fetch_impl.hh revision 9574:5bb4346cbfa7
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Drain.hh"
62#include "debug/Fetch.hh"
63#include "debug/O3PipeView.hh"
64#include "mem/packet.hh"
65#include "params/DerivO3CPU.hh"
66#include "sim/byteswap.hh"
67#include "sim/core.hh"
68#include "sim/eventq.hh"
69#include "sim/full_system.hh"
70#include "sim/system.hh"
71
72using namespace std;
73
74template<class Impl>
75DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
76    : cpu(_cpu),
77      decodeToFetchDelay(params->decodeToFetchDelay),
78      renameToFetchDelay(params->renameToFetchDelay),
79      iewToFetchDelay(params->iewToFetchDelay),
80      commitToFetchDelay(params->commitToFetchDelay),
81      fetchWidth(params->fetchWidth),
82      retryPkt(NULL),
83      retryTid(InvalidThreadID),
84      numThreads(params->numThreads),
85      numFetchingThreads(params->smtNumFetchingThreads),
86      finishTranslationEvent(this)
87{
88    if (numThreads > Impl::MaxThreads)
89        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
90              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
91              numThreads, static_cast<int>(Impl::MaxThreads));
92    if (fetchWidth > Impl::MaxWidth)
93        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
94             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
95             fetchWidth, static_cast<int>(Impl::MaxWidth));
96
97    std::string policy = params->smtFetchPolicy;
98
99    // Convert string to lowercase
100    std::transform(policy.begin(), policy.end(), policy.begin(),
101                   (int(*)(int)) tolower);
102
103    // Figure out fetch policy
104    if (policy == "singlethread") {
105        fetchPolicy = SingleThread;
106        if (numThreads > 1)
107            panic("Invalid Fetch Policy for a SMT workload.");
108    } else if (policy == "roundrobin") {
109        fetchPolicy = RoundRobin;
110        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
111    } else if (policy == "branch") {
112        fetchPolicy = Branch;
113        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
114    } else if (policy == "iqcount") {
115        fetchPolicy = IQ;
116        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
117    } else if (policy == "lsqcount") {
118        fetchPolicy = LSQ;
119        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
120    } else {
121        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
122              " RoundRobin,LSQcount,IQcount}\n");
123    }
124
125    // Get the size of an instruction.
126    instSize = sizeof(TheISA::MachInst);
127
128    for (int i = 0; i < Impl::MaxThreads; i++) {
129        cacheData[i] = NULL;
130        decoder[i] = new TheISA::Decoder;
131    }
132
133    branchPred = params->branchPred;
134}
135
136template <class Impl>
137std::string
138DefaultFetch<Impl>::name() const
139{
140    return cpu->name() + ".fetch";
141}
142
143template <class Impl>
144void
145DefaultFetch<Impl>::regStats()
146{
147    icacheStallCycles
148        .name(name() + ".icacheStallCycles")
149        .desc("Number of cycles fetch is stalled on an Icache miss")
150        .prereq(icacheStallCycles);
151
152    fetchedInsts
153        .name(name() + ".Insts")
154        .desc("Number of instructions fetch has processed")
155        .prereq(fetchedInsts);
156
157    fetchedBranches
158        .name(name() + ".Branches")
159        .desc("Number of branches that fetch encountered")
160        .prereq(fetchedBranches);
161
162    predictedBranches
163        .name(name() + ".predictedBranches")
164        .desc("Number of branches that fetch has predicted taken")
165        .prereq(predictedBranches);
166
167    fetchCycles
168        .name(name() + ".Cycles")
169        .desc("Number of cycles fetch has run and was not squashing or"
170              " blocked")
171        .prereq(fetchCycles);
172
173    fetchSquashCycles
174        .name(name() + ".SquashCycles")
175        .desc("Number of cycles fetch has spent squashing")
176        .prereq(fetchSquashCycles);
177
178    fetchTlbCycles
179        .name(name() + ".TlbCycles")
180        .desc("Number of cycles fetch has spent waiting for tlb")
181        .prereq(fetchTlbCycles);
182
183    fetchIdleCycles
184        .name(name() + ".IdleCycles")
185        .desc("Number of cycles fetch was idle")
186        .prereq(fetchIdleCycles);
187
188    fetchBlockedCycles
189        .name(name() + ".BlockedCycles")
190        .desc("Number of cycles fetch has spent blocked")
191        .prereq(fetchBlockedCycles);
192
193    fetchedCacheLines
194        .name(name() + ".CacheLines")
195        .desc("Number of cache lines fetched")
196        .prereq(fetchedCacheLines);
197
198    fetchMiscStallCycles
199        .name(name() + ".MiscStallCycles")
200        .desc("Number of cycles fetch has spent waiting on interrupts, or "
201              "bad addresses, or out of MSHRs")
202        .prereq(fetchMiscStallCycles);
203
204    fetchPendingDrainCycles
205        .name(name() + ".PendingDrainCycles")
206        .desc("Number of cycles fetch has spent waiting on pipes to drain")
207        .prereq(fetchPendingDrainCycles);
208
209    fetchNoActiveThreadStallCycles
210        .name(name() + ".NoActiveThreadStallCycles")
211        .desc("Number of stall cycles due to no active thread to fetch from")
212        .prereq(fetchNoActiveThreadStallCycles);
213
214    fetchPendingTrapStallCycles
215        .name(name() + ".PendingTrapStallCycles")
216        .desc("Number of stall cycles due to pending traps")
217        .prereq(fetchPendingTrapStallCycles);
218
219    fetchPendingQuiesceStallCycles
220        .name(name() + ".PendingQuiesceStallCycles")
221        .desc("Number of stall cycles due to pending quiesce instructions")
222        .prereq(fetchPendingQuiesceStallCycles);
223
224    fetchIcacheWaitRetryStallCycles
225        .name(name() + ".IcacheWaitRetryStallCycles")
226        .desc("Number of stall cycles due to full MSHR")
227        .prereq(fetchIcacheWaitRetryStallCycles);
228
229    fetchIcacheSquashes
230        .name(name() + ".IcacheSquashes")
231        .desc("Number of outstanding Icache misses that were squashed")
232        .prereq(fetchIcacheSquashes);
233
234    fetchTlbSquashes
235        .name(name() + ".ItlbSquashes")
236        .desc("Number of outstanding ITLB misses that were squashed")
237        .prereq(fetchTlbSquashes);
238
239    fetchNisnDist
240        .init(/* base value */ 0,
241              /* last value */ fetchWidth,
242              /* bucket size */ 1)
243        .name(name() + ".rateDist")
244        .desc("Number of instructions fetched each cycle (Total)")
245        .flags(Stats::pdf);
246
247    idleRate
248        .name(name() + ".idleRate")
249        .desc("Percent of cycles fetch was idle")
250        .prereq(idleRate);
251    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
252
253    branchRate
254        .name(name() + ".branchRate")
255        .desc("Number of branch fetches per cycle")
256        .flags(Stats::total);
257    branchRate = fetchedBranches / cpu->numCycles;
258
259    fetchRate
260        .name(name() + ".rate")
261        .desc("Number of inst fetches per cycle")
262        .flags(Stats::total);
263    fetchRate = fetchedInsts / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
269{
270    timeBuffer = time_buffer;
271
272    // Create wires to get information from proper places in time buffer.
