special case where we are using
1022            // skidbuffer (unblocking) instructions but then we still
1023            // get full in the IQ.
1024            toRename->iewUnblock[tid] = false;
1025
1026            ++iewLSQFullEvents;
1027            break;
1028        }
1029
1030        // Otherwise issue the instruction just fine.
1031        if (inst->isLoad()) {
1032            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1033                    "encountered, adding to LSQ.\n", tid);
1034
1035            // Reserve a spot in the load store queue for this
1036            // memory access.
1037            ldstQueue.insertLoad(inst);
1038
1039            ++iewDispLoadInsts;
1040
1041            add_to_iq = true;
1042
1043            toRename->iewInfo[tid].dispatchedToLQ++;
1044        } else if (inst->isStore()) {
1045            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1046                    "encountered, adding to LSQ.\n", tid);
1047
1048            ldstQueue.insertStore(inst);
1049
1050            ++iewDispStoreInsts;
1051
1052            if (inst->isStoreConditional()) {
1053                // Store conditionals need to be set as "canCommit()"
1054                // so that commit can process them when they reach the
1055                // head of commit.
1056                // @todo: This is somewhat specific to Alpha.
1057                inst->setCanCommit();
1058                instQueue.insertNonSpec(inst);
1059                add_to_iq = false;
1060
1061                ++iewDispNonSpecInsts;
1062            } else {
1063                add_to_iq = true;
1064            }
1065
1066            toRename->iewInfo[tid].dispatchedToSQ++;
1067        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1068            // Same as non-speculative stores.
1069            inst->setCanCommit();
1070            instQueue.insertBarrier(inst);
1071            add_to_iq = false;
1072        } else if (inst->isNop()) {
1073            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1074                    "skipping.\n", tid);
1075
1076            inst->setIssued();
1077            inst->setExecuted();
1078            inst->setCanCommit();
1079
1080            instQueue.recordProducer(inst);
1081
1082            iewExecutedNop[tid]++;
1083
1084            add_to_iq = false;
1085        } else {
1086            assert(!inst->isExecuted());
1087            add_to_iq = true;
1088        }
1089
1090        if (inst->isNonSpeculative()) {
1091            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1092                    "encountered, skipping.\n", tid);
1093
1094            // Same as non-speculative stores.
1095            inst->setCanCommit();
1096
1097            // Specifically insert it as nonspeculative.
1098            instQueue.insertNonSpec(inst);
1099
1100            ++iewDispNonSpecInsts;
1101
1102            add_to_iq = false;
1103        }
1104
1105        // If the instruction queue is not full, then add the
1106        // instruction.
1107        if (add_to_iq) {
1108            instQueue.insert(inst);
1109        }
1110
1111        insts_to_dispatch.pop();
1112
1113        toRename->iewInfo[tid].dispatched++;
1114
1115        ++iewDispatchedInsts;
1116
1117#if TRACING_ON
1118        inst->dispatchTick = curTick() - inst->fetchTick;
1119#endif
1120        ppDispatch->notify(inst);
1121    }
1122
1123    if (!insts_to_dispatch.empty()) {
1124        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n", tid);
1125        block(tid);
1126        toRename->iewUnblock[tid] = false;
1127    }
1128
1129    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1130        dispatchStatus[tid] = Running;
1131
1132        updatedQueues = true;
1133    }
1134
1135    dis_num_inst = 0;
1136}
1137
1138template <class Impl>
1139void
1140DefaultIEW<Impl>::printAvailableInsts()
1141{
1142    int inst = 0;
1143
1144    std::cout << "Available Instructions: ";
1145
1146    while (fromIssue->insts[inst]) {
1147
1148        if (inst%3==0) std::cout << "\n\t";
1149
1150        std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1151             << " TN: " << fromIssue->insts[inst]->threadNumber
1152             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1153
1154        inst++;
1155
1156    }
1157
1158    std::cout << "\n";
1159}
1160
1161template <class Impl>
1162void
1163DefaultIEW<Impl>::executeInsts()
1164{
1165    wbNumInst = 0;
1166    wbCycle = 0;
1167
1168    list<ThreadID>::iterator threads = activeThreads->begin();
1169    list<ThreadID>::iterator end = activeThreads->end();
1170
1171    while (threads != end) {
1172        ThreadID tid = *threads++;
1173        fetchRedirect[tid] = false;
1174    }
1175
1176    // Uncomment this if you want to see all available instructions.
1177    // @todo This doesn't actually work anymore, we should fix it.
1178//    printAvailableInsts();
1179
1180    // Execute/writeback any instructions that are available.
1181    int insts_to_execute = fromIssue->size;
1182    int inst_num = 0;
1183    for (; inst_num < insts_to_execute;
1184          ++inst_num) {
1185
1186        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1187
1188        DynInstPtr inst = instQueue.getInstToExecute();
1189
1190        DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%i].\n",
1191                inst->pcState(), inst->threadNumber,inst->seqNum);
1192
1193        // Check if the instruction is squashed; if so then skip it
1194        if (inst->isSquashed()) {
1195            DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1196                         " [sn:%i]\n", inst->pcState(), inst->threadNumber,
1197                         inst->seqNum);
1198
1199            // Consider this instruction executed so that commit can go
1200            // ahead and retire the instruction.
1201            inst->setExecuted();
1202
1203            // Not sure if I should set this here or just let commit try to
1204            // commit any squashed instructions.  I like the latter a bit more.
1205            inst->setCanCommit();
1206
1207            ++iewExecSquashedInsts;
1208
1209            continue;
1210        }
1211
1212        Fault fault = NoFault;
1213
1214        // Execute instruction.
1215        // Note that if the instruction faults, it will be handled
1216        // at the commit stage.
1217        if (inst->isMemRef()) {
1218            DPRINTF(IEW, "Execute: Calculating address for memory "
1219                    "reference.\n");
1220
1221            // Tell the LDSTQ to execute this instruction (if it is a load).
1222            if (inst->isLoad()) {
1223                // Loads will mark themselves as executed, and their writeback
1224                // event adds the instruction to the queue to commit
1225                fault = ldstQueue.executeLoad(inst);
1226
1227                if (inst->isTranslationDelayed() &&
1228                    fault == NoFault) {
1229                    // A hw page table walk is currently going on; the
1230                    // instruction must be deferred.
1231                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1232                            "load.\n");
1233                    instQueue.deferMemInst(inst);
1234                    continue;
1235                }
1236
1237                if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1238                    inst->fault = NoFault;
1239                }
1240            } else if (inst->isStore()) {
1241                fault = ldstQueue.executeStore(inst);
1242
1243                if (inst->isTranslationDelayed() &&
1244                    fault == NoFault) {
1245                    // A hw page table walk is currently going on; the
1246                    // instruction must be deferred.
1247                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1248                            "store.\n");
1249                    instQueue.deferMemInst(inst);
1250                    continue;
1251                }
1252
1253                // If the store had a fault then it may not have a mem req
1254                if (fault != NoFault || !inst->readPredicate() ||
1255                        !inst->isStoreConditional()) {
1256                    // If the instruction faulted, then we need to send it along
1257                    // to commit without the instruction completing.
1258                    // Send this instruction to commit, also make sure iew stage
1259                    // realizes there is activity.
1260                    inst->setExecuted();
1261                    instToCommit(inst);
1262                    activityThisCycle();
1263                }
1264
1265                // Store conditionals will mark themselves as
1266                // executed, and their writeback event will add the
1267                // instruction to the queue to commit.
1268            } else {
1269                panic("Unexpected memory type!\n");
1270            }
1271
1272        } else {
1273            // If the instruction has already faulted, then skip executing it.
1274            // Such case can happen when it faulted during ITLB translation.
1275            // If we execute the instruction (even if it's a nop) the fault
1276            // will be replaced and we will lose it.
1277            if (inst->getFault() == NoFault) {
1278                inst->execute();
1279                if (!inst->readPredicate())
1280                    inst->forwardOldRegs();
1281            }
1282
1283            inst->setExecuted();
1284
1285            instToCommit(inst);
1286        }
1287
1288        updateExeInstStats(inst);
1289
1290        // Check if branch prediction was correct, if not then we need
1291        // to tell commit to squash in flight instructions.  Only
1292        // handle this if there hasn't already been something that
1293        // redirects fetch in this group of instructions.
1294
1295        // This probably needs to prioritize the redirects if a different
1296        // scheduler is used.  Currently the scheduler schedules the oldest
1297        // instruction first, so the branch resolution order will be correct.
1298        ThreadID tid = inst->threadNumber;
1299
1300        if (!fetchRedirect[tid] ||
1301            !toCommit->squash[tid] ||
1302            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1303
1304            // Prevent testing for misprediction on load instructions,
1305            // that have not been executed.
1306            bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1307
1308            if (inst->mispredicted() && !loadNotExecuted) {
1309                fetchRedirect[tid] = true;
1310
1311                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1312                DPRINTF(IEW, "Predicted target was PC: %s.\n",
1313                        inst->readPredTarg());
1314                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %s.\n",
1315                        inst->pcState());
1316                // If incorrect, then signal the ROB that it must be squashed.
1317                squashDueToBranch(inst, tid);
1318
1319                ppMispredict->notify(inst);
1320
1321                if (inst->readPredTaken()) {
1322                    predictedTakenIncorrect++;
1323                } else {
1324                    predictedNotTakenIncorrect++;
1325                }
1326            } else if (ldstQueue.violation(tid)) {
1327                assert(inst->isMemRef());
1328                // If there was an ordering violation, then get the
1329                // DynInst that caused the violation.  Note that this
1330                // clears the violation signal.
