fetch_impl.hh revision 9822:7f7cbcece75a
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Drain.hh"
62#include "debug/Fetch.hh"
63#include "debug/O3PipeView.hh"
64#include "mem/packet.hh"
65#include "params/DerivO3CPU.hh"
66#include "sim/byteswap.hh"
67#include "sim/core.hh"
68#include "sim/eventq.hh"
69#include "sim/full_system.hh"
70#include "sim/system.hh"
71
72using namespace std;
73
74template<class Impl>
75DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
76    : cpu(_cpu),
77      decodeToFetchDelay(params->decodeToFetchDelay),
78      renameToFetchDelay(params->renameToFetchDelay),
79      iewToFetchDelay(params->iewToFetchDelay),
80      commitToFetchDelay(params->commitToFetchDelay),
81      fetchWidth(params->fetchWidth),
82      retryPkt(NULL),
83      retryTid(InvalidThreadID),
84      cacheBlkSize(cpu->cacheLineSize()),
85      cacheBlkMask(cacheBlkSize - 1),
86      numThreads(params->numThreads),
87      numFetchingThreads(params->smtNumFetchingThreads),
88      finishTranslationEvent(this)
89{
90    if (numThreads > Impl::MaxThreads)
91        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
92              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
93              numThreads, static_cast<int>(Impl::MaxThreads));
94    if (fetchWidth > Impl::MaxWidth)
95        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
96             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
97             fetchWidth, static_cast<int>(Impl::MaxWidth));
98
99    std::string policy = params->smtFetchPolicy;
100
101    // Convert string to lowercase
102    std::transform(policy.begin(), policy.end(), policy.begin(),
103                   (int(*)(int)) tolower);
104
105    // Figure out fetch policy
106    if (policy == "singlethread") {
107        fetchPolicy = SingleThread;
108        if (numThreads > 1)
109            panic("Invalid Fetch Policy for a SMT workload.");
110    } else if (policy == "roundrobin") {
111        fetchPolicy = RoundRobin;
112        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
113    } else if (policy == "branch") {
114        fetchPolicy = Branch;
115        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
116    } else if (policy == "iqcount") {
117        fetchPolicy = IQ;
118        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
119    } else if (policy == "lsqcount") {
120        fetchPolicy = LSQ;
121        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
122    } else {
123        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
124              " RoundRobin,LSQcount,IQcount}\n");
125    }
126
127    // Get the size of an instruction.
128    instSize = sizeof(TheISA::MachInst);
129
130    for (int i = 0; i < Impl::MaxThreads; i++) {
131        decoder[i] = new TheISA::Decoder;
132    }
133
134    branchPred = params->branchPred;
135
136    for (ThreadID tid = 0; tid < numThreads; tid++) {
137        // Create space to store a cache line.
138        cacheData[tid] = new uint8_t[cacheBlkSize];
139        cacheDataPC[tid] = 0;
140        cacheDataValid[tid] = false;
141    }
142}
143
144template <class Impl>
145std::string
146DefaultFetch<Impl>::name() const
147{
148    return cpu->name() + ".fetch";
149}
150
151template <class Impl>
152void
153DefaultFetch<Impl>::regStats()
154{
155    icacheStallCycles
156        .name(name() + ".icacheStallCycles")
157        .desc("Number of cycles fetch is stalled on an Icache miss")
158        .prereq(icacheStallCycles);
159
160    fetchedInsts
161        .name(name() + ".Insts")
162        .desc("Number of instructions fetch has processed")
163        .prereq(fetchedInsts);
164
165    fetchedBranches
166        .name(name() + ".Branches")
167        .desc("Number of branches that fetch encountered")
168        .prereq(fetchedBranches);
169
170    predictedBranches
171        .name(name() + ".predictedBranches")
172        .desc("Number of branches that fetch has predicted taken")
173        .prereq(predictedBranches);
174
175    fetchCycles
176        .name(name() + ".Cycles")
177        .desc("Number of cycles fetch has run and was not squashing or"
178              " blocked")
179        .prereq(fetchCycles);
180
181    fetchSquashCycles
182        .name(name() + ".SquashCycles")
183        .desc("Number of cycles fetch has spent squashing")
184        .prereq(fetchSquashCycles);
185
186    fetchTlbCycles
187        .name(name() + ".TlbCycles")
188        .desc("Number of cycles fetch has spent waiting for tlb")
189        .prereq(fetchTlbCycles);
190
191    fetchIdleCycles
192        .name(name() + ".IdleCycles")
193        .desc("Number of cycles fetch was idle")
194        .prereq(fetchIdleCycles);
195
196    fetchBlockedCycles
197        .name(name() + ".BlockedCycles")
198        .desc("Number of cycles fetch has spent blocked")
199        .prereq(fetchBlockedCycles);
200
201    fetchedCacheLines
202        .name(name() + ".CacheLines")
203        .desc("Number of cache lines fetched")
204        .prereq(fetchedCacheLines);
205
206    fetchMiscStallCycles
207        .name(name() + ".MiscStallCycles")
208        .desc("Number of cycles fetch has spent waiting on interrupts, or "
209              "bad addresses, or out of MSHRs")
210        .prereq(fetchMiscStallCycles);
211
212    fetchPendingDrainCycles
213        .name(name() + ".PendingDrainCycles")
214        .desc("Number of cycles fetch has spent waiting on pipes to drain")
215        .prereq(fetchPendingDrainCycles);
216
217    fetchNoActiveThreadStallCycles
218        .name(name() + ".NoActiveThreadStallCycles")
219        .desc("Number of stall cycles due to no active thread to fetch from")
220        .prereq(fetchNoActiveThreadStallCycles);
221
222    fetchPendingTrapStallCycles
223        .name(name() + ".PendingTrapStallCycles")
224        .desc("Number of stall cycles due to pending traps")
225        .prereq(fetchPendingTrapStallCycles);
226
227    fetchPendingQuiesceStallCycles
228        .name(name() + ".PendingQuiesceStallCycles")
229        .desc("Number of stall cycles due to pending quiesce instructions")