273    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
274    fromRename = timeBuffer->getWire(-renameToFetchDelay);
275    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
276    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
277}
278
279template<class Impl>
280void
281DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
282{
283    activeThreads = at_ptr;
284}
285
286template<class Impl>
287void
288DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
289{
290    fetchQueue = fq_ptr;
291
292    // Create wire to write information to proper place in fetch queue.
293    toDecode = fetchQueue->getWire(0);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::startupStage()
299{
300    assert(priorityList.empty());
301    resetStage();
302
303    // Fetch needs to start fetching instructions at the very beginning,
304    // so it must start up in active state.
305    switchToActive();
306}
307
308template<class Impl>
309void
310DefaultFetch<Impl>::resetStage()
311{
312    numInst = 0;
313    interruptPending = false;
314    cacheBlocked = false;
315
316    priorityList.clear();
317
318    // Setup PC and nextPC with initial state.
319    for (ThreadID tid = 0; tid < numThreads; tid++) {
320        fetchStatus[tid] = Running;
321        pc[tid] = cpu->pcState(tid);
322        fetchOffset[tid] = 0;
323        macroop[tid] = NULL;
324
325        delayedCommit[tid] = false;
326        memReq[tid] = NULL;
327
328        stalls[tid].decode = false;
329        stalls[tid].rename = false;
330        stalls[tid].iew = false;
331        stalls[tid].commit = false;
332        stalls[tid].drain = false;
333
334        priorityList.push_back(tid);
335    }
336
337    wroteToTimeBuffer = false;
338    _status = Inactive;
339
340    // this CPU could still be unconnected if we are restoring from a
341    // checkpoint and this CPU is to be switched in, thus we can only
342    // do this here if the instruction port is actually connected, if
343    // not we have to do it as part of takeOverFrom.
344    if (cpu->getInstPort().isConnected())
345        setIcache();
346}
347
348template<class Impl>
349void
350DefaultFetch<Impl>::setIcache()
351{
352    assert(cpu->getInstPort().isConnected());
353
354    // Size of cache block.
355    cacheBlkSize = cpu->getInstPort().peerBlockSize();
356
357    // Create mask to get rid of offset bits.
358    cacheBlkMask = (cacheBlkSize - 1);
359
360    for (ThreadID tid = 0; tid < numThreads; tid++) {
361        // Create space to store a cache line.
362        if (!cacheData[tid])
363            cacheData[tid] = new uint8_t[cacheBlkSize];
364        cacheDataPC[tid] = 0;
365        cacheDataValid[tid] = false;
366    }
367}
368
369template<class Impl>
370void
371DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
372{
373    ThreadID tid = pkt->req->threadId();
374
375    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
376    assert(!cpu->switchedOut());
377
378    // Only change the status if it's still waiting on the icache access
379    // to return.
380    if (fetchStatus[tid] != IcacheWaitResponse ||
381        pkt->req != memReq[tid]) {
382        ++fetchIcacheSquashes;
383        delete pkt->req;
384        delete pkt;
385        return;
386    }
387
388    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
389    cacheDataValid[tid] = true;
390
391    // Wake up the CPU (if it went to sleep and was waiting on
392    // this completion event).
393    cpu->wakeCPU();
394
395    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
396            tid);
397
398    switchToActive();
399
400    // Only switch to IcacheAccessComplete if we're not stalled as well.
401    if (checkStall(tid)) {
402        fetchStatus[tid] = Blocked;
403    } else {
404        fetchStatus[tid] = IcacheAccessComplete;
405    }
406
407    // Reset the mem req to NULL.
408    delete pkt->req;
409    delete pkt;
410    memReq[tid] = NULL;
411}
412
413template <class Impl>
414void
415DefaultFetch<Impl>::drainResume()
416{
417    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
418        stalls[i].drain = false;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::drainSanityCheck() const
424{
425    assert(isDrained());
426    assert(retryPkt == NULL);
427    assert(retryTid == InvalidThreadID);
428    assert(cacheBlocked == false);
429    assert(interruptPending == false);
430
431    for (ThreadID i = 0; i < numThreads; ++i) {
432        assert(!memReq[i]);
433        assert(!stalls[i].decode);
434        assert(!stalls[i].rename);
435        assert(!stalls[i].iew);
436        assert(!stalls[i].commit);
437        assert(fetchStatus[i] == Idle || stalls[i].drain);
438    }
439
440    branchPred->drainSanityCheck();
441}
442
443template <class Impl>
444bool
445DefaultFetch<Impl>::isDrained() const
446{
447    /* Make sure that threads are either idle of that the commit stage
448     * has signaled that draining has completed by setting the drain
449     * stall flag. This effectively forces the pipeline to be disabled
450     * until the whole system is drained (simulation may continue to
451     * drain other components).