1331                DynInstPtr violator;
1332                violator = ldstQueue.getMemDepViolator(tid);
1333
1334                DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1335                        "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1336                        violator->pcState(), violator->seqNum,
1337                        inst->pcState(), inst->seqNum, inst->physEffAddrLow);
1338
1339                fetchRedirect[tid] = true;
1340
1341                // Tell the instruction queue that a violation has occured.
1342                instQueue.violation(inst, violator);
1343
1344                // Squash.
1345                squashDueToMemOrder(violator, tid);
1346
1347                ++memOrderViolationEvents;
1348            }
1349        } else {
1350            // Reset any state associated with redirects that will not
1351            // be used.
1352            if (ldstQueue.violation(tid)) {
1353                assert(inst->isMemRef());
1354
1355                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1356
1357                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1358                        "%s, inst PC: %s.  Addr is: %#x.\n",
1359                        violator->pcState(), inst->pcState(),
1360                        inst->physEffAddrLow);
1361                DPRINTF(IEW, "Violation will not be handled because "
1362                        "already squashing\n");
1363
1364                ++memOrderViolationEvents;
1365            }
1366        }
1367    }
1368
1369    // Update and record activity if we processed any instructions.
1370    if (inst_num) {
1371        if (exeStatus == Idle) {
1372            exeStatus = Running;
1373        }
1374
1375        updatedQueues = true;
1376
1377        cpu->activityThisCycle();
1378    }
1379
1380    // Need to reset this in case a writeback event needs to write into the
1381    // iew queue.  That way the writeback event will write into the correct
1382    // spot in the queue.
1383    wbNumInst = 0;
1384
1385}
1386
1387template <class Impl>
1388void
1389DefaultIEW<Impl>::writebackInsts()
1390{
1391    // Loop through the head of the time buffer and wake any
1392    // dependents.  These instructions are about to write back.  Also
1393    // mark scoreboard that this instruction is finally complete.
1394    // Either have IEW have direct access to scoreboard, or have this
1395    // as part of backwards communication.
1396    for (int inst_num = 0; inst_num < wbWidth &&
1397             toCommit->insts[inst_num]; inst_num++) {
1398        DynInstPtr inst = toCommit->insts[inst_num];
1399        ThreadID tid = inst->threadNumber;
1400
1401        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1402                inst->seqNum, inst->pcState());
1403
1404        iewInstsToCommit[tid]++;
1405
1406        // Some instructions will be sent to commit without having
1407        // executed because they need commit to handle them.
1408        // E.g. Strictly ordered loads have not actually executed when they
1409        // are first sent to commit.  Instead commit must tell the LSQ
1410        // when it's ready to execute the strictly ordered load.
1411        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1412            int dependents = instQueue.wakeDependents(inst);
1413
1414            for (int i = 0; i < inst->numDestRegs(); i++) {
1415                //mark as Ready
1416                DPRINTF(IEW,"Setting Destination Register %i\n",
1417                        inst->renamedDestRegIdx(i));
1418                scoreboard->setReg(inst->renamedDestRegIdx(i));
1419            }
1420
1421            if (dependents) {
1422                producerInst[tid]++;
1423                consumerInst[tid]+= dependents;
1424            }
1425            writebackCount[tid]++;
1426        }
1427    }
1428}
1429
1430template<class Impl>
1431void
1432DefaultIEW<Impl>::tick()
1433{
1434    wbNumInst = 0;
1435    wbCycle = 0;
1436
1437    wroteToTimeBuffer = false;
1438    updatedQueues = false;
1439
1440    sortInsts();
1441
1442    // Free function units marked as being freed this cycle.
1443    fuPool->processFreeUnits();
1444
1445    list<ThreadID>::iterator threads = activeThreads->begin();
1446    list<ThreadID>::iterator end = activeThreads->end();
1447
1448    // Check stall and squash signals, dispatch any instructions.
1449    while (threads != end) {
1450        ThreadID tid = *threads++;
1451
1452        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1453
1454        checkSignalsAndUpdate(tid);
1455        dispatch(tid);
1456    }
1457
1458    if (exeStatus != Squashing) {
1459        executeInsts();
1460
1461        writebackInsts();
1462
1463        // Have the instruction queue try to schedule any ready instructions.
1464        // (In actuality, this scheduling is for instructions that will
1465        // be executed next cycle.)
1466        instQueue.scheduleReadyInsts();
1467
1468        // Also should advance its own time buffers if the stage ran.
1469        // Not the best place for it, but this works (hopefully).
1470        issueToExecQueue.advance();
1471    }
1472
1473    bool broadcast_free_entries = false;
1474
1475    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1476        exeStatus = Idle;
1477        updateLSQNextCycle = false;
1478
1479        broadcast_free_entries = true;
1480    }
1481
1482    // Writeback any stores using any leftover bandwidth.
1483    ldstQueue.writebackStores();
1484
1485    // Check the committed load/store signals to see if there's a load
1486    // or store to commit.  Also check if it's being told to execute a
1487    // nonspeculative instruction.
1488    // This is pretty inefficient...
1489
1490    threads = activeThreads->begin();
1491    while (threads != end) {
1492        ThreadID tid = (*threads++);
1493
1494        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1495
1496        // Update structures based on instructions committed.
1497        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1498            !fromCommit->commitInfo[tid].squash &&
1499            !fromCommit->commitInfo[tid].robSquashing) {
1500
1501            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1502
1503            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1504
1505            updateLSQNextCycle = true;
1506            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1507        }
1508
1509        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1510
1511            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1512            if (fromCommit->commitInfo[tid].strictlyOrdered) {
1513                instQueue.replayMemInst(
1514                    fromCommit->commitInfo[tid].strictlyOrderedLoad);
1515                fromCommit->commitInfo[tid].strictlyOrderedLoad->setAtCommit();
1516            } else {
1517                instQueue.scheduleNonSpec(
1518                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1519            }
1520        }
1521
1522        if (broadcast_free_entries) {
1523            toFetch->iewInfo[tid].iqCount =
1524                instQueue.getCount(tid);
1525            toFetch->iewInfo[tid].ldstqCount =
1526                ldstQueue.getCount(tid);
1527
1528            toRename->iewInfo[tid].usedIQ = true;
1529            toRename->iewInfo[tid].freeIQEntries =
1530                instQueue.numFreeEntries(tid);
1531            toRename->iewInfo[tid].usedLSQ = true;
1532
1533            toRename->iewInfo[tid].freeLQEntries =
1534                ldstQueue.numFreeLoadEntries(tid);
1535            toRename->iewInfo[tid].freeSQEntries =
1536                ldstQueue.numFreeStoreEntries(tid);
1537
1538            wroteToTimeBuffer = true;
1539        }
1540
1541        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1542                tid, toRename->iewInfo[tid].dispatched);
1543    }
1544
1545    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1546            "LQ has %i free entries. SQ has %i free entries.\n",
1547            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1548            ldstQueue.numFreeLoadEntries(), ldstQueue.numFreeStoreEntries());
1549
1550    updateStatus();
1551
1552    if (wroteToTimeBuffer) {
1553        DPRINTF(Activity, "Activity this cycle.\n");
1554        cpu->activityThisCycle();
1555    }
1556}
1557
1558template <class Impl>
1559void
1560DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1561{
1562    ThreadID tid = inst->threadNumber;
1563
1564    iewExecutedInsts++;
1565
1566#if TRACING_ON
1567    if (DTRACE(O3PipeView)) {
1568        inst->completeTick = curTick() - inst->fetchTick;
1569    }
1570#endif
1571
1572    //
1573    //  Control operations
1574    //
1575    if (inst->isControl())
1576        iewExecutedBranches[tid]++;
1577
1578    //
1579    //  Memory operations
1580    //
1581    if (inst->isMemRef()) {
1582        iewExecutedRefs[tid]++;
1583
1584        if (inst->isLoad()) {
1585            iewExecLoadInsts[tid]++;
1586        }
1587    }
1588}
1589
1590template <class Impl>
1591void
1592DefaultIEW<Impl>::checkMisprediction(DynInstPtr &inst)
1593{
1594    ThreadID tid = inst->threadNumber;
1595
1596    if (!fetchRedirect[tid] ||
1597        !toCommit->squash[tid] ||
1598        toCommit->squashedSeqNum[tid] > inst->seqNum) {
1599
1600        if (inst->mispredicted()) {
1601            fetchRedirect[tid] = true;
1602
1603            DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1604            DPRINTF(IEW, "Predicted target was PC:%#x, NPC:%#x.\n",
1605                    inst->predInstAddr(), inst->predNextInstAddr());
1606            DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x,"
1607                    " NPC: %#x.\n", inst->nextInstAddr(),
1608                    inst->nextInstAddr());
1609            // If incorrect, then signal the ROB that it must be squashed.
1610            squashDueToBranch(inst, tid);
1611
1612            if (inst->readPredTaken()) {
1613                predictedTakenIncorrect++;
1614            } else {
1615                predictedNotTakenIncorrect++;
1616            }
1617        }
1618    }
1619}
1620
1621#endif//__CPU_O3_IEW_IMPL_IMPL_HH__
1622