230        .prereq(fetchPendingQuiesceStallCycles);
231
232    fetchIcacheWaitRetryStallCycles
233        .name(name() + ".IcacheWaitRetryStallCycles")
234        .desc("Number of stall cycles due to full MSHR")
235        .prereq(fetchIcacheWaitRetryStallCycles);
236
237    fetchIcacheSquashes
238        .name(name() + ".IcacheSquashes")
239        .desc("Number of outstanding Icache misses that were squashed")
240        .prereq(fetchIcacheSquashes);
241
242    fetchTlbSquashes
243        .name(name() + ".ItlbSquashes")
244        .desc("Number of outstanding ITLB misses that were squashed")
245        .prereq(fetchTlbSquashes);
246
247    fetchNisnDist
248        .init(/* base value */ 0,
249              /* last value */ fetchWidth,
250              /* bucket size */ 1)
251        .name(name() + ".rateDist")
252        .desc("Number of instructions fetched each cycle (Total)")
253        .flags(Stats::pdf);
254
255    idleRate
256        .name(name() + ".idleRate")
257        .desc("Percent of cycles fetch was idle")
258        .prereq(idleRate);
259    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
260
261    branchRate
262        .name(name() + ".branchRate")
263        .desc("Number of branch fetches per cycle")
264        .flags(Stats::total);
265    branchRate = fetchedBranches / cpu->numCycles;
266
267    fetchRate
268        .name(name() + ".rate")
269        .desc("Number of inst fetches per cycle")
270        .flags(Stats::total);
271    fetchRate = fetchedInsts / cpu->numCycles;
272}
273
274template<class Impl>
275void
276DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
277{
278    timeBuffer = time_buffer;
279
280    // Create wires to get information from proper places in time buffer.
281    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
282    fromRename = timeBuffer->getWire(-renameToFetchDelay);
283    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
284    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
285}
286
287template<class Impl>
288void
289DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
290{
291    activeThreads = at_ptr;
292}
293
294template<class Impl>
295void
296DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
297{
298    fetchQueue = fq_ptr;
299
300    // Create wire to write information to proper place in fetch queue.
301    toDecode = fetchQueue->getWire(0);
302}
303
304template<class Impl>
305void
306DefaultFetch<Impl>::startupStage()
307{
308    assert(priorityList.empty());
309    resetStage();
310
311    // Fetch needs to start fetching instructions at the very beginning,
312    // so it must start up in active state.
313    switchToActive();
314}
315
316template<class Impl>
317void
318DefaultFetch<Impl>::resetStage()
319{
320    numInst = 0;
321    interruptPending = false;
322    cacheBlocked = false;
323
324    priorityList.clear();
325
326    // Setup PC and nextPC with initial state.
327    for (ThreadID tid = 0; tid < numThreads; tid++) {
328        fetchStatus[tid] = Running;
329        pc[tid] = cpu->pcState(tid);
330        fetchOffset[tid] = 0;
331        macroop[tid] = NULL;
332
333        delayedCommit[tid] = false;
334        memReq[tid] = NULL;
335
336        stalls[tid].decode = false;
337        stalls[tid].rename = false;
338        stalls[tid].iew = false;
339        stalls[tid].commit = false;
340        stalls[tid].drain = false;
341
342        priorityList.push_back(tid);
343    }
344
345    wroteToTimeBuffer = false;
346    _status = Inactive;
347
348    for (ThreadID tid = 0; tid < numThreads; tid++) {
349        cacheDataPC[tid] = 0;
350        cacheDataValid[tid] = false;
351    }
352}
353
354template<class Impl>
355void
356DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
357{
358    ThreadID tid = pkt->req->threadId();
359
360    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
361    assert(!cpu->switchedOut());
362
363    // Only change the status if it's still waiting on the icache access
364    // to return.
365    if (fetchStatus[tid] != IcacheWaitResponse ||
366        pkt->req != memReq[tid]) {
367        ++fetchIcacheSquashes;
368        delete pkt->req;
369        delete pkt;
370        return;
371    }
372
373    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
374    cacheDataValid[tid] = true;
375
376    // Wake up the CPU (if it went to sleep and was waiting on
377    // this completion event).
378    cpu->wakeCPU();
379
380    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
381            tid);
382
383    switchToActive();
384
385    // Only switch to IcacheAccessComplete if we're not stalled as well.
386    if (checkStall(tid)) {
387        fetchStatus[tid] = Blocked;
388    } else {
389        fetchStatus[tid] = IcacheAccessComplete;
390    }
391
392    // Reset the mem req to NULL.
393    delete pkt->req;
394    delete pkt;
395    memReq[tid] = NULL;
396}
397
398template <class Impl>
399void
400DefaultFetch<Impl>::drainResume()
401{
402    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
403        stalls[i].drain = false;
404}
405
406template <class Impl>
407void
408DefaultFetch<Impl>::drainSanityCheck() const
409{
410    assert(isDrained());
411    assert(retryPkt == NULL);
412    assert(retryTid == InvalidThreadID);
413    assert(cacheBlocked == false);
414    assert(interruptPending == false);
415
416    for (ThreadID i = 0; i < numThreads; ++i) {
417        assert(!memReq[i]);
418        assert(!stalls[i].decode);
419        assert(!stalls[i].rename);
420        assert(!stalls[i].iew);
421        assert(!stalls[i].commit);
422        assert(fetchStatus[i] == Idle || stalls[i].drain);
423    }
424
425    branchPred->drainSanityCheck();
426}
427
428template <class Impl>
429bool
430DefaultFetch<Impl>::isDrained() const
431{
432    /* Make sure that threads are either idle of that the commit stage
433     * has signaled that draining has completed by setting the drain
434     * stall flag. This effectively forces the pipeline to be disabled
435     * until the whole system is drained (simulation may continue to
436     * drain other components).