452     */
453    for (ThreadID i = 0; i < numThreads; ++i) {
454        if (!(fetchStatus[i] == Idle ||
455              (fetchStatus[i] == Blocked && stalls[i].drain)))
456            return false;
457    }
458
459    /* The pipeline might start up again in the middle of the drain
460     * cycle if the finish translation event is scheduled, so make
461     * sure that's not the case.
462     */
463    return !finishTranslationEvent.scheduled();
464}
465
466template <class Impl>
467void
468DefaultFetch<Impl>::takeOverFrom()
469{
470    assert(cpu->getInstPort().isConnected());
471    resetStage();
472
473}
474
475template <class Impl>
476void
477DefaultFetch<Impl>::drainStall(ThreadID tid)
478{
479    assert(cpu->isDraining());
480    assert(!stalls[tid].drain);
481    DPRINTF(Drain, "%i: Thread drained.\n", tid);
482    stalls[tid].drain = true;
483}
484
485template <class Impl>
486void
487DefaultFetch<Impl>::wakeFromQuiesce()
488{
489    DPRINTF(Fetch, "Waking up from quiesce\n");
490    // Hopefully this is safe
491    // @todo: Allow other threads to wake from quiesce.
492    fetchStatus[0] = Running;
493}
494
495template <class Impl>
496inline void
497DefaultFetch<Impl>::switchToActive()
498{
499    if (_status == Inactive) {
500        DPRINTF(Activity, "Activating stage.\n");
501
502        cpu->activateStage(O3CPU::FetchIdx);
503
504        _status = Active;
505    }
506}
507
508template <class Impl>
509inline void
510DefaultFetch<Impl>::switchToInactive()
511{
512    if (_status == Active) {
513        DPRINTF(Activity, "Deactivating stage.\n");
514
515        cpu->deactivateStage(O3CPU::FetchIdx);
516
517        _status = Inactive;
518    }
519}
520
521template <class Impl>
522bool
523DefaultFetch<Impl>::lookupAndUpdateNextPC(
524        DynInstPtr &inst, TheISA::PCState &nextPC)
525{
526    // Do branch prediction check here.
527    // A bit of a misnomer...next_PC is actually the current PC until
528    // this function updates it.
529    bool predict_taken;
530
531    if (!inst->isControl()) {
532        TheISA::advancePC(nextPC, inst->staticInst);
533        inst->setPredTarg(nextPC);
534        inst->setPredTaken(false);
535        return false;
536    }
537
538    ThreadID tid = inst->threadNumber;
539    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
540                                        nextPC, tid);
541
542    if (predict_taken) {
543        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
544                tid, inst->seqNum, nextPC);
545    } else {
546        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
547                tid, inst->seqNum);
548    }
549
550    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
551            tid, inst->seqNum, nextPC);
552    inst->setPredTarg(nextPC);
553    inst->setPredTaken(predict_taken);
554
555    ++fetchedBranches;
556
557    if (predict_taken) {
558        ++predictedBranches;
559    }
560
561    return predict_taken;
562}
563
564template <class Impl>
565bool
566DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
567{
568    Fault fault = NoFault;
569
570    assert(!cpu->switchedOut());
571
572    // @todo: not sure if these should block translation.
573    //AlphaDep
574    if (cacheBlocked) {
575        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
576                tid);
577        return false;
578    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
579        // Hold off fetch from getting new instructions when:
580        // Cache is blocked, or
581        // while an interrupt is pending and we're not in PAL mode, or
582        // fetch is switched out.
583        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
584                tid);
585        return false;
586    }
587
588    // Align the fetch address so it's at the start of a cache block.
589    Addr block_PC = icacheBlockAlignPC(vaddr);
590
591    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
592            tid, block_PC, vaddr);
593
594    // Setup the memReq to do a read of the first instruction's address.
595    // Set the appropriate read size and flags as well.
596    // Build request here.
597    RequestPtr mem_req =
598        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
599                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
600
601    memReq[tid] = mem_req;
602
603    // Initiate translation of the icache block
604    fetchStatus[tid] = ItlbWait;
605    FetchTranslation *trans = new FetchTranslation(this);
606    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
607                              trans, BaseTLB::Execute);
608    return true;
609}
610
611template <class Impl>
612void
613DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
614{
615    ThreadID tid = mem_req->threadId();
616    Addr block_PC = mem_req->getVaddr();
617
618    assert(!cpu->switchedOut());
619
620    // Wake up CPU if it was idle
621    cpu->wakeCPU();
622
623    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
624        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
625        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
626                tid);
627        ++fetchTlbSquashes;
628        delete mem_req;
629        return;
630    }
631
632
633    // If translation was successful, attempt to read the icache block.
634    if (fault == NoFault) {
635        // Check that we're not going off into random memory
636        // If we have, just wait around for commit to squash something and put
637        // us on the right track
638        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
639            warn("Address %#x is outside of physical memory, stopping fetch\n",
640                    mem_req->getPaddr());
641            fetchStatus[tid] = NoGoodAddr;
642            delete mem_req;
643            memReq[tid] = NULL;
644            return;
645        }
646
647        // Build packet here.
648        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
649        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
650
651        cacheDataPC[tid] = block_PC;
652        cacheDataValid[tid] = false;
653        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
654
655        fetchedCacheLines++;
656
657        // Access the cache.
