fetch_impl.hh revision 9527:68154bc0e0ea
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Drain.hh"
62#include "debug/Fetch.hh"
63#include "debug/O3PipeView.hh"
64#include "mem/packet.hh"
65#include "params/DerivO3CPU.hh"
66#include "sim/byteswap.hh"
67#include "sim/core.hh"
68#include "sim/eventq.hh"
69#include "sim/full_system.hh"
70#include "sim/system.hh"
71
72using namespace std;
73
74template<class Impl>
75DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
76    : cpu(_cpu),
77      decodeToFetchDelay(params->decodeToFetchDelay),
78      renameToFetchDelay(params->renameToFetchDelay),
79      iewToFetchDelay(params->iewToFetchDelay),
80      commitToFetchDelay(params->commitToFetchDelay),
81      fetchWidth(params->fetchWidth),
82      retryPkt(NULL),
83      retryTid(InvalidThreadID),
84      numThreads(params->numThreads),
85      numFetchingThreads(params->smtNumFetchingThreads),
86      finishTranslationEvent(this)
87{
88    if (numThreads > Impl::MaxThreads)
89        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
90              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
91              numThreads, static_cast<int>(Impl::MaxThreads));
92    if (fetchWidth > Impl::MaxWidth)
93        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
94             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
95             fetchWidth, static_cast<int>(Impl::MaxWidth));
96
97    std::string policy = params->smtFetchPolicy;
98
99    // Convert string to lowercase
100    std::transform(policy.begin(), policy.end(), policy.begin(),
101                   (int(*)(int)) tolower);
102
103    // Figure out fetch policy
104    if (policy == "singlethread") {
105        fetchPolicy = SingleThread;
106        if (numThreads > 1)
107            panic("Invalid Fetch Policy for a SMT workload.");
108    } else if (policy == "roundrobin") {
109        fetchPolicy = RoundRobin;
110        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
111    } else if (policy == "branch") {
112        fetchPolicy = Branch;
113        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
114    } else if (policy == "iqcount") {
115        fetchPolicy = IQ;
116        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
117    } else if (policy == "lsqcount") {
118        fetchPolicy = LSQ;
119        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
120    } else {
121        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
122              " RoundRobin,LSQcount,IQcount}\n");
123    }
124
125    // Get the size of an instruction.
126    instSize = sizeof(TheISA::MachInst);
127
128    for (int i = 0; i < Impl::MaxThreads; i++) {
129        cacheData[i] = NULL;
130        decoder[i] = new TheISA::Decoder;
131    }
132
133    branchPred = params->branchPred;
134}
135
136template <class Impl>
137std::string
138DefaultFetch<Impl>::name() const
139{
140    return cpu->name() + ".fetch";
141}
142
143template <class Impl>
144void
145DefaultFetch<Impl>::regStats()
146{
147    icacheStallCycles
148        .name(name() + ".icacheStallCycles")
149        .desc("Number of cycles fetch is stalled on an Icache miss")
150        .prereq(icacheStallCycles);
151
152    fetchedInsts
153        .name(name() + ".Insts")
154        .desc("Number of instructions fetch has processed")
155        .prereq(fetchedInsts);
156
157    fetchedBranches
158        .name(name() + ".Branches")
159        .desc("Number of branches that fetch encountered")
160        .prereq(fetchedBranches);
161
162    predictedBranches
163        .name(name() + ".predictedBranches")
164        .desc("Number of branches that fetch has predicted taken")
165        .prereq(predictedBranches);
166
167    fetchCycles
168        .name(name() + ".Cycles")
169        .desc("Number of cycles fetch has run and was not squashing or"
170              " blocked")
171        .prereq(fetchCycles);
172
173    fetchSquashCycles
174        .name(name() + ".SquashCycles")
175        .desc("Number of cycles fetch has spent squashing")
176        .prereq(fetchSquashCycles);
177
178    fetchTlbCycles
179        .name(name() + ".TlbCycles")
180        .desc("Number of cycles fetch has spent waiting for tlb")
181        .prereq(fetchTlbCycles);
182
183    fetchIdleCycles
184        .name(name() + ".IdleCycles")
185        .desc("Number of cycles fetch was idle")
186        .prereq(fetchIdleCycles);
187
188    fetchBlockedCycles
189        .name(name() + ".BlockedCycles")
190        .desc("Number of cycles fetch has spent blocked")
191        .prereq(fetchBlockedCycles);
192
193    fetchedCacheLines
194        .name(name() + ".CacheLines")
195        .desc("Number of cache lines fetched")
196        .prereq(fetchedCacheLines);
197
198    fetchMiscStallCycles
199        .name(name() + ".MiscStallCycles")
200        .desc("Number of cycles fetch has spent waiting on interrupts, or "
201              "bad addresses, or out of MSHRs")
202        .prereq(fetchMiscStallCycles);
203
204    fetchPendingDrainCycles
205        .name(name() + ".PendingDrainCycles")
206        .desc("Number of cycles fetch has spent waiting on pipes to drain")
207        .prereq(fetchPendingDrainCycles);
208
209    fetchNoActiveThreadStallCycles
210        .name(name() + ".NoActiveThreadStallCycles")
211        .desc("Number of stall cycles due to no active thread to fetch from")
212        .prereq(fetchNoActiveThreadStallCycles);
213
214    fetchPendingTrapStallCycles
215        .name(name() + ".PendingTrapStallCycles")
216        .desc("Number of stall cycles due to pending traps")
217        .prereq(fetchPendingTrapStallCycles);
218
219    fetchPendingQuiesceStallCycles
220        .name(name() + ".PendingQuiesceStallCycles")
221        .desc("Number of stall cycles due to pending quiesce instructions")
222        .prereq(fetchPendingQuