fetch_impl.hh revision 9944:4ff1c5c6dcbc
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#ifndef __CPU_O3_FETCH_IMPL_HH__
45#define __CPU_O3_FETCH_IMPL_HH__
46
47#include <algorithm>
48#include <cstring>
49#include <list>
50#include <map>
51#include <queue>
52
53#include "arch/isa_traits.hh"
54#include "arch/tlb.hh"
55#include "arch/utility.hh"
56#include "arch/vtophys.hh"
57#include "base/types.hh"
58#include "config/the_isa.hh"
59#include "cpu/base.hh"
60//#include "cpu/checker/cpu.hh"
61#include "cpu/o3/fetch.hh"
62#include "cpu/exetrace.hh"
63#include "debug/Activity.hh"
64#include "debug/Drain.hh"
65#include "debug/Fetch.hh"
66#include "debug/O3PipeView.hh"
67#include "mem/packet.hh"
68#include "params/DerivO3CPU.hh"
69#include "sim/byteswap.hh"
70#include "sim/core.hh"
71#include "sim/eventq.hh"
72#include "sim/full_system.hh"
73#include "sim/system.hh"
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79    : cpu(_cpu),
80      decodeToFetchDelay(params->decodeToFetchDelay),
81      renameToFetchDelay(params->renameToFetchDelay),
82      iewToFetchDelay(params->iewToFetchDelay),
83      commitToFetchDelay(params->commitToFetchDelay),
84      fetchWidth(params->fetchWidth),
85      retryPkt(NULL),
86      retryTid(InvalidThreadID),
87      cacheBlkSize(cpu->cacheLineSize()),
88      cacheBlkMask(cacheBlkSize - 1),
89      numThreads(params->numThreads),
90      numFetchingThreads(params->smtNumFetchingThreads),
91      finishTranslationEvent(this)
92{
93    if (numThreads > Impl::MaxThreads)
94        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
95              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
96              numThreads, static_cast<int>(Impl::MaxThreads));
97    if (fetchWidth > Impl::MaxWidth)
98        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
99             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
100             fetchWidth, static_cast<int>(Impl::MaxWidth));
101
102    std::string policy = params->smtFetchPolicy;
103
104    // Convert string to lowercase
105    std::transform(policy.begin(), policy.end(), policy.begin(),
106                   (int(*)(int)) tolower);
107
108    // Figure out fetch policy
109    if (policy == "singlethread") {
110        fetchPolicy = SingleThread;
111        if (numThreads > 1)
112            panic("Invalid Fetch Policy for a SMT workload.");
113    } else if (policy == "roundrobin") {
114        fetchPolicy = RoundRobin;
115        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
116    } else if (policy == "branch") {
117        fetchPolicy = Branch;
118        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
119    } else if (policy == "iqcount") {
120        fetchPolicy = IQ;
121        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
122    } else if (policy == "lsqcount") {
123        fetchPolicy = LSQ;
124        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
125    } else {
126        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
127              " RoundRobin,LSQcount,IQcount}\n");
128    }
129
130    // Get the size of an instruction.
131    instSize = sizeof(TheISA::MachInst);
132
133    for (int i = 0; i < Impl::MaxThreads; i++) {
134        decoder[i] = new TheISA::Decoder;
135    }
136
137    branchPred = params->branchPred;
138
139    for (ThreadID tid = 0; tid < numThreads; tid++) {
140        // Create space to store a cache line.
141        cacheData[tid] = new uint8_t[cacheBlkSize];
142        cacheDataPC[tid] = 0;
143        cacheDataValid[tid] = false;
144    }
145}
146
147template <class Impl>
148std::string
149DefaultFetch<Impl>::name() const
150{
151    return cpu->name() + ".fetch";
152}
153
154template <class Impl>
155void
156DefaultFetch<Impl>::regStats()
157{
158    icacheStallCycles
159        .name(name() + ".icacheStallCycles")
160        .desc("Number of cycles fetch is stalled on an Icache miss")
161        .prereq(icacheStallCycles);
162
163    fetchedInsts
164        .name(name() + ".Insts")
165        .desc("Number of instructions fetch has processed")
166        .prereq(fetchedInsts);
167
168    fetchedBranches
169        .name(name() + ".Branches")
170        .desc("Number of branches that fetch encountered")
171        .prereq(fetchedBranches);
172
173    predictedBranches
174        .name(name() + ".predictedBranches")
175        .desc("Number of branches that fetch has predicted taken")
176        .prereq(predictedBranches);
177
178    fetchCycles
179        .name(name() + ".Cycles")
180        .desc("Number of cycles fetch has run and was not squashing or"
181              " blocked")
182        .prereq(fetchCycles);
183
184    fetchSquashCycles
185        .name(name() + ".SquashCycles")
186        .desc("Number of cycles fetch has spent squashing")
187        .prereq(fetchSquashCycles);
188
189    fetchTlbCycles
190        .name(name() + ".TlbCycles")
191        .desc("Number of cycles fetch has spent waiting for tlb")
192        .prereq(fetchTlbCycles);
193
194    fetchIdleCycles
195        .name(name() + ".IdleCycles")
196        .desc("Number of cycles fetch was idle")
197        .prereq(fetchIdleCycles);
198
199    fetchBlockedCycles
200        .name(name() + ".BlockedCycles")
201        .desc("Number of cycles fetch has spent blocked")
202        .prereq(fetchBlockedCycles);
203
204    fetchedCacheLines
205        .name(name() + ".CacheLines")
206        .desc("Number of cache lines fetched")
207        .prereq(fetchedCacheLines);
208
209    fetchMiscStallCycles
210        .name(name() + ".MiscStallCycles")
211        .desc("Number of cycles fetch has spent waiting on interrupts, or "
212              "bad addresses, or out of MSHRs")
213        .prereq(fetchMiscStallCycles);
214
215    fetchPendingDrainCycles
216        .name(name() + ".PendingDrainCycles")
217        .desc("Number of cycles fetch has spent waiting on pipes to drain")
218        .prereq(fetchPendingDrainCycles);
219
220    fetchNoActiveThreadStallCycles
221        .name(name() + ".NoActiveThreadStallCycles")
222        .desc("Number of stall cycles due to no active thread to fetch from")
223        .prereq(fetchNoActiveThreadStallCycles);
224
225    fetchPendingTrapStallCycles
226        .name(name() + ".PendingTrapStallCycles")
227        .desc("Number of stall cycles due to pending traps")
228        .prereq(fetchPendingTrapStallCycles);
229
230    fetchPendingQuiesceStallCycles
231        .name(name() + ".PendingQuiesceStallCycles")
232        .desc("Number of stall cycles due to pending quiesce instructions")
233        .prereq(fetchPendingQuiesceStallCycles);
234
235    fetchIcacheWaitRetryStallCycles
236        .name(name() + ".IcacheWaitRetryStallCycles")
237        .desc("Number of stall cycles due to full MSHR")
238        .prereq(fetchIcacheWaitRetryStallCycles);
239
240    fetchIcacheSquashes
241        .name(name() + ".IcacheSquashes")
242        .desc("Number of outstanding Icache misses that were squashed")
243        .prereq(fetchIcacheSquashes);
244
245    fetchTlbSquashes
246        .name(name() + ".ItlbSquashes")
247        .desc("Number of outstanding ITLB misses that were squashed")
248        .prereq(fetchTlbSquashes);
249
250    fetchNisnDist
251        .init(/* base value */ 0,
252              /* last value */ fetchWidth,
253              /* bucket size */ 1)
254        .name(name() + ".rateDist")
255        .desc("Number of instructions fetched each cycle (Total)")
256        .flags(Stats::pdf);
257
258    idleRate
259        .name(name() + ".idleRate")
260        .desc("Percent of cycles fetch was idle")
261        .prereq(idleRate);
262    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
263
264    branchRate
265        .name(name() + ".branchRate")
266        .desc("Number of branch fetches per cycle")
267        .flags(Stats::total);
268    branchRate = fetchedBranches / cpu->numCycles;
269
270    fetchRate
271        .name(name() + ".rate")
272        .desc("Number of inst fetches per cycle")
273        .flags(Stats::total);
274    fetchRate = fetchedInsts / cpu->numCycles;
275}
276
277template<class Impl>
278void
279DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
280{
281    timeBuffer = time_buffer;
282
283    // Create wires to get information from proper places in time buffer.
284    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
285    fromRename = timeBuffer->getWire(-renameToFetchDelay);
286    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
287    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
288}
289
290template<class Impl>
291void
292DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
293{
294    activeThreads = at_ptr;
295}
296
297template<class Impl>
298void
299DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
300{
301    fetchQueue = fq_ptr;
302
303    // Create wire to write information to proper place in fetch queue.
304    toDecode = fetchQueue->getWire(0);
305}
306
307template<class Impl>
308void
309DefaultFetch<Impl>::startupStage()
310{
311    assert(priorityList.empty());
312    resetStage();
313
314    // Fetch needs to start fetching instructions at the very beginning,
315    // so it must start up in active state.
316    switchToActive();
317}
318
319template<class Impl>
320void
321DefaultFetch<Impl>::resetStage()
322{
323    numInst = 0;
324    interruptPending = false;
325    cacheBlocked = false;
326
327    priorityList.clear();
328
329    // Setup PC and nextPC with initial state.
330    for (ThreadID tid = 0; tid < numThreads; tid++) {
331        fetchStatus[tid] = Running;
332        pc[tid] = cpu->pcState(tid);
333        fetchOffset[tid] = 0;
334        macroop[tid] = NULL;
335
336        delayedCommit[tid] = false;
337        memReq[tid] = NULL;
338
339        stalls[tid].decode = false;
340        stalls[tid].rename = false;
341        stalls[tid].iew = false;
342        stalls[tid].commit = false;
343        stalls[tid].drain = false;
344
345        priorityList.push_back(tid);
346    }
347
348    wroteToTimeBuffer = false;
349    _status = Inactive;
350
351    for (ThreadID tid = 0; tid < numThreads; tid++) {
352        cacheDataPC[tid] = 0;
353        cacheDataValid[tid] = false;
354    }
355}
356
357template<class Impl>
358void
359DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
360{
361    ThreadID tid = pkt->req->threadId();
362
363    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
364    assert(!cpu->switchedOut());
365
366    // Only change the status if it's still waiting on the icache access
367    // to return.
368    if (fetchStatus[tid] != IcacheWaitResponse ||
369        pkt->req != memReq[tid]) {
370        ++fetchIcacheSquashes;
371        delete pkt->req;
372        delete pkt;
373        return;
374    }
375
376    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
377    cacheDataValid[tid] = true;
378
379    // Wake up the CPU (if it went to sleep and was waiting on
380    // this completion event).
381    cpu->wakeCPU();
382
383    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
384            tid);
385
386    switchToActive();
387
388    // Only switch to IcacheAccessComplete if we're not stalled as well.
389    if (checkStall(tid)) {
390        fetchStatus[tid] = Blocked;
391    } else {
392        fetchStatus[tid] = IcacheAccessComplete;
393    }
394
395    // Reset the mem req to NULL.
396    delete pkt->req;
397    delete pkt;
398    memReq[tid] = NULL;
399}
400
401template <class Impl>
402void
403DefaultFetch<Impl>::drainResume()
404{
405    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
406        stalls[i].drain = false;
407}
408
409template <class Impl>
410void
411DefaultFetch<Impl>::drainSanityCheck() const
412{
413    assert(isDrained());
414    assert(retryPkt == NULL);
415    assert(retryTid == InvalidThreadID);
416    assert(cacheBlocked == false);
417    assert(interruptPending == false);
418
419    for (ThreadID i = 0; i < numThreads; ++i) {
420        assert(!memReq[i]);
421        assert(!stalls[i].decode);
422        assert(!stalls[i].rename);
423        assert(!stalls[i].iew);
424        assert(!stalls[i].commit);
425        assert(fetchStatus[i] == Idle || stalls[i].drain);
426    }
427
428    branchPred->drainSanityCheck();
429}
430
431template <class Impl>
432bool
433DefaultFetch<Impl>::isDrained() const
434{
435    /* Make sure that threads are either idle of that the commit stage
436     * has signaled that draining has completed by setting the drain
437     * stall flag. This effectively forces the pipeline to be disabled
438     * until the whole system is drained (simulation may continue to
439     * drain other components).
440     */
441    for (ThreadID i = 0; i < numThreads; ++i) {
442        if (!(fetchStatus[i] == Idle ||
443              (fetchStatus[i] == Blocked && stalls[i].drain)))
444            return false;
445    }
446
447    /* The pipeline might start up again in the middle of the drain
448     * cycle if the finish translation event is scheduled, so make
449     * sure that's not the case.
450     */
451    return !finishTranslationEvent.scheduled();
452}
453
454template <class Impl>
455void
456DefaultFetch<Impl>::takeOverFrom()
457{
458    assert(cpu->getInstPort().isConnected());
459    resetStage();
460
461}
462
463template <class Impl>
464void
465DefaultFetch<Impl>::drainStall(ThreadID tid)
466{
467    assert(cpu->isDraining());
468    assert(!stalls[tid].drain);
469    DPRINTF(Drain, "%i: Thread drained.\n", tid);
470    stalls[tid].drain = true;
471}
472
473template <class Impl>
474void
475DefaultFetch<Impl>::wakeFromQuiesce()
476{
477    DPRINTF(Fetch, "Waking up from quiesce\n");
478    // Hopefully this is safe
479    // @todo: Allow other threads to wake from quiesce.
480    fetchStatus[0] = Running;
481}
482
483template <class Impl>
484inline void
485DefaultFetch<Impl>::switchToActive()
486{
487    if (_status == Inactive) {
488        DPRINTF(Activity, "Activating stage.\n");
489
490        cpu->activateStage(O3CPU::FetchIdx);
491
492        _status = Active;
493    }
494}
495
496template <class Impl>
497inline void
498DefaultFetch<Impl>::switchToInactive()
499{
500    if (_status == Active) {
501        DPRINTF(Activity, "Deactivating stage.\n");
502
503        cpu->deactivateStage(O3CPU::FetchIdx);
504
505        _status = Inactive;
506    }
507}
508
509template <class Impl>
510bool
511DefaultFetch<Impl>::lookupAndUpdateNextPC(
512        DynInstPtr &inst, TheISA::PCState &nextPC)
513{
514    // Do branch prediction check here.
515    // A bit of a misnomer...next_PC is actually the current PC until
516    // this function updates it.
517    bool predict_taken;
518
519    if (!inst->isControl()) {
520        TheISA::advancePC(nextPC, inst->staticInst);
521        inst->setPredTarg(nextPC);
522        inst->setPredTaken(false);
523        return false;
524    }
525
526    ThreadID tid = inst->threadNumber;
527    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
528                                        nextPC, tid);
529
530    if (predict_taken) {
531        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
532                tid, inst->seqNum, nextPC);
533    } else {
534        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
535                tid, inst->seqNum);
536    }
537
538    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
539            tid, inst->seqNum, nextPC);
540    inst->setPredTarg(nextPC);
541    inst->setPredTaken(predict_taken);
542
543    ++fetchedBranches;
544
545    if (predict_taken) {
546        ++predictedBranches;
547    }
548
549    return predict_taken;
550}
551
552template <class Impl>
553bool
554DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
555{
556    Fault fault = NoFault;
557
558    assert(!cpu->switchedOut());
559
560    // @todo: not sure if these should block translation.
561    //AlphaDep
562    if (cacheBlocked) {
563        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
564                tid);
565        return false;
566    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
567        // Hold off fetch from getting new instructions when:
568        // Cache is blocked, or
569        // while an interrupt is pending and we're not in PAL mode, or
570        // fetch is switched out.
571        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
572                tid);
573        return false;
574    }
575
576    // Align the fetch address so it's at the start of a cache block.
577    Addr block_PC = icacheBlockAlignPC(vaddr);
578
579    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
580            tid, block_PC, vaddr);
581
582    // Setup the memReq to do a read of the first instruction's address.
583    // Set the appropriate read size and flags as well.
584    // Build request here.
585    RequestPtr mem_req =
586        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
587                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
588
589    memReq[tid] = mem_req;
590
591    // Initiate translation of the icache block
592    fetchStatus[tid] = ItlbWait;
593    FetchTranslation *trans = new FetchTranslation(this);
594    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
595                              trans, BaseTLB::Execute);
596    return true;
597}
598
599template <class Impl>
600void
601DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
602{
603    ThreadID tid = mem_req->threadId();
604    Addr block_PC = mem_req->getVaddr();
605
606    assert(!cpu->switchedOut());
607
608    // Wake up CPU if it was idle
609    cpu->wakeCPU();
610
611    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
612        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
613        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
614                tid);
615        ++fetchTlbSquashes;
616        delete mem_req;
617        return;
618    }
619
620
621    // If translation was successful, attempt to read the icache block.
622    if (fault == NoFault) {
623        // Check that we're not going off into random memory
624        // If we have, just wait around for commit to squash something and put
625        // us on the right track
626        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
627            warn("Address %#x is outside of physical memory, stopping fetch\n",
628                    mem_req->getPaddr());
629            fetchStatus[tid] = NoGoodAddr;
630            delete mem_req;
631            memReq[tid] = NULL;
632            return;
633        }
634
635        // Build packet here.
636        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
637        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
638
639        cacheDataPC[tid] = block_PC;
640        cacheDataValid[tid] = false;
641        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
642
643        fetchedCacheLines++;
644
645        // Access the cache.
646        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
647            assert(retryPkt == NULL);
648            assert(retryTid == InvalidThreadID);
649            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
650
651            fetchStatus[tid] = IcacheWaitRetry;
652            retryPkt = data_pkt;
653            retryTid = tid;
654            cacheBlocked = true;
655        } else {
656            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
657            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
658                    "response.\n", tid);
659
660            lastIcacheStall[tid] = curTick();
661            fetchStatus[tid] = IcacheWaitResponse;
662        }
663    } else {
664        if (!(numInst < fetchWidth)) {
665            assert(!finishTranslationEvent.scheduled());
666            finishTranslationEvent.setFault(fault);
667            finishTranslationEvent.setReq(mem_req);
668            cpu->schedule(finishTranslationEvent,
669                          cpu->clockEdge(Cycles(1)));
670            return;
671        }
672        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
673                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
674        // Translation faulted, icache request won't be sent.
675        delete mem_req;
676        memReq[tid] = NULL;
677
678        // Send the fault to commit.  This thread will not do anything
679        // until commit handles the fault.  The only other way it can
680        // wake up is if a squash comes along and changes the PC.
681        TheISA::PCState fetchPC = pc[tid];
682
683        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
684        // We will use a nop in ordier to carry the fault.
685        DynInstPtr instruction = buildInst(tid,
686                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
687                NULL, fetchPC, fetchPC, false);
688
689        instruction->setPredTarg(fetchPC);
690        instruction->fault = fault;
691        wroteToTimeBuffer = true;
692
693        DPRINTF(Activity, "Activity this cycle.\n");
694        cpu->activityThisCycle();
695
696        fetchStatus[tid] = TrapPending;
697
698        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
699        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
700                tid, fault->name(), pc[tid]);
701    }
702    _status = updateFetchStatus();
703}
704
705template <class Impl>
706inline void
707DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
708                             const DynInstPtr squashInst, ThreadID tid)
709{
710    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
711            tid, newPC);
712
713    pc[tid] = newPC;
714    fetchOffset[tid] = 0;
715    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
716        macroop[tid] = squashInst->macroop;
717    else
718        macroop[tid] = NULL;
719    decoder[tid]->reset();
720
721    // Clear the icache miss if it's outstanding.
722    if (fetchStatus[tid] == IcacheWaitResponse) {
723        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
724                tid);
725        memReq[tid] = NULL;
726    } else if (fetchStatus[tid] == ItlbWait) {
727        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
728                tid);
729        memReq[tid] = NULL;
730    }
731
732    // Get rid of the retrying packet if it was from this thread.
733    if (retryTid == tid) {
734        assert(cacheBlocked);
735        if (retryPkt) {
736            delete retryPkt->req;
737            delete retryPkt;
738        }
739        retryPkt = NULL;
740        retryTid = InvalidThreadID;
741    }
742
743    fetchStatus[tid] = Squashing;
744
745    // microops are being squashed, it is not known wheather the
746    // youngest non-squashed microop was  marked delayed commit
747    // or not. Setting the flag to true ensures that the
748    // interrupts are not handled when they cannot be, though
749    // some opportunities to handle interrupts may be missed.
750    delayedCommit[tid] = true;
751
752    ++fetchSquashCycles;
753}
754
755template<class Impl>
756void
757DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
758                                     const DynInstPtr squashInst,
759                                     const InstSeqNum seq_num, ThreadID tid)
760{
761    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
762
763    doSquash(newPC, squashInst, tid);
764
765    // Tell the CPU to remove any instructions that are in flight between
766    // fetch and decode.
767    cpu->removeInstsUntil(seq_num, tid);
768}
769
770template<class Impl>
771bool
772DefaultFetch<Impl>::checkStall(ThreadID tid) const
773{
774    bool ret_val = false;
775
776    if (cpu->contextSwitch) {
777        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
778        ret_val = true;
779    } else if (stalls[tid].drain) {
780        assert(cpu->isDraining());
781        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
782        ret_val = true;
783    } else if (stalls[tid].decode) {
784        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
785        ret_val = true;
786    } else if (stalls[tid].rename) {
787        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
788        ret_val = true;
789    } else if (stalls[tid].iew) {
790        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
791        ret_val = true;
792    } else if (stalls[tid].commit) {
793        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
794        ret_val = true;
795    }
796
797    return ret_val;
798}
799
800template<class Impl>
801typename DefaultFetch<Impl>::FetchStatus
802DefaultFetch<Impl>::updateFetchStatus()
803{
804    //Check Running
805    list<ThreadID>::iterator threads = activeThreads->begin();
806    list<ThreadID>::iterator end = activeThreads->end();
807
808    while (threads != end) {
809        ThreadID tid = *threads++;
810
811        if (fetchStatus[tid] == Running ||
812            fetchStatus[tid] == Squashing ||
813            fetchStatus[tid] == IcacheAccessComplete) {
814
815            if (_status == Inactive) {
816                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
817
818                if (fetchStatus[tid] == IcacheAccessComplete) {
819                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
820                            "completion\n",tid);
821                }
822
823                cpu->activateStage(O3CPU::FetchIdx);
824            }
825
826            return Active;
827        }
828    }
829
830    // Stage is switching from active to inactive, notify CPU of it.
831    if (_status == Active) {
832        DPRINTF(Activity, "Deactivating stage.\n");
833
834        cpu->deactivateStage(O3CPU::FetchIdx);
835    }
836
837    return Inactive;
838}
839
840template <class Impl>
841void
842DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
843                           const InstSeqNum seq_num, DynInstPtr squashInst,
844                           ThreadID tid)
845{
846    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
847
848    doSquash(newPC, squashInst, tid);
849
850    // Tell the CPU to remove any instructions that are not in the ROB.
851    cpu->removeInstsNotInROB(tid);
852}
853
854template <class Impl>
855void
856DefaultFetch<Impl>::tick()
857{
858    list<ThreadID>::iterator threads = activeThreads->begin();
859    list<ThreadID>::iterator end = activeThreads->end();
860    bool status_change = false;
861
862    wroteToTimeBuffer = false;
863
864    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
865        issuePipelinedIfetch[i] = false;
866    }
867
868    while (threads != end) {
869        ThreadID tid = *threads++;
870
871        // Check the signals for each thread to determine the proper status
872        // for each thread.
873        bool updated_status = checkSignalsAndUpdate(tid);
874        status_change =  status_change || updated_status;
875    }
876
877    DPRINTF(Fetch, "Running stage.\n");
878
879    if (FullSystem) {
880        if (fromCommit->commitInfo[0].interruptPending) {
881            interruptPending = true;
882        }
883
884        if (fromCommit->commitInfo[0].clearInterrupt) {
885            interruptPending = false;
886        }
887    }
888
889    for (threadFetched = 0; threadFetched < numFetchingThreads;
890         threadFetched++) {
891        // Fetch each of the actively fetching threads.
892        fetch(status_change);
893    }
894
895    // Record number of instructions fetched this cycle for distribution.
896    fetchNisnDist.sample(numInst);
897
898    if (status_change) {
899        // Change the fetch stage status if there was a status change.
900        _status = updateFetchStatus();
901    }
902
903    // If there was activity this cycle, inform the CPU of it.
904    if (wroteToTimeBuffer || cpu->contextSwitch) {
905        DPRINTF(Activity, "Activity this cycle.\n");
906
907        cpu->activityThisCycle();
908    }
909
910    // Issue the next I-cache request if possible.
911    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
912        if (issuePipelinedIfetch[i]) {
913            pipelineIcacheAccesses(i);
914        }
915    }
916
917    // Reset the number of the instruction we've fetched.
918    numInst = 0;
919}
920
921template <class Impl>
922bool
923DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
924{
925    // Update the per thread stall statuses.
926    if (fromDecode->decodeBlock[tid]) {
927        stalls[tid].decode = true;
928    }
929
930    if (fromDecode->decodeUnblock[tid]) {
931        assert(stalls[tid].decode);
932        assert(!fromDecode->decodeBlock[tid]);
933        stalls[tid].decode = false;
934    }
935
936    if (fromRename->renameBlock[tid]) {
937        stalls[tid].rename = true;
938    }
939
940    if (fromRename->renameUnblock[tid]) {
941        assert(stalls[tid].rename);
942        assert(!fromRename->renameBlock[tid]);
943        stalls[tid].rename = false;
944    }
945
946    if (fromIEW->iewBlock[tid]) {
947        stalls[tid].iew = true;
948    }
949
950    if (fromIEW->iewUnblock[tid]) {
951        assert(stalls[tid].iew);
952        assert(!fromIEW->iewBlock[tid]);
953        stalls[tid].iew = false;
954    }
955
956    if (fromCommit->commitBlock[tid]) {
957        stalls[tid].commit = true;
958    }
959
960    if (fromCommit->commitUnblock[tid]) {
961        assert(stalls[tid].commit);
962        assert(!fromCommit->commitBlock[tid]);
963        stalls[tid].commit = false;
964    }
965
966    // Check squash signals from commit.
967    if (fromCommit->commitInfo[tid].squash) {
968
969        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
970                "from commit.\n",tid);
971        // In any case, squash.
972        squash(fromCommit->commitInfo[tid].pc,
973               fromCommit->commitInfo[tid].doneSeqNum,
974               fromCommit->commitInfo[tid].squashInst, tid);
975
976        // If it was a branch mispredict on a control instruction, update the
977        // branch predictor with that instruction, otherwise just kill the
978        // invalid state we generated in after sequence number
979        if (fromCommit->commitInfo[tid].mispredictInst &&
980            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
981            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
982                              fromCommit->commitInfo[tid].pc,
983                              fromCommit->commitInfo[tid].branchTaken,
984                              tid);
985        } else {
986            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
987                              tid);
988        }
989
990        return true;
991    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
992        // Update the branch predictor if it wasn't a squashed instruction
993        // that was broadcasted.
994        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
995    }
996
997    // Check ROB squash signals from commit.
998    if (fromCommit->commitInfo[tid].robSquashing) {
999        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1000
1001        // Continue to squash.
1002        fetchStatus[tid] = Squashing;
1003
1004        return true;
1005    }
1006
1007    // Check squash signals from decode.
1008    if (fromDecode->decodeInfo[tid].squash) {
1009        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1010                "from decode.\n",tid);
1011
1012        // Update the branch predictor.
1013        if (fromDecode->decodeInfo[tid].branchMispredict) {
1014            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1015                              fromDecode->decodeInfo[tid].nextPC,
1016                              fromDecode->decodeInfo[tid].branchTaken,
1017                              tid);
1018        } else {
1019            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1020                              tid);
1021        }
1022
1023        if (fetchStatus[tid] != Squashing) {
1024
1025            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1026                fromDecode->decodeInfo[tid].nextPC);
1027            // Squash unless we're already squashing
1028            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1029                             fromDecode->decodeInfo[tid].squashInst,
1030                             fromDecode->decodeInfo[tid].doneSeqNum,
1031                             tid);
1032
1033            return true;
1034        }
1035    }
1036
1037    if (checkStall(tid) &&
1038        fetchStatus[tid] != IcacheWaitResponse &&
1039        fetchStatus[tid] != IcacheWaitRetry &&
1040        fetchStatus[tid] != ItlbWait &&
1041        fetchStatus[tid] != QuiescePending) {
1042        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1043
1044        fetchStatus[tid] = Blocked;
1045
1046        return true;
1047    }
1048
1049    if (fetchStatus[tid] == Blocked ||
1050        fetchStatus[tid] == Squashing) {
1051        // Switch status to running if fetch isn't being told to block or
1052        // squash this cycle.
1053        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1054                tid);
1055
1056        fetchStatus[tid] = Running;
1057
1058        return true;
1059    }
1060
1061    // If we've reached this point, we have not gotten any signals that
1062    // cause fetch to change its status.  Fetch remains the same as before.
1063    return false;
1064}
1065
1066template<class Impl>
1067typename Impl::DynInstPtr
1068DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1069                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1070                              TheISA::PCState nextPC, bool trace)
1071{
1072    // Get a sequence number.
1073    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1074
1075    // Create a new DynInst from the instruction fetched.
1076    DynInstPtr instruction =
1077        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1078    instruction->setTid(tid);
1079
1080    instruction->setASID(tid);
1081
1082    instruction->setThreadState(cpu->thread[tid]);
1083
1084    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1085            "[sn:%lli].\n", tid, thisPC.instAddr(),
1086            thisPC.microPC(), seq);
1087
1088    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1089            instruction->staticInst->
1090            disassemble(thisPC.instAddr()));
1091
1092#if TRACING_ON
1093    if (trace) {
1094        instruction->traceData =
1095            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1096                    instruction->staticInst, thisPC, curMacroop);
1097    }
1098#else
1099    instruction->traceData = NULL;
1100#endif
1101
1102    // Add instruction to the CPU's list of instructions.
1103    instruction->setInstListIt(cpu->addInst(instruction));
1104
1105    // Write the instruction to the first slot in the queue
1106    // that heads to decode.
1107    assert(numInst < fetchWidth);
1108    toDecode->insts[toDecode->size++] = instruction;
1109
1110    // Keep track of if we can take an interrupt at this boundary
1111    delayedCommit[tid] = instruction->isDelayedCommit();
1112
1113    return instruction;
1114}
1115
1116template<class Impl>
1117void
1118DefaultFetch<Impl>::fetch(bool &status_change)
1119{
1120    //////////////////////////////////////////
1121    // Start actual fetch
1122    //////////////////////////////////////////
1123    ThreadID tid = getFetchingThread(fetchPolicy);
1124
1125    assert(!cpu->switchedOut());
1126
1127    if (tid == InvalidThreadID) {
1128        // Breaks looping condition in tick()
1129        threadFetched = numFetchingThreads;
1130
1131        if (numThreads == 1) {  // @todo Per-thread stats
1132            profileStall(0);
1133        }
1134
1135        return;
1136    }
1137
1138    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1139
1140    // The current PC.
1141    TheISA::PCState thisPC = pc[tid];
1142
1143    Addr pcOffset = fetchOffset[tid];
1144    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1145
1146    bool inRom = isRomMicroPC(thisPC.microPC());
1147
1148    // If returning from the delay of a cache miss, then update the status
1149    // to running, otherwise do the cache access.  Possibly move this up
1150    // to tick() function.
1151    if (fetchStatus[tid] == IcacheAccessComplete) {
1152        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1153
1154        fetchStatus[tid] = Running;
1155        status_change = true;
1156    } else if (fetchStatus[tid] == Running) {
1157        // Align the fetch PC so its at the start of a cache block.
1158        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1159
1160        // If buffer is no longer valid or fetchAddr has moved to point
1161        // to the next cache block, AND we have no remaining ucode
1162        // from a macro-op, then start fetch from icache.
1163        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1164            && !inRom && !macroop[tid]) {
1165            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1166                    "instruction, starting at PC %s.\n", tid, thisPC);
1167
1168            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1169
1170            if (fetchStatus[tid] == IcacheWaitResponse)
1171                ++icacheStallCycles;
1172            else if (fetchStatus[tid] == ItlbWait)
1173                ++fetchTlbCycles;
1174            else
1175                ++fetchMiscStallCycles;
1176            return;
1177        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1178            // Stall CPU if an interrupt is posted and we're not issuing
1179            // an delayed commit micro-op currently (delayed commit instructions
1180            // are not interruptable by interrupts, only faults)
1181            ++fetchMiscStallCycles;
1182            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1183            return;
1184        }
1185    } else {
1186        if (fetchStatus[tid] == Idle) {
1187            ++fetchIdleCycles;
1188            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1189        }
1190
1191        // Status is Idle, so fetch should do nothing.
1192        return;
1193    }
1194
1195    ++fetchCycles;
1196
1197    TheISA::PCState nextPC = thisPC;
1198
1199    StaticInstPtr staticInst = NULL;
1200    StaticInstPtr curMacroop = macroop[tid];
1201
1202    // If the read of the first instruction was successful, then grab the
1203    // instructions from the rest of the cache line and put them into the
1204    // queue heading to decode.
1205
1206    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1207            "decode.\n", tid);
1208
1209    // Need to keep track of whether or not a predicted branch
1210    // ended this fetch block.
1211    bool predictedBranch = false;
1212
1213    TheISA::MachInst *cacheInsts =
1214        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1215
1216    const unsigned numInsts = cacheBlkSize / instSize;
1217    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1218
1219    // Loop through instruction memory from the cache.
1220    // Keep issuing while fetchWidth is available and branch is not
1221    // predicted taken
1222    while (numInst < fetchWidth && !predictedBranch) {
1223
1224        // We need to process more memory if we aren't going to get a
1225        // StaticInst from the rom, the current macroop, or what's already
1226        // in the decoder.
1227        bool needMem = !inRom && !curMacroop &&
1228            !decoder[tid]->instReady();
1229        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1230        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1231
1232        if (needMem) {
1233            // If buffer is no longer valid or fetchAddr has moved to point
1234            // to the next cache block then start fetch from icache.
1235            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1236                break;
1237
1238            if (blkOffset >= numInsts) {
1239                // We need to process more memory, but we've run out of the
1240                // current block.
1241                break;
1242            }
1243
1244            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1245                // Walk past any annulled delay slot instructions.
1246                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1247                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1248                    blkOffset++;
1249                    fetchAddr += instSize;
1250                }
1251                if (blkOffset >= numInsts)
1252                    break;
1253            }
1254
1255            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1256            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1257
1258            if (decoder[tid]->needMoreBytes()) {
1259                blkOffset++;
1260                fetchAddr += instSize;
1261                pcOffset += instSize;
1262            }
1263        }
1264
1265        // Extract as many instructions and/or microops as we can from
1266        // the memory we've processed so far.
1267        do {
1268            if (!(curMacroop || inRom)) {
1269                if (decoder[tid]->instReady()) {
1270                    staticInst = decoder[tid]->decode(thisPC);
1271
1272                    // Increment stat of fetched instructions.
1273                    ++fetchedInsts;
1274
1275                    if (staticInst->isMacroop()) {
1276                        curMacroop = staticInst;
1277                    } else {
1278                        pcOffset = 0;
1279                    }
1280                } else {
1281                    // We need more bytes for this instruction so blkOffset and
1282                    // pcOffset will be updated
1283                    break;
1284                }
1285            }
1286            // Whether we're moving to a new macroop because we're at the
1287            // end of the current one, or the branch predictor incorrectly
1288            // thinks we are...
1289            bool newMacro = false;
1290            if (curMacroop || inRom) {
1291                if (inRom) {
1292                    staticInst = cpu->microcodeRom.fetchMicroop(
1293                            thisPC.microPC(), curMacroop);
1294                } else {
1295                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1296                }
1297                newMacro |= staticInst->isLastMicroop();
1298            }
1299
1300            DynInstPtr instruction =
1301                buildInst(tid, staticInst, curMacroop,
1302                          thisPC, nextPC, true);
1303
1304            numInst++;
1305
1306#if TRACING_ON
1307            if (DTRACE(O3PipeView)) {
1308                instruction->fetchTick = curTick();
1309            }
1310#endif
1311
1312            nextPC = thisPC;
1313
1314            // If we're branching after this instruction, quite fetching
1315            // from the same block then.
1316            predictedBranch |= thisPC.branching();
1317            predictedBranch |=
1318                lookupAndUpdateNextPC(instruction, nextPC);
1319            if (predictedBranch) {
1320                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1321            }
1322
1323            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1324
1325            // Move to the next instruction, unless we have a branch.
1326            thisPC = nextPC;
1327            inRom = isRomMicroPC(thisPC.microPC());
1328
1329            if (newMacro) {
1330                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1331                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1332                pcOffset = 0;
1333                curMacroop = NULL;
1334            }
1335
1336            if (instruction->isQuiesce()) {
1337                DPRINTF(Fetch,
1338                        "Quiesce instruction encountered, halting fetch!");
1339                fetchStatus[tid] = QuiescePending;
1340                status_change = true;
1341                break;
1342            }
1343        } while ((curMacroop || decoder[tid]->instReady()) &&
1344                 numInst < fetchWidth);
1345    }
1346
1347    if (predictedBranch) {
1348        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1349                "instruction encountered.\n", tid);
1350    } else if (numInst >= fetchWidth) {
1351        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1352                "for this cycle.\n", tid);
1353    } else if (blkOffset >= cacheBlkSize) {
1354        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1355                "block.\n", tid);
1356    }
1357
1358    macroop[tid] = curMacroop;
1359    fetchOffset[tid] = pcOffset;
1360
1361    if (numInst > 0) {
1362        wroteToTimeBuffer = true;
1363    }
1364
1365    pc[tid] = thisPC;
1366
1367    // pipeline a fetch if we're crossing a cache boundary and not in
1368    // a state that would preclude fetching
1369    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1370    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1371    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1372        fetchStatus[tid] != IcacheWaitResponse &&
1373        fetchStatus[tid] != ItlbWait &&
1374        fetchStatus[tid] != IcacheWaitRetry &&
1375        fetchStatus[tid] != QuiescePending &&
1376        !curMacroop;
1377}
1378
1379template<class Impl>
1380void
1381DefaultFetch<Impl>::recvRetry()
1382{
1383    if (retryPkt != NULL) {
1384        assert(cacheBlocked);
1385        assert(retryTid != InvalidThreadID);
1386        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1387
1388        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1389            fetchStatus[retryTid] = IcacheWaitResponse;
1390            retryPkt = NULL;
1391            retryTid = InvalidThreadID;
1392            cacheBlocked = false;
1393        }
1394    } else {
1395        assert(retryTid == InvalidThreadID);
1396        // Access has been squashed since it was sent out.  Just clear
1397        // the cache being blocked.
1398        cacheBlocked = false;
1399    }
1400}
1401
1402///////////////////////////////////////
1403//                                   //
1404//  SMT FETCH POLICY MAINTAINED HERE //
1405//                                   //
1406///////////////////////////////////////
1407template<class Impl>
1408ThreadID
1409DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1410{
1411    if (numThreads > 1) {
1412        switch (fetch_priority) {
1413
1414          case SingleThread:
1415            return 0;
1416
1417          case RoundRobin:
1418            return roundRobin();
1419
1420          case IQ:
1421            return iqCount();
1422
1423          case LSQ:
1424            return lsqCount();
1425
1426          case Branch:
1427            return branchCount();
1428
1429          default:
1430            return InvalidThreadID;
1431        }
1432    } else {
1433        list<ThreadID>::iterator thread = activeThreads->begin();
1434        if (thread == activeThreads->end()) {
1435            return InvalidThreadID;
1436        }
1437
1438        ThreadID tid = *thread;
1439
1440        if (fetchStatus[tid] == Running ||
1441            fetchStatus[tid] == IcacheAccessComplete ||
1442            fetchStatus[tid] == Idle) {
1443            return tid;
1444        } else {
1445            return InvalidThreadID;
1446        }
1447    }
1448}
1449
1450
1451template<class Impl>
1452ThreadID
1453DefaultFetch<Impl>::roundRobin()
1454{
1455    list<ThreadID>::iterator pri_iter = priorityList.begin();
1456    list<ThreadID>::iterator end      = priorityList.end();
1457
1458    ThreadID high_pri;
1459
1460    while (pri_iter != end) {
1461        high_pri = *pri_iter;
1462
1463        assert(high_pri <= numThreads);
1464
1465        if (fetchStatus[high_pri] == Running ||
1466            fetchStatus[high_pri] == IcacheAccessComplete ||
1467            fetchStatus[high_pri] == Idle) {
1468
1469            priorityList.erase(pri_iter);
1470            priorityList.push_back(high_pri);
1471
1472            return high_pri;
1473        }
1474
1475        pri_iter++;
1476    }
1477
1478    return InvalidThreadID;
1479}
1480
1481template<class Impl>
1482ThreadID
1483DefaultFetch<Impl>::iqCount()
1484{
1485    std::priority_queue<unsigned> PQ;
1486    std::map<unsigned, ThreadID> threadMap;
1487
1488    list<ThreadID>::iterator threads = activeThreads->begin();
1489    list<ThreadID>::iterator end = activeThreads->end();
1490
1491    while (threads != end) {
1492        ThreadID tid = *threads++;
1493        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1494
1495        PQ.push(iqCount);
1496        threadMap[iqCount] = tid;
1497    }
1498
1499    while (!PQ.empty()) {
1500        ThreadID high_pri = threadMap[PQ.top()];
1501
1502        if (fetchStatus[high_pri] == Running ||
1503            fetchStatus[high_pri] == IcacheAccessComplete ||
1504            fetchStatus[high_pri] == Idle)
1505            return high_pri;
1506        else
1507            PQ.pop();
1508
1509    }
1510
1511    return InvalidThreadID;
1512}
1513
1514template<class Impl>
1515ThreadID
1516DefaultFetch<Impl>::lsqCount()
1517{
1518    std::priority_queue<unsigned> PQ;
1519    std::map<unsigned, ThreadID> threadMap;
1520
1521    list<ThreadID>::iterator threads = activeThreads->begin();
1522    list<ThreadID>::iterator end = activeThreads->end();
1523
1524    while (threads != end) {
1525        ThreadID tid = *threads++;
1526        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1527
1528        PQ.push(ldstqCount);
1529        threadMap[ldstqCount] = tid;
1530    }
1531
1532    while (!PQ.empty()) {
1533        ThreadID high_pri = threadMap[PQ.top()];
1534
1535        if (fetchStatus[high_pri] == Running ||
1536            fetchStatus[high_pri] == IcacheAccessComplete ||
1537            fetchStatus[high_pri] == Idle)
1538            return high_pri;
1539        else
1540            PQ.pop();
1541    }
1542
1543    return InvalidThreadID;
1544}
1545
1546template<class Impl>
1547ThreadID
1548DefaultFetch<Impl>::branchCount()
1549{
1550#if 0
1551    list<ThreadID>::iterator thread = activeThreads->begin();
1552    assert(thread != activeThreads->end());
1553    ThreadID tid = *thread;
1554#endif
1555
1556    panic("Branch Count Fetch policy unimplemented\n");
1557    return InvalidThreadID;
1558}
1559
1560template<class Impl>
1561void
1562DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1563{
1564    if (!issuePipelinedIfetch[tid]) {
1565        return;
1566    }
1567
1568    // The next PC to access.
1569    TheISA::PCState thisPC = pc[tid];
1570
1571    if (isRomMicroPC(thisPC.microPC())) {
1572        return;
1573    }
1574
1575    Addr pcOffset = fetchOffset[tid];
1576    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1577
1578    // Align the fetch PC so its at the start of a cache block.
1579    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1580
1581    // Unless buffer already got the block, fetch it from icache.
1582    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1583        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1584                "starting at PC %s.\n", tid, thisPC);
1585
1586        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1587    }
1588}
1589
1590template<class Impl>
1591void
1592DefaultFetch<Impl>::profileStall(ThreadID tid) {
1593    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1594
1595    // @todo Per-thread stats
1596
1597    if (stalls[tid].drain) {
1598        ++fetchPendingDrainCycles;
1599        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1600    } else if (activeThreads->empty()) {
1601        ++fetchNoActiveThreadStallCycles;
1602        DPRINTF(Fetch, "Fetch has no active thread!\n");
1603    } else if (fetchStatus[tid] == Blocked) {
1604        ++fetchBlockedCycles;
1605        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1606    } else if (fetchStatus[tid] == Squashing) {
1607        ++fetchSquashCycles;
1608        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1609    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1610        ++icacheStallCycles;
1611        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1612                tid);
1613    } else if (fetchStatus[tid] == ItlbWait) {
1614        ++fetchTlbCycles;
1615        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1616                "finish!\n", tid);
1617    } else if (fetchStatus[tid] == TrapPending) {
1618        ++fetchPendingTrapStallCycles;
1619        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1620                tid);
1621    } else if (fetchStatus[tid] == QuiescePending) {
1622        ++fetchPendingQuiesceStallCycles;
1623        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1624                "instruction!\n", tid);
1625    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1626        ++fetchIcacheWaitRetryStallCycles;
1627        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1628                tid);
1629    } else if (fetchStatus[tid] == NoGoodAddr) {
1630            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1631                    tid);
1632    } else {
1633        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1634             tid, fetchStatus[tid]);
1635    }
1636}
1637
1638#endif//__CPU_O3_FETCH_IMPL_HH__
1639