658        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
659            assert(retryPkt == NULL);
660            assert(retryTid == InvalidThreadID);
661            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
662
663            fetchStatus[tid] = IcacheWaitRetry;
664            retryPkt = data_pkt;
665            retryTid = tid;
666            cacheBlocked = true;
667        } else {
668            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
669            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
670                    "response.\n", tid);
671
672            lastIcacheStall[tid] = curTick();
673            fetchStatus[tid] = IcacheWaitResponse;
674        }
675    } else {
676        if (!(numInst < fetchWidth)) {
677            assert(!finishTranslationEvent.scheduled());
678            finishTranslationEvent.setFault(fault);
679            finishTranslationEvent.setReq(mem_req);
680            cpu->schedule(finishTranslationEvent,
681                          cpu->clockEdge(Cycles(1)));
682            return;
683        }
684        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
685                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
686        // Translation faulted, icache request won't be sent.
687        delete mem_req;
688        memReq[tid] = NULL;
689
690        // Send the fault to commit.  This thread will not do anything
691        // until commit handles the fault.  The only other way it can
692        // wake up is if a squash comes along and changes the PC.
693        TheISA::PCState fetchPC = pc[tid];
694
695        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
696        // We will use a nop in ordier to carry the fault.
697        DynInstPtr instruction = buildInst(tid,
698                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
699                NULL, fetchPC, fetchPC, false);
700
701        instruction->setPredTarg(fetchPC);
702        instruction->fault = fault;
703        wroteToTimeBuffer = true;
704
705        DPRINTF(Activity, "Activity this cycle.\n");
706        cpu->activityThisCycle();
707
708        fetchStatus[tid] = TrapPending;
709
710        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
711        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
712                tid, fault->name(), pc[tid]);
713    }
714    _status = updateFetchStatus();
715}
716
717template <class Impl>
718inline void
719DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
720                             const DynInstPtr squashInst, ThreadID tid)
721{
722    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
723            tid, newPC);
724
725    pc[tid] = newPC;
726    fetchOffset[tid] = 0;
727    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
728        macroop[tid] = squashInst->macroop;
729    else
730        macroop[tid] = NULL;
731    decoder[tid]->reset();
732
733    // Clear the icache miss if it's outstanding.
734    if (fetchStatus[tid] == IcacheWaitResponse) {
735        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
736                tid);
737        memReq[tid] = NULL;
738    } else if (fetchStatus[tid] == ItlbWait) {
739        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
740                tid);
741        memReq[tid] = NULL;
742    }
743
744    // Get rid of the retrying packet if it was from this thread.
745    if (retryTid == tid) {
746        assert(cacheBlocked);
747        if (retryPkt) {
748            delete retryPkt->req;
749            delete retryPkt;
750        }
751        retryPkt = NULL;
752        retryTid = InvalidThreadID;
753    }
754
755    fetchStatus[tid] = Squashing;
756
757    // microops are being squashed, it is not known wheather the
758    // youngest non-squashed microop was  marked delayed commit
759    // or not. Setting the flag to true ensures that the
760    // interrupts are not handled when they cannot be, though
761    // some opportunities to handle interrupts may be missed.
762    delayedCommit[tid] = true;
763
764    ++fetchSquashCycles;
765}
766
767template<class Impl>
768void
769DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
770                                     const DynInstPtr squashInst,
771                                     const InstSeqNum seq_num, ThreadID tid)
772{
773    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
774
775    doSquash(newPC, squashInst, tid);
776
777    // Tell the CPU to remove any instructions that are in flight between
778    // fetch and decode.
779    cpu->removeInstsUntil(seq_num, tid);
780}
781
782template<class Impl>
783bool
784DefaultFetch<Impl>::checkStall(ThreadID tid) const
785{
786    bool ret_val = false;
787
788    if (cpu->contextSwitch) {
789        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
790        ret_val = true;
791    } else if (stalls[tid].drain) {
792        assert(cpu->isDraining());
793        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
794        ret_val = true;
795    } else if (stalls[tid].decode) {
796        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
797        ret_val = true;
798    } else if (stalls[tid].rename) {
799        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
800        ret_val = true;
801    } else if (stalls[tid].iew) {
802        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
803        ret_val = true;
804    } else if (stalls[tid].commit) {
805        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
806        ret_val = true;
807    }
808
809    return ret_val;
810}
811
812template<class Impl>
813typename DefaultFetch<Impl>::FetchStatus
814DefaultFetch<Impl>::updateFetchStatus()
815{
816    //Check Running
817    list<ThreadID>::iterator threads = activeThreads->begin();
818    list<ThreadID>::iterator end = activeThreads->end();
819
820    while (threads != end) {
821        ThreadID tid = *threads++;
822
823        if (fetchStatus[tid] == Running ||
824            fetchStatus[tid] == Squashing ||
825            fetchStatus[tid] == IcacheAccessComplete) {
826
827            if (_status == Inactive) {
828                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
829
830                if (fetchStatus[tid] == IcacheAccessComplete) {
831                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
832                            "completion\n",tid);
833                }
834
835                cpu->activateStage(O3CPU::FetchIdx);
836            }
837
838            return Active;
839        }
840    }
841
842    // Stage is switching from active to inactive, notify CPU of it.
843    if (_status == Active) {
844        DPRINTF(Activity, "Deactivating stage.\n");
845
846        cpu->deactivateStage(O3CPU::FetchIdx);
847    }
848
849    return Inactive;
850}
851
852template <class Impl>
853void
854DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
855                           const InstSeqNum seq_num, DynInstPtr squashInst,
856                           ThreadID tid)
857{
858    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
859
860    doSquash(newPC, squashInst, tid);
861
862    // Tell the CPU to remove any instructions that are not in the ROB.