437     */
438    for (ThreadID i = 0; i < numThreads; ++i) {
439        if (!(fetchStatus[i] == Idle ||
440              (fetchStatus[i] == Blocked && stalls[i].drain)))
441            return false;
442    }
443
444    /* The pipeline might start up again in the middle of the drain
445     * cycle if the finish translation event is scheduled, so make
446     * sure that's not the case.
447     */
448    return !finishTranslationEvent.scheduled();
449}
450
451template <class Impl>
452void
453DefaultFetch<Impl>::takeOverFrom()
454{
455    assert(cpu->getInstPort().isConnected());
456    resetStage();
457
458}
459
460template <class Impl>
461void
462DefaultFetch<Impl>::drainStall(ThreadID tid)
463{
464    assert(cpu->isDraining());
465    assert(!stalls[tid].drain);
466    DPRINTF(Drain, "%i: Thread drained.\n", tid);
467    stalls[tid].drain = true;
468}
469
470template <class Impl>
471void
472DefaultFetch<Impl>::wakeFromQuiesce()
473{
474    DPRINTF(Fetch, "Waking up from quiesce\n");
475    // Hopefully this is safe
476    // @todo: Allow other threads to wake from quiesce.
477    fetchStatus[0] = Running;
478}
479
480template <class Impl>
481inline void
482DefaultFetch<Impl>::switchToActive()
483{
484    if (_status == Inactive) {
485        DPRINTF(Activity, "Activating stage.\n");
486
487        cpu->activateStage(O3CPU::FetchIdx);
488
489        _status = Active;
490    }
491}
492
493template <class Impl>
494inline void
495DefaultFetch<Impl>::switchToInactive()
496{
497    if (_status == Active) {
498        DPRINTF(Activity, "Deactivating stage.\n");
499
500        cpu->deactivateStage(O3CPU::FetchIdx);
501
502        _status = Inactive;
503    }
504}
505
506template <class Impl>
507bool
508DefaultFetch<Impl>::lookupAndUpdateNextPC(
509        DynInstPtr &inst, TheISA::PCState &nextPC)
510{
511    // Do branch prediction check here.
512    // A bit of a misnomer...next_PC is actually the current PC until
513    // this function updates it.
514    bool predict_taken;
515
516    if (!inst->isControl()) {
517        TheISA::advancePC(nextPC, inst->staticInst);
518        inst->setPredTarg(nextPC);
519        inst->setPredTaken(false);
520        return false;
521    }
522
523    ThreadID tid = inst->threadNumber;
524    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
525                                        nextPC, tid);
526
527    if (predict_taken) {
528        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
529                tid, inst->seqNum, nextPC);
530    } else {
531        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
532                tid, inst->seqNum);
533    }
534
535    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
536            tid, inst->seqNum, nextPC);
537    inst->setPredTarg(nextPC);
538    inst->setPredTaken(predict_taken);
539
540    ++fetchedBranches;
541
542    if (predict_taken) {
543        ++predictedBranches;
544    }
545
546    return predict_taken;
547}
548
549template <class Impl>
550bool
551DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
552{
553    Fault fault = NoFault;
554
555    assert(!cpu->switchedOut());
556
557    // @todo: not sure if these should block translation.
558    //AlphaDep
559    if (cacheBlocked) {
560        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
561                tid);
562        return false;
563    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
564        // Hold off fetch from getting new instructions when:
565        // Cache is blocked, or
566        // while an interrupt is pending and we're not in PAL mode, or
567        // fetch is switched out.
568        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
569                tid);
570        return false;
571    }
572
573    // Align the fetch address so it's at the start of a cache block.
574    Addr block_PC = icacheBlockAlignPC(vaddr);
575
576    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
577            tid, block_PC, vaddr);
578
579    // Setup the memReq to do a read of the first instruction's address.
580    // Set the appropriate read size and flags as well.
581    // Build request here.
582    RequestPtr mem_req =
583        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
584                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
585
586    memReq[tid] = mem_req;
587
588    // Initiate translation of the icache block
589    fetchStatus[tid] = ItlbWait;
590    FetchTranslation *trans = new FetchTranslation(this);
591    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
592                              trans, BaseTLB::Execute);
593    return true;
594}
595
596template <class Impl>
597void
598DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
599{
600    ThreadID tid = mem_req->threadId();
601    Addr block_PC = mem_req->getVaddr();
602
603    assert(!cpu->switchedOut());
604
605    // Wake up CPU if it was idle
606    cpu->wakeCPU();
607
608    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
609        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
610        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
611                tid);
612        ++fetchTlbSquashes;
613        delete mem_req;
614        return;
615    }
616
617
618    // If translation was successful, attempt to read the icache block.
619    if (fault == NoFault) {
620        // Check that we're not going off into random memory
621        // If we have, just wait around for commit to squash something and put
622        // us on the right track
623        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
624            warn("Address %#x is outside of physical memory, stopping fetch\n",
625                    mem_req->getPaddr());
626            fetchStatus[tid] = NoGoodAddr;
627            delete mem_req;
628            memReq[tid] = NULL;
629            return;
630        }
631
632        // Build packet here.
633        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
634        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
635
636        cacheDataPC[tid] = block_PC;
637        cacheDataValid[tid] = false;
638        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
639
640        fetchedCacheLines++;
641
642        // Access the cache.
643        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
644            assert(retryPkt == NULL);
645            assert(retryTid == InvalidThreadID);
646            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
647
648            fetchStatus[tid] = IcacheWaitRetry;
649            retryPkt = data_pkt;
650            retryTid = tid;
651            cacheBlocked = true;
652        } else {
653            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
654            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
655                    "response.\n", tid);
656
657            lastIcacheStall[tid] = curTick();
658            fetchStatus[tid] = IcacheWaitResponse;
659        }
660    } else {
661        if (!(numInst < fetchWidth)) {
662            assert(!finishTranslationEvent.scheduled());
663            finishTranslationEvent.setFault(fault);
664            finishTranslationEvent.setReq(mem_req);
665            cpu->schedule(finishTranslationEvent,
666                          cpu->clockEdge(Cycles(1)));
667            return;
668        }
669        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
670                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
671        // Translation faulted, icache request won't be sent.
672        delete mem_req;
673        memReq[tid] = NULL;
674
675        // Send the fault to commit.  This thread will not do anything
676        // until commit handles the fault.  The only other way it can
677        // wake up is if a squash comes along and changes the PC.
678        TheISA::PCState fetchPC = pc[tid];
679
680        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
681        // We will use a nop in ordier to carry the fault.
682        DynInstPtr instruction = buildInst(tid,
683                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
684                NULL, fetchPC, fetchPC, false);
685
686        instruction->setPredTarg(fetchPC);
687        instruction->fault = fault;
688        wroteToTimeBuffer = true;
689
690        DPRINTF(Activity, "Activity this cycle.\n");
691        cpu->activityThisCycle();
692
693        fetchStatus[tid] = TrapPending;
694
695        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
696        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
697                tid, fault->name(), pc[tid]);
698    }
699    _status = updateFetchStatus();
700}
701
702template <class Impl>
703inline void
704DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
705                             const DynInstPtr squashInst, ThreadID tid)
706{
707    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
708            tid, newPC);
709
710    pc[tid] = newPC;
711    fetchOffset[tid] = 0;
712    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
713        macroop[tid] = squashInst->macroop;
714    else
715        macroop[tid] = NULL;
716    decoder[tid]->reset();
717
718    // Clear the icache miss if it's outstanding.
719    if (fetchStatus[tid] == IcacheWaitResponse) {
720        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
721                tid);
722        memReq[tid] = NULL;
723    } else if (fetchStatus[tid] == ItlbWait) {
724        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
725                tid);
726        memReq[tid] = NULL;
727    }
728
729    // Get rid of the retrying packet if it was from this thread.
730    if (retryTid == tid) {
731        assert(cacheBlocked);
732        if (retryPkt) {
733            delete retryPkt->req;
734            delete retryPkt;
735        }
736        retryPkt = NULL;
737        retryTid = InvalidThreadID;
738    }
739
740    fetchStatus[tid] = Squashing;
741
742    // microops are being squashed, it is not known wheather the
743    // youngest non-squashed microop was  marked delayed commit
744    // or not. Setting the flag to true ensures that the
745    // interrupts are not handled when they cannot be, though
746    // some opportunities to handle interrupts may be missed.
747    delayedCommit[tid] = true;
748
749    ++fetchSquashCycles;
750}
751
752template<class Impl>
753void
754DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
755                                     const DynInstPtr squashInst,
756                                     const InstSeqNum seq_num, ThreadID tid)
757{
758    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
759
760    doSquash(newPC, squashInst, tid);
761
762    // Tell the CPU to remove any instructions that are in flight between
763    // fetch and decode.
764    cpu->removeInstsUntil(seq_num, tid);
765}
766
767template<class Impl>
768bool
769DefaultFetch<Impl>::checkStall(ThreadID tid) const
770{
771    bool ret_val = false;
772
773    if (cpu->contextSwitch) {
774        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
775        ret_val = true;
776    } else if (stalls[tid].drain) {
777        assert(cpu->isDraining());
778        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
779        ret_val = true;
780    } else if (stalls[tid].decode) {
781        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
782        ret_val = true;
783    } else if (stalls[tid].rename) {
784        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
785        ret_val = true;
786    } else if (stalls[tid].iew) {
787        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
788        ret_val = true;
789    } else if (stalls[tid].commit) {
790        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
791        ret_val = true;
792    }
793
794    return ret_val;
795}
796
797template<class Impl>
798typename DefaultFetch<Impl>::FetchStatus
799DefaultFetch<Impl>::updateFetchStatus()
800{
801    //Check Running
802    list<ThreadID>::iterator threads = activeThreads->begin();
803    list<ThreadID>::iterator end = activeThreads->end();
804
805    while (threads != end) {
806        ThreadID tid = *threads++;
807
808        if (fetchStatus[tid] == Running ||
809            fetchStatus[tid] == Squashing ||
810            fetchStatus[tid] == IcacheAccessComplete) {
811
812            if (_status == Inactive) {
813                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
814
815                if (fetchStatus[tid] == IcacheAccessComplete) {
816                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
817                            "completion\n",tid);
818                }
819
820                cpu->activateStage(O3CPU::FetchIdx);
821            }
822
823            return Active;
824        }
825    }
826
827    // Stage is switching from active to inactive, notify CPU of it.
828    if (_status == Active) {
829        DPRINTF(Activity, "Deactivating stage.\n");
830
831        cpu->deactivateStage(O3CPU::FetchIdx);
832    }
833
834    return Inactive;
835}
836
837template <class Impl>
838void
839DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
840                           const InstSeqNum seq_num, DynInstPtr squashInst,
841                           ThreadID tid)
842{
843    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
844
845    doSquash(newPC, squashInst, tid);
846
847    // Tell the CPU to remove any instructions that are not in the ROB.
848    cpu->removeInstsNotInROB(tid);
849}
850
851template <class Impl>
852void
853DefaultFetch<Impl>::tick()
854{
855    list<ThreadID>::iterator threads = activeThreads->begin();
856    list<ThreadID>::iterator end = activeThreads->end();
857    bool status_change = false;
858
859    wroteToTimeBuffer = false;
860
861    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
862        issuePipelinedIfetch[i] = false;
863    }
864
865    while (threads != end) {
866        ThreadID tid = *threads++;
867
868        // Check the signals for each thread to determine the proper status
869        // for each thread.
870        bool updated_status = checkSignalsAndUpdate(tid);
871        status_change =  status_change || updated_status;
872    }
873
874    DPRINTF(Fetch, "Running stage.\n");
875
876    if (FullSystem) {
877        if (fromCommit->commitInfo[0].interruptPending) {
878            interruptPending = true;
879        }
880
881        if (fromCommit->commitInfo[0].clearInterrupt) {
882            interruptPending = false;
883        }
884    }
885
886    for (threadFetched = 0; threadFetched < numFetchingThreads;
887         threadFetched++) {
888        // Fetch each of the actively fetching threads.
889        fetch(status_change);
890    }
891
892    // Record number of instructions fetched this cycle for distribution.
893    fetchNisnDist.sample(numInst);
894
895    if (status_change) {
896        // Change the fetch stage status if there was a status change.
897        _status = updateFetchStatus();
898    }
899
900    // If there was activity this cycle, inform the CPU of it.
901    if (wroteToTimeBuffer || cpu->contextSwitch) {
902        DPRINTF(Activity, "Activity this cycle.\n");
903
904        cpu->activityThisCycle();
905    }
906
907    // Issue the next I-cache request if possible.
908    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
909        if (issuePipelinedIfetch[i]) {
910            pipelineIcacheAccesses(i);
911        }
912    }
913
914    // Reset the number of the instruction we've fetched.
915    numInst = 0;
916}
917
918template <class Impl>
919bool
920DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
921{
922    // Update the per thread stall statuses.
923    if (fromDecode->decodeBlock[tid]) {
924        stalls[tid].decode = true;
925    }
926
927    if (fromDecode->decodeUnblock[tid]) {
928        assert(stalls[tid].decode);
929        assert(!fromDecode->decodeBlock[tid]);
930        stalls[tid].decode = false;
931    }
932
933    if (fromRename->renameBlock[tid]) {
934        stalls[tid].rename = true;
935    }
936
937    if (fromRename->renameUnblock[tid]) {
938        assert(stalls[tid].rename);
939        assert(!fromRename->renameBlock[tid]);
940        stalls[tid].rename = false;
941    }
942
943    if (fromIEW->iewBlock[tid]) {
944        stalls[tid].iew = true;
945    }
946
947    if (fromIEW->iewUnblock[tid]) {
948        assert(stalls[tid].iew);
949        assert(!fromIEW->iewBlock[tid]);
950        stalls[tid].iew = false;
951    }
952
953    if (fromCommit->commitBlock[tid]) {
954        stalls[tid].commit = true;
955    }
956
957    if (fromCommit->commitUnblock[tid]) {
958        assert(stalls[tid].commit);
959        assert(!fromCommit->commitBlock[tid]);
960        stalls[tid].commit = false;
961    }
962
963    // Check squash signals from commit.
964    if (fromCommit->commitInfo[tid].squash) {
965
966        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
967                "from commit.\n",tid);
968        // In any case, squash.
969        squash(fromCommit->commitInfo[tid].pc,
970               fromCommit->commitInfo[tid].doneSeqNum,
971               fromCommit->commitInfo[tid].squashInst, tid);
972
973        // If it was a branch mispredict on a control instruction, update the
974        // branch predictor with that instruction, otherwise just kill the
975        // invalid state we generated in after sequence number
976        if (fromCommit->commitInfo[tid].mispredictInst &&
977            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
978            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
979                              fromCommit->commitInfo[tid].pc,
980                              fromCommit->commitInfo[tid].branchTaken,
981                              tid);
982        } else {
983            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
984                              tid);
985        }
986
987        return true;
988    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
989        // Update the branch predictor if it wasn't a squashed instruction
990        // that was broadcasted.
991        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
992    }
993
994    // Check ROB squash signals from commit.
995    if (fromCommit->commitInfo[tid].robSquashing) {
996        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
997
998        // Continue to squash.
999        fetchStatus[tid] = Squashing;
1000
1001        return true;
1002    }
1003
1004    // Check squash signals from decode.
1005    if (fromDecode->decodeInfo[tid].squash) {
1006        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1007                "from decode.\n",tid);
1008
1009        // Update the branch predictor.
1010        if (fromDecode->decodeInfo[tid].branchMispredict) {
1011            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1012                              fromDecode->decodeInfo[tid].nextPC,
1013                              fromDecode->decodeInfo[tid].branchTaken,
1014                              tid);
1015        } else {
1016            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1017                              tid);
1018        }
1019
1020        if (fetchStatus[tid] != Squashing) {
1021
1022            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1023                fromDecode->decodeInfo[tid].nextPC);
1024            // Squash unless we're already squashing
1025            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1026                             fromDecode->decodeInfo[tid].squashInst,
1027                             fromDecode->decodeInfo[tid].doneSeqNum,
1028                             tid);
1029
1030            return true;
1031        }
1032    }
1033
1034    if (checkStall(tid) &&
1035        fetchStatus[tid] != IcacheWaitResponse &&
1036        fetchStatus[tid] != IcacheWaitRetry &&
1037        fetchStatus[tid] != ItlbWait &&
1038        fetchStatus[tid] != QuiescePending) {
1039        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1040
1041        fetchStatus[tid] = Blocked;
1042
1043        return true;
1044    }
1045
1046    if (fetchStatus[tid] == Blocked ||
1047        fetchStatus[tid] == Squashing) {
1048        // Switch status to running if fetch isn't being told to block or
1049        // squash this cycle.
1050        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1051                tid);
1052
1053        fetchStatus[tid] = Running;
1054
1055        return true;
1056    }
1057
1058    // If we've reached this point, we have not gotten any signals that
1059    // cause fetch to change its status.  Fetch remains the same as before.
1060    return false;
1061}
1062
1063template<class Impl>
1064typename Impl::DynInstPtr
1065DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1066                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1067                              TheISA::PCState nextPC, bool trace)
1068{
1069    // Get a sequence number.
1070    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1071
1072    // Create a new DynInst from the instruction fetched.
1073    DynInstPtr instruction =
1074        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1075    instruction->setTid(tid);
1076
1077    instruction->setASID(tid);
1078
1079    instruction->setThreadState(cpu->thread[tid]);
1080
1081    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1082            "[sn:%lli].\n", tid, thisPC.instAddr(),
1083            thisPC.microPC(), seq);
1084
1085    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1086            instruction->staticInst->
1087            disassemble(thisPC.instAddr()));
1088
1089#if TRACING_ON
1090    if (trace) {
1091        instruction->traceData =
1092            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1093                    instruction->staticInst, thisPC, curMacroop);
1094    }
1095#else
1096    instruction->traceData = NULL;
1097#endif
1098
1099    // Add instruction to the CPU's list of instructions.
1100    instruction->setInstListIt(cpu->addInst(instruction));
1101
1102    // Write the instruction to the first slot in the queue
1103    // that heads to decode.
1104    assert(numInst < fetchWidth);
1105    toDecode->insts[toDecode->size++] = instruction;
1106
1107    // Keep track of if we can take an interrupt at this boundary
1108    delayedCommit[tid] = instruction->isDelayedCommit();
1109
1110    return instruction;
1111}
1112
1113template<class Impl>
1114void
1115DefaultFetch<Impl>::fetch(bool &status_change)
1116{
1117    //////////////////////////////////////////
1118    // Start actual fetch
1119    //////////////////////////////////////////
1120    ThreadID tid = getFetchingThread(fetchPolicy);
1121
1122    assert(!cpu->switchedOut());
1123
1124    if (tid == InvalidThreadID) {
1125        // Breaks looping condition in tick()
1126        threadFetched = numFetchingThreads;
1127
1128        if (numThreads == 1) {  // @todo Per-thread stats
1129            profileStall(0);
1130        }
1131
1132        return;
1133    }
1134
1135    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1136
1137    // The current PC.
1138    TheISA::PCState thisPC = pc[tid];
1139
1140    Addr pcOffset = fetchOffset[tid];
1141    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1142
1143    bool inRom = isRomMicroPC(thisPC.microPC());
1144
1145    // If returning from the delay of a cache miss, then update the status
1146    // to running, otherwise do the cache access.  Possibly move this up
1147    // to tick() function.
1148    if (fetchStatus[tid] == IcacheAccessComplete) {
1149        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1150
1151        fetchStatus[tid] = Running;
1152        status_change = true;
1153    } else if (fetchStatus[tid] == Running) {
1154        // Align the fetch PC so its at the start of a cache block.
1155        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1156
1157        // If buffer is no longer valid or fetchAddr has moved to point
1158        // to the next cache block, AND we have no remaining ucode
1159        // from a macro-op, then start fetch from icache.
1160        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1161            && !inRom && !macroop[tid]) {
1162            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1163                    "instruction, starting at PC %s.\n", tid, thisPC);
1164
1165            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1166
1167            if (fetchStatus[tid] == IcacheWaitResponse)
1168                ++icacheStallCycles;
1169            else if (fetchStatus[tid] == ItlbWait)
1170                ++fetchTlbCycles;
1171            else
1172                ++fetchMiscStallCycles;
1173            return;
1174        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1175            // Stall CPU if an interrupt is posted and we're not issuing
1176            // an delayed commit micro-op currently (delayed commit instructions
1177            // are not interruptable by interrupts, only faults)
1178            ++fetchMiscStallCycles;
1179            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1180            return;
1181        }
1182    } else {
1183        if (fetchStatus[tid] == Idle) {
1184            ++fetchIdleCycles;
1185            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1186        }
1187
1188        // Status is Idle, so fetch should do nothing.
1189        return;
1190    }
1191
1192    ++fetchCycles;
1193
1194    TheISA::PCState nextPC = thisPC;
1195
1196    StaticInstPtr staticInst = NULL;
1197    StaticInstPtr curMacroop = macroop[tid];
1198
1199    // If the read of the first instruction was successful, then grab the
1200    // instructions from the rest of the cache line and put them into the
1201    // queue heading to decode.
1202
1203    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1204            "decode.\n", tid);
1205
1206    // Need to keep track of whether or not a predicted branch
1207    // ended this fetch block.
1208    bool predictedBranch = false;
1209
1210    TheISA::MachInst *cacheInsts =
1211        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1212
1213    const unsigned numInsts = cacheBlkSize / instSize;
1214    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1215
1216    // Loop through instruction memory from the cache.
1217    // Keep issuing while fetchWidth is available and branch is not
1218    // predicted taken
1219    while (numInst < fetchWidth && !predictedBranch) {
1220
1221        // We need to process more memory if we aren't going to get a
1222        // StaticInst from the rom, the current macroop, or what's already
1223        // in the decoder.
1224        bool needMem = !inRom && !curMacroop &&
1225            !decoder[tid]->instReady();
1226        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1227        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1228
1229        if (needMem) {
1230            // If buffer is no longer valid or fetchAddr has moved to point
1231            // to the next cache block then start fetch from icache.
1232            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1233                break;
1234
1235            if (blkOffset >= numInsts) {
1236                // We need to process more memory, but we've run out of the
1237                // current block.
1238                break;
1239            }
1240
1241            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1242                // Walk past any annulled delay slot instructions.
1243                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1244                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1245                    blkOffset++;
1246                    fetchAddr += instSize;
1247                }
1248                if (blkOffset >= numInsts)
1249                    break;
1250            }
1251
1252            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1253            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1254
1255            if (decoder[tid]->needMoreBytes()) {
1256                blkOffset++;
1257                fetchAddr += instSize;
1258                pcOffset += instSize;
1259            }
1260        }
1261
1262        // Extract as many instructions and/or microops as we can from
1263        // the memory we've processed so far.
1264        do {
1265            if (!(curMacroop || inRom)) {
1266                if (decoder[tid]->instReady()) {
1267                    staticInst = decoder[tid]->decode(thisPC);
1268
1269                    // Increment stat of fetched instructions.
1270                    ++fetchedInsts;
1271
1272                    if (staticInst->isMacroop()) {
1273                        curMacroop = staticInst;
1274                    } else {
1275                        pcOffset = 0;
1276                    }
1277                } else {
1278                    // We need more bytes for this instruction so blkOffset and
1279                    // pcOffset will be updated
1280                    break;
1281                }
1282            }
1283            // Whether we're moving to a new macroop because we're at the
1284            // end of the current one, or the branch predictor incorrectly
1285            // thinks we are...
1286            bool newMacro = false;
1287            if (curMacroop || inRom) {
1288                if (inRom) {
1289                    staticInst = cpu->microcodeRom.fetchMicroop(
1290                            thisPC.microPC(), curMacroop);
1291                } else {
1292                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1293                }
1294                newMacro |= staticInst->isLastMicroop();
1295            }
1296
1297            DynInstPtr instruction =
1298                buildInst(tid, staticInst, curMacroop,
1299                          thisPC, nextPC, true);
1300
1301            numInst++;
1302
1303#if TRACING_ON
1304            if (DTRACE(O3PipeView)) {
1305                instruction->fetchTick = curTick();
1306            }
1307#endif
1308
1309            nextPC = thisPC;
1310
1311            // If we're branching after this instruction, quite fetching
1312            // from the same block then.
1313            predictedBranch |= thisPC.branching();
1314            predictedBranch |=
1315                lookupAndUpdateNextPC(instruction, nextPC);
1316            if (predictedBranch) {
1317                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1318            }
1319
1320            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1321
1322            // Move to the next instruction, unless we have a branch.
1323            thisPC = nextPC;
1324            inRom = isRomMicroPC(thisPC.microPC());
1325
1326            if (newMacro) {
1327                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1328                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1329                pcOffset = 0;
1330                curMacroop = NULL;
1331            }
1332
1333            if (instruction->isQuiesce()) {
1334                DPRINTF(Fetch,
1335                        "Quiesce instruction encountered, halting fetch!");
1336                fetchStatus[tid] = QuiescePending;
1337                status_change = true;
1338                break;
1339            }
1340        } while ((curMacroop || decoder[tid]->instReady()) &&
1341                 numInst < fetchWidth);
1342    }
1343
1344    if (predictedBranch) {
1345        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1346                "instruction encountered.\n", tid);
1347    } else if (numInst >= fetchWidth) {
1348        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1349                "for this cycle.\n", tid);
1350    } else if (blkOffset >= cacheBlkSize) {
1351        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1352                "block.\n", tid);
1353    }
1354
1355    macroop[tid] = curMacroop;
1356    fetchOffset[tid] = pcOffset;
1357
1358    if (numInst > 0) {
1359        wroteToTimeBuffer = true;
1360    }
1361
1362    pc[tid] = thisPC;
1363
1364    // pipeline a fetch if we're crossing a cache boundary and not in
1365    // a state that would preclude fetching
1366    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1367    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1368    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1369        fetchStatus[tid] != IcacheWaitResponse &&
1370        fetchStatus[tid] != ItlbWait &&
1371        fetchStatus[tid] != IcacheWaitRetry &&
1372        fetchStatus[tid] != QuiescePending &&
1373        !curMacroop;
1374}
1375
1376template<class Impl>
1377void
1378DefaultFetch<Impl>::recvRetry()
1379{
1380    if (retryPkt != NULL) {
1381        assert(cacheBlocked);
1382        assert(retryTid != InvalidThreadID);
1383        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1384
1385        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1386            fetchStatus[retryTid] = IcacheWaitResponse;
1387            retryPkt = NULL;
1388            retryTid = InvalidThreadID;
1389            cacheBlocked = false;
1390        }
1391    } else {
1392        assert(retryTid == InvalidThreadID);
1393        // Access has been squashed since it was sent out.  Just clear
1394        // the cache being blocked.
1395        cacheBlocked = false;
1396    }
1397}
1398
1399///////////////////////////////////////
1400//                                   //
1401//  SMT FETCH POLICY MAINTAINED HERE //
1402//                                   //
1403///////////////////////////////////////
1404template<class Impl>
1405ThreadID
1406DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1407{
1408    if (numThreads > 1) {
1409        switch (fetch_priority) {
1410
1411          case SingleThread:
1412            return 0;
1413
1414          case RoundRobin:
1415            return roundRobin();
1416
1417          case IQ:
1418            return iqCount();
1419
1420          case LSQ:
1421            return lsqCount();
1422
1423          case Branch:
1424            return branchCount();
1425
1426          default:
1427            return InvalidThreadID;
1428        }
1429    } else {
1430        list<ThreadID>::iterator thread = activeThreads->begin();
1431        if (thread == activeThreads->end()) {
1432            return InvalidThreadID;
1433        }
1434
1435        ThreadID tid = *thread;
1436
1437        if (fetchStatus[tid] == Running ||
1438            fetchStatus[tid] == IcacheAccessComplete ||
1439            fetchStatus[tid] == Idle) {
1440            return tid;
1441        } else {
1442            return InvalidThreadID;
1443        }
1444    }
1445}
1446
1447
1448template<class Impl>
1449ThreadID
1450DefaultFetch<Impl>::roundRobin()
1451{
1452    list<ThreadID>::iterator pri_iter = priorityList.begin();
1453    list<ThreadID>::iterator end      = priorityList.end();
1454
1455    ThreadID high_pri;
1456
1457    while (pri_iter != end) {
1458        high_pri = *pri_iter;
1459
1460        assert(high_pri <= numThreads);
1461
1462        if (fetchStatus[high_pri] == Running ||
1463            fetchStatus[high_pri] == IcacheAccessComplete ||
1464            fetchStatus[high_pri] == Idle) {
1465
1466            priorityList.erase(pri_iter);
1467            priorityList.push_back(high_pri);
1468
1469            return high_pri;
1470        }
1471
1472        pri_iter++;
1473    }
1474
1475    return InvalidThreadID;
1476}
1477
1478template<class Impl>
1479ThreadID
1480DefaultFetch<Impl>::iqCount()
1481{
1482    std::priority_queue<unsigned> PQ;
1483    std::map<unsigned, ThreadID> threadMap;
1484
1485    list<ThreadID>::iterator threads = activeThreads->begin();
1486    list<ThreadID>::iterator end = activeThreads->end();
1487
1488    while (threads != end) {
1489        ThreadID tid = *threads++;
1490        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1491
1492        PQ.push(iqCount);
1493        threadMap[iqCount] = tid;
1494    }
1495
1496    while (!PQ.empty()) {
1497        ThreadID high_pri = threadMap[PQ.top()];
1498
1499        if (fetchStatus[high_pri] == Running ||
1500            fetchStatus[high_pri] == IcacheAccessComplete ||
1501            fetchStatus[high_pri] == Idle)
1502            return high_pri;
1503        else
1504            PQ.pop();
1505
1506    }
1507
1508    return InvalidThreadID;
1509}
1510
1511template<class Impl>
1512ThreadID
1513DefaultFetch<Impl>::lsqCount()
1514{
1515    std::priority_queue<unsigned> PQ;
1516    std::map<unsigned, ThreadID> threadMap;
1517
1518    list<ThreadID>::iterator threads = activeThreads->begin();
1519    list<ThreadID>::iterator end = activeThreads->end();
1520
1521    while (threads != end) {
1522        ThreadID tid = *threads++;
1523        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1524
1525        PQ.push(ldstqCount);
1526        threadMap[ldstqCount] = tid;
1527    }
1528
1529    while (!PQ.empty()) {
1530        ThreadID high_pri = threadMap[PQ.top()];
1531
1532        if (fetchStatus[high_pri] == Running ||
1533            fetchStatus[high_pri] == IcacheAccessComplete ||
1534            fetchStatus[high_pri] == Idle)
1535            return high_pri;
1536        else
1537            PQ.pop();
1538    }
1539
1540    return InvalidThreadID;
1541}
1542
1543template<class Impl>
1544ThreadID
1545DefaultFetch<Impl>::branchCount()
1546{
1547#if 0
1548    list<ThreadID>::iterator thread = activeThreads->begin();
1549    assert(thread != activeThreads->end());
1550    ThreadID tid = *thread;
1551#endif
1552
1553    panic("Branch Count Fetch policy unimplemented\n");
1554    return InvalidThreadID;
1555}
1556
1557template<class Impl>
1558void
1559DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1560{
1561    if (!issuePipelinedIfetch[tid]) {
1562        return;
1563    }
1564
1565    // The next PC to access.
1566    TheISA::PCState thisPC = pc[tid];
1567
1568    if (isRomMicroPC(thisPC.microPC())) {
1569        return;
1570    }
1571
1572    Addr pcOffset = fetchOffset[tid];
1573    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1574
1575    // Align the fetch PC so its at the start of a cache block.
1576    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1577
1578    // Unless buffer already got the block, fetch it from icache.
1579    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1580        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1581                "starting at PC %s.\n", tid, thisPC);
1582
1583        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1584    }
1585}
1586
1587template<class Impl>
1588void
1589DefaultFetch<Impl>::profileStall(ThreadID tid) {
1590    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1591
1592    // @todo Per-thread stats
1593
1594    if (stalls[tid].drain) {
1595        ++fetchPendingDrainCycles;
1596        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1597    } else if (activeThreads->empty()) {
1598        ++fetchNoActiveThreadStallCycles;
1599        DPRINTF(Fetch, "Fetch has no active thread!\n");
1600    } else if (fetchStatus[tid] == Blocked) {
1601        ++fetchBlockedCycles;
1602        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1603    } else if (fetchStatus[tid] == Squashing) {
1604        ++fetchSquashCycles;
1605        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1606    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1607        ++icacheStallCycles;
1608        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1609                tid);
1610    } else if (fetchStatus[tid] == ItlbWait) {
1611        ++fetchTlbCycles;
1612        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1613                "finish!\n", tid);
1614    } else if (fetchStatus[tid] == TrapPending) {
1615        ++fetchPendingTrapStallCycles;
1616        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1617                tid);
1618    } else if (fetchStatus[tid] == QuiescePending) {
1619        ++fetchPendingQuiesceStallCycles;
1620        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1621                "instruction!\n", tid);
1622    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1623        ++fetchIcacheWaitRetryStallCycles;
1624        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1625                tid);
1626    } else if (fetchStatus[tid] == NoGoodAddr) {
1627            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1628                    tid);
1629    } else {
1630        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1631             tid, fetchStatus[tid]);
1632    }
1633}
1634