863    cpu->removeInstsNotInROB(tid);
864}
865
866template <class Impl>
867void
868DefaultFetch<Impl>::tick()
869{
870    list<ThreadID>::iterator threads = activeThreads->begin();
871    list<ThreadID>::iterator end = activeThreads->end();
872    bool status_change = false;
873
874    wroteToTimeBuffer = false;
875
876    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
877        issuePipelinedIfetch[i] = false;
878    }
879
880    while (threads != end) {
881        ThreadID tid = *threads++;
882
883        // Check the signals for each thread to determine the proper status
884        // for each thread.
885        bool updated_status = checkSignalsAndUpdate(tid);
886        status_change =  status_change || updated_status;
887    }
888
889    DPRINTF(Fetch, "Running stage.\n");
890
891    if (FullSystem) {
892        if (fromCommit->commitInfo[0].interruptPending) {
893            interruptPending = true;
894        }
895
896        if (fromCommit->commitInfo[0].clearInterrupt) {
897            interruptPending = false;
898        }
899    }
900
901    for (threadFetched = 0; threadFetched < numFetchingThreads;
902         threadFetched++) {
903        // Fetch each of the actively fetching threads.
904        fetch(status_change);
905    }
906
907    // Record number of instructions fetched this cycle for distribution.
908    fetchNisnDist.sample(numInst);
909
910    if (status_change) {
911        // Change the fetch stage status if there was a status change.
912        _status = updateFetchStatus();
913    }
914
915    // If there was activity this cycle, inform the CPU of it.
916    if (wroteToTimeBuffer || cpu->contextSwitch) {
917        DPRINTF(Activity, "Activity this cycle.\n");
918
919        cpu->activityThisCycle();
920    }
921
922    // Issue the next I-cache request if possible.
923    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
924        if (issuePipelinedIfetch[i]) {
925            pipelineIcacheAccesses(i);
926        }
927    }
928
929    // Reset the number of the instruction we've fetched.
930    numInst = 0;
931}
932
933template <class Impl>
934bool
935DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
936{
937    // Update the per thread stall statuses.
938    if (fromDecode->decodeBlock[tid]) {
939        stalls[tid].decode = true;
940    }
941
942    if (fromDecode->decodeUnblock[tid]) {
943        assert(stalls[tid].decode);
944        assert(!fromDecode->decodeBlock[tid]);
945        stalls[tid].decode = false;
946    }
947
948    if (fromRename->renameBlock[tid]) {
949        stalls[tid].rename = true;
950    }
951
952    if (fromRename->renameUnblock[tid]) {
953        assert(stalls[tid].rename);
954        assert(!fromRename->renameBlock[tid]);
955        stalls[tid].rename = false;
956    }
957
958    if (fromIEW->iewBlock[tid]) {
959        stalls[tid].iew = true;
960    }
961
962    if (fromIEW->iewUnblock[tid]) {
963        assert(stalls[tid].iew);
964        assert(!fromIEW->iewBlock[tid]);
965        stalls[tid].iew = false;
966    }
967
968    if (fromCommit->commitBlock[tid]) {
969        stalls[tid].commit = true;
970    }
971
972    if (fromCommit->commitUnblock[tid]) {
973        assert(stalls[tid].commit);
974        assert(!fromCommit->commitBlock[tid]);
975        stalls[tid].commit = false;
976    }
977
978    // Check squash signals from commit.
979    if (fromCommit->commitInfo[tid].squash) {
980
981        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
982                "from commit.\n",tid);
983        // In any case, squash.
984        squash(fromCommit->commitInfo[tid].pc,
985               fromCommit->commitInfo[tid].doneSeqNum,
986               fromCommit->commitInfo[tid].squashInst, tid);
987
988        // If it was a branch mispredict on a control instruction, update the
989        // branch predictor with that instruction, otherwise just kill the
990        // invalid state we generated in after sequence number
991        if (fromCommit->commitInfo[tid].mispredictInst &&
992            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
993            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
994                              fromCommit->commitInfo[tid].pc,
995                              fromCommit->commitInfo[tid].branchTaken,
996                              tid);
997        } else {
998            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
999                              tid);
1000        }
1001
1002        return true;
1003    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1004        // Update the branch predictor if it wasn't a squashed instruction
1005        // that was broadcasted.
1006        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1007    }
1008
1009    // Check ROB squash signals from commit.
1010    if (fromCommit->commitInfo[tid].robSquashing) {
1011        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1012
1013        // Continue to squash.
1014        fetchStatus[tid] = Squashing;
1015
1016        return true;
1017    }
1018
1019    // Check squash signals from decode.
1020    if (fromDecode->decodeInfo[tid].squash) {
1021        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1022                "from decode.\n",tid);
1023
1024        // Update the branch predictor.
1025        if (fromDecode->decodeInfo[tid].branchMispredict) {
1026            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1027                              fromDecode->decodeInfo[tid].nextPC,
1028                              fromDecode->decodeInfo[tid].branchTaken,
1029                              tid);
1030        } else {
1031            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1032                              tid);
1033        }
1034
1035        if (fetchStatus[tid] != Squashing) {
1036
1037            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1038                fromDecode->decodeInfo[tid].nextPC);
1039            // Squash unless we're already squashing
1040            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1041                             fromDecode->decodeInfo[tid].squashInst,
1042                             fromDecode->decodeInfo[tid].doneSeqNum,
1043                             tid);
1044
1045            return true;
1046        }
1047    }
1048
1049    if (checkStall(tid) &&
1050        fetchStatus[tid] != IcacheWaitResponse &&
1051        fetchStatus[tid] != IcacheWaitRetry &&
1052        fetchStatus[tid] != ItlbWait) {
1053        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1054
1055        fetchStatus[tid] = Blocked;
1056
1057        return true;
1058    }
1059
1060    if (fetchStatus[tid] == Blocked ||
1061        fetchStatus[tid] == Squashing) {
1062        // Switch status to running if fetch isn't being told to block or
1063        // squash this cycle.
1064        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1065                tid);
1066
1067        fetchStatus[tid] = Running;
1068
1069        return true;
1070    }
1071
1072    // If we've reached this point, we have not gotten any signals that
1073    // cause fetch to change its status.  Fetch remains the same as before.
1074    return false;
1075}
1076
1077template<class Impl>
1078typename Impl::DynInstPtr
1079DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1080                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1081                              TheISA::PCState nextPC, bool trace)
1082{
1083    // Get a sequence number.
1084    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1085
1086    // Create a new DynInst from the instruction fetched.
1087    DynInstPtr instruction =
1088        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1089    instruction->setTid(tid);
1090
1091    instruction->setASID(tid);
1092
1093    instruction->setThreadState(cpu->thread[tid]);
1094
1095    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1096            "[sn:%lli].\n", tid, thisPC.instAddr(),
1097            thisPC.microPC(), seq);
1098
1099    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1100            instruction->staticInst->
1101            disassemble(thisPC.instAddr()));
1102
1103#if TRACING_ON
1104    if (trace) {
1105        instruction->traceData =
1106            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1107                    instruction->staticInst, thisPC, curMacroop);
1108    }
1109#else
1110    instruction->traceData = NULL;
1111#endif
1112
1113    // Add instruction to the CPU's list of instructions.
1114    instruction->setInstListIt(cpu->addInst(instruction));
1115
1116    // Write the instruction to the first slot in the queue
1117    // that heads to decode.
1118    assert(numInst < fetchWidth);
1119    toDecode->insts[toDecode->size++] = instruction;
1120
1121    // Keep track of if we can take an interrupt at this boundary
1122    delayedCommit[tid] = instruction->isDelayedCommit();
1123
1124    return instruction;
1125}
1126
1127template<class Impl>
1128void
1129DefaultFetch<Impl>::fetch(bool &status_change)
1130{
1131    //////////////////////////////////////////
1132    // Start actual fetch
1133    //////////////////////////////////////////
1134    ThreadID tid = getFetchingThread(fetchPolicy);
1135
1136    assert(!cpu->switchedOut());
1137
1138    if (tid == InvalidThreadID) {
1139        // Breaks looping condition in tick()
1140        threadFetched = numFetchingThreads;
1141
1142        if (numThreads == 1) {  // @todo Per-thread stats
1143            profileStall(0);
1144        }
1145
1146        return;
1147    }
1148
1149    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1150
1151    // The current PC.
1152    TheISA::PCState thisPC = pc[tid];
1153
1154    Addr pcOffset = fetchOffset[tid];
1155    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1156
1157    bool inRom = isRomMicroPC(thisPC.microPC());
1158
1159    // If returning from the delay of a cache miss, then update the status
1160    // to running, otherwise do the cache access.  Possibly move this up
1161    // to tick() function.
1162    if (fetchStatus[tid] == IcacheAccessComplete) {
1163        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1164
1165        fetchStatus[tid] = Running;
1166        status_change = true;
1167    } else if (fetchStatus[tid] == Running) {
1168        // Align the fetch PC so its at the start of a cache block.
1169        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1170
1171        // If buffer is no longer valid or fetchAddr has moved to point
1172        // to the next cache block, AND we have no remaining ucode
1173        // from a macro-op, then start fetch from icache.
1174        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1175            && !inRom && !macroop[tid]) {
1176            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1177                    "instruction, starting at PC %s.\n", tid, thisPC);
1178
1179            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1180
1181            if (fetchStatus[tid] == IcacheWaitResponse)
1182                ++icacheStallCycles;
1183            else if (fetchStatus[tid] == ItlbWait)
1184                ++fetchTlbCycles;
1185            else
1186                ++fetchMiscStallCycles;
1187            return;
1188        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1189            // Stall CPU if an interrupt is posted and we're not issuing
1190            // an delayed commit micro-op currently (delayed commit instructions
1191            // are not interruptable by interrupts, only faults)
1192            ++fetchMiscStallCycles;
1193            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1194            return;
1195        }
1196    } else {
1197        if (fetchStatus[tid] == Idle) {
1198            ++fetchIdleCycles;
1199            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1200        }
1201
1202        // Status is Idle, so fetch should do nothing.
1203        return;
1204    }
1205
1206    ++fetchCycles;
1207
1208    TheISA::PCState nextPC = thisPC;
1209
1210    StaticInstPtr staticInst = NULL;
1211    StaticInstPtr curMacroop = macroop[tid];
1212
1213    // If the read of the first instruction was successful, then grab the
1214    // instructions from the rest of the cache line and put them into the
1215    // queue heading to decode.
1216
1217    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1218            "decode.\n", tid);
1219
1220    // Need to keep track of whether or not a predicted branch
1221    // ended this fetch block.
1222    bool predictedBranch = false;
1223
1224    TheISA::MachInst *cacheInsts =
1225        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1226
1227    const unsigned numInsts = cacheBlkSize / instSize;
1228    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1229
1230    // Loop through instruction memory from the cache.
1231    // Keep issuing while fetchWidth is available and branch is not
1232    // predicted taken
1233    while (numInst < fetchWidth && !predictedBranch) {
1234
1235        // We need to process more memory if we aren't going to get a
1236        // StaticInst from the rom, the current macroop, or what's already
1237        // in the decoder.
1238        bool needMem = !inRom && !curMacroop &&
1239            !decoder[tid]->instReady();
1240        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1241        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1242
1243        if (needMem) {
1244            // If buffer is no longer valid or fetchAddr has moved to point
1245            // to the next cache block then start fetch from icache.
1246            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1247                break;
1248
1249            if (blkOffset >= numInsts) {
1250                // We need to process more memory, but we've run out of the
1251                // current block.
1252                break;
1253            }
1254
1255            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1256                // Walk past any annulled delay slot instructions.
1257                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1258                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1259                    blkOffset++;
1260                    fetchAddr += instSize;
1261                }
1262                if (blkOffset >= numInsts)
1263                    break;
1264            }
1265
1266            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1267            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1268
1269            if (decoder[tid]->needMoreBytes()) {
1270                blkOffset++;
1271                fetchAddr += instSize;
1272                pcOffset += instSize;
1273            }
1274        }
1275
1276        // Extract as many instructions and/or microops as we can from
1277        // the memory we've processed so far.
1278        do {
1279            if (!(curMacroop || inRom)) {
1280                if (decoder[tid]->instReady()) {
1281                    staticInst = decoder[tid]->decode(thisPC);
1282
1283                    // Increment stat of fetched instructions.
1284                    ++fetchedInsts;
1285
1286                    if (staticInst->isMacroop()) {
1287                        curMacroop = staticInst;
1288                    } else {
1289                        pcOffset = 0;
1290                    }
1291                } else {
1292                    // We need more bytes for this instruction so blkOffset and
1293                    // pcOffset will be updated
1294                    break;
1295                }
1296            }
1297            // Whether we're moving to a new macroop because we're at the
1298            // end of the current one, or the branch predictor incorrectly
1299            // thinks we are...
1300            bool newMacro = false;
1301            if (curMacroop || inRom) {
1302                if (inRom) {
1303                    staticInst = cpu->microcodeRom.fetchMicroop(
1304                            thisPC.microPC(), curMacroop);
1305                } else {
1306                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1307                }
1308                newMacro |= staticInst->isLastMicroop();
1309            }
1310
1311            DynInstPtr instruction =
1312                buildInst(tid, staticInst, curMacroop,
1313                          thisPC, nextPC, true);
1314
1315            numInst++;
1316
1317#if TRACING_ON
1318            if (DTRACE(O3PipeView)) {
1319                instruction->fetchTick = curTick();
1320            }
1321#endif
1322
1323            nextPC = thisPC;
1324
1325            // If we're branching after this instruction, quite fetching
1326            // from the same block then.
1327            predictedBranch |= thisPC.branching();
1328            predictedBranch |=
1329                lookupAndUpdateNextPC(instruction, nextPC);
1330            if (predictedBranch) {
1331                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1332            }
1333
1334            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1335
1336            // Move to the next instruction, unless we have a branch.
1337            thisPC = nextPC;
1338            inRom = isRomMicroPC(thisPC.microPC());
1339
1340            if (newMacro) {
1341                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1342                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1343                pcOffset = 0;
1344                curMacroop = NULL;
1345            }
1346
1347            if (instruction->isQuiesce()) {
1348                DPRINTF(Fetch,
1349                        "Quiesce instruction encountered, halting fetch!");
1350                fetchStatus[tid] = QuiescePending;
1351                status_change = true;
1352                break;
1353            }
1354        } while ((curMacroop || decoder[tid]->instReady()) &&
1355                 numInst < fetchWidth);
1356    }
1357
1358    if (predictedBranch) {
1359        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1360                "instruction encountered.\n", tid);
1361    } else if (numInst >= fetchWidth) {
1362        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1363                "for this cycle.\n", tid);
1364    } else if (blkOffset >= cacheBlkSize) {
1365        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1366                "block.\n", tid);
1367    }
1368
1369    macroop[tid] = curMacroop;
1370    fetchOffset[tid] = pcOffset;
1371
1372    if (numInst > 0) {
1373        wroteToTimeBuffer = true;
1374    }
1375
1376    pc[tid] = thisPC;
1377
1378    // pipeline a fetch if we're crossing a cache boundary and not in
1379    // a state that would preclude fetching
1380    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1381    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1382    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1383        fetchStatus[tid] != IcacheWaitResponse &&
1384        fetchStatus[tid] != ItlbWait &&
1385        fetchStatus[tid] != IcacheWaitRetry &&
1386        fetchStatus[tid] != QuiescePending &&
1387        !curMacroop;
1388}
1389
1390template<class Impl>
1391void
1392DefaultFetch<Impl>::recvRetry()
1393{
1394    if (retryPkt != NULL) {
1395        assert(cacheBlocked);
1396        assert(retryTid != InvalidThreadID);
1397        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1398
1399        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1400            fetchStatus[retryTid] = IcacheWaitResponse;
1401            retryPkt = NULL;
1402            retryTid = InvalidThreadID;
1403            cacheBlocked = false;
1404        }
1405    } else {
1406        assert(retryTid == InvalidThreadID);
1407        // Access has been squashed since it was sent out.  Just clear
1408        // the cache being blocked.
1409        cacheBlocked = false;
1410    }
1411}
1412
1413///////////////////////////////////////
1414//                                   //
1415//  SMT FETCH POLICY MAINTAINED HERE //
1416//                                   //
1417///////////////////////////////////////
1418template<class Impl>
1419ThreadID
1420DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1421{
1422    if (numThreads > 1) {
1423        switch (fetch_priority) {
1424
1425          case SingleThread:
1426            return 0;
1427
1428          case RoundRobin:
1429            return roundRobin();
1430
1431          case IQ:
1432            return iqCount();
1433
1434          case LSQ:
1435            return lsqCount();
1436
1437          case Branch:
1438            return branchCount();
1439
1440          default:
1441            return InvalidThreadID;
1442        }
1443    } else {
1444        list<ThreadID>::iterator thread = activeThreads->begin();
1445        if (thread == activeThreads->end()) {
1446            return InvalidThreadID;
1447        }
1448
1449        ThreadID tid = *thread;
1450
1451        if (fetchStatus[tid] == Running ||
1452            fetchStatus[tid] == IcacheAccessComplete ||
1453            fetchStatus[tid] == Idle) {
1454            return tid;
1455        } else {
1456            return InvalidThreadID;
1457        }
1458    }
1459}
1460
1461
1462template<class Impl>
1463ThreadID
1464DefaultFetch<Impl>::roundRobin()
1465{
1466    list<ThreadID>::iterator pri_iter = priorityList.begin();
1467    list<ThreadID>::iterator end      = priorityList.end();
1468
1469    ThreadID high_pri;
1470
1471    while (pri_iter != end) {
1472        high_pri = *pri_iter;
1473
1474        assert(high_pri <= numThreads);
1475
1476        if (fetchStatus[high_pri] == Running ||
1477            fetchStatus[high_pri] == IcacheAccessComplete ||
1478            fetchStatus[high_pri] == Idle) {
1479
1480            priorityList.erase(pri_iter);
1481            priorityList.push_back(high_pri);
1482
1483            return high_pri;
1484        }
1485
1486        pri_iter++;
1487    }
1488
1489    return InvalidThreadID;
1490}
1491
1492template<class Impl>
1493ThreadID
1494DefaultFetch<Impl>::iqCount()
1495{
1496    std::priority_queue<unsigned> PQ;
1497    std::map<unsigned, ThreadID> threadMap;
1498
1499    list<ThreadID>::iterator threads = activeThreads->begin();
1500    list<ThreadID>::iterator end = activeThreads->end();
1501
1502    while (threads != end) {
1503        ThreadID tid = *threads++;
1504        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1505
1506        PQ.push(iqCount);
1507        threadMap[iqCount] = tid;
1508    }
1509
1510    while (!PQ.empty()) {
1511        ThreadID high_pri = threadMap[PQ.top()];
1512
1513        if (fetchStatus[high_pri] == Running ||
1514            fetchStatus[high_pri] == IcacheAccessComplete ||
1515            fetchStatus[high_pri] == Idle)
1516            return high_pri;
1517        else
1518            PQ.pop();
1519
1520    }
1521
1522    return InvalidThreadID;
1523}
1524
1525template<class Impl>
1526ThreadID
1527DefaultFetch<Impl>::lsqCount()
1528{
1529    std::priority_queue<unsigned> PQ;
1530    std::map<unsigned, ThreadID> threadMap;
1531
1532    list<ThreadID>::iterator threads = activeThreads->begin();
1533    list<ThreadID>::iterator end = activeThreads->end();
1534
1535    while (threads != end) {
1536        ThreadID tid = *threads++;
1537        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1538
1539        PQ.push(ldstqCount);
1540        threadMap[ldstqCount] = tid;
1541    }
1542
1543    while (!PQ.empty()) {
1544        ThreadID high_pri = threadMap[PQ.top()];
1545
1546        if (fetchStatus[high_pri] == Running ||
1547            fetchStatus[high_pri] == IcacheAccessComplete ||
1548            fetchStatus[high_pri] == Idle)
1549            return high_pri;
1550        else
1551            PQ.pop();
1552    }
1553
1554    return InvalidThreadID;
1555}
1556
1557template<class Impl>
1558ThreadID
1559DefaultFetch<Impl>::branchCount()
1560{
1561#if 0
1562    list<ThreadID>::iterator thread = activeThreads->begin();
1563    assert(thread != activeThreads->end());
1564    ThreadID tid = *thread;
1565#endif
1566
1567    panic("Branch Count Fetch policy unimplemented\n");
1568    return InvalidThreadID;
1569}
1570
1571template<class Impl>
1572void
1573DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1574{
1575    if (!issuePipelinedIfetch[tid]) {
1576        return;
1577    }
1578
1579    // The next PC to access.
1580    TheISA::PCState thisPC = pc[tid];
1581
1582    if (isRomMicroPC(thisPC.microPC())) {
1583        return;
1584    }
1585
1586    Addr pcOffset = fetchOffset[tid];
1587    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1588
1589    // Align the fetch PC so its at the start of a cache block.
1590    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1591
1592    // Unless buffer already got the block, fetch it from icache.
1593    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1594        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1595                "starting at PC %s.\n", tid, thisPC);
1596
1597        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1598    }
1599}
1600
1601template<class Impl>
1602void
1603DefaultFetch<Impl>::profileStall(ThreadID tid) {
1604    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1605
1606    // @todo Per-thread stats
1607
1608    if (stalls[tid].drain) {
1609        ++fetchPendingDrainCycles;
1610        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1611    } else if (activeThreads->empty()) {
1612        ++fetchNoActiveThreadStallCycles;
1613        DPRINTF(Fetch, "Fetch has no active thread!\n");
1614    } else if (fetchStatus[tid] == Blocked) {
1615        ++fetchBlockedCycles;
1616        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1617    } else if (fetchStatus[tid] == Squashing) {
1618        ++fetchSquashCycles;
1619        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1620    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1621        ++icacheStallCycles;
1622        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1623                tid);
1624    } else if (fetchStatus[tid] == ItlbWait) {
1625        ++fetchTlbCycles;
1626        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1627                "finish!\n", tid);
1628    } else if (fetchStatus[tid] == TrapPending) {
1629        ++fetchPendingTrapStallCycles;
1630        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1631                tid);
1632    } else if (fetchStatus[tid] == QuiescePending) {
1633        ++fetchPendingQuiesceStallCycles;
1634        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1635                "instruction!\n", tid);
1636    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1637        ++fetchIcacheWaitRetryStallCycles;
1638        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1639                tid);
1640    } else if (fetchStatus[tid] == NoGoodAddr) {
1641            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1642                    tid);
1643    } else {
1644        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1645             tid, fetchStatus[tid]);
1646    }
1647}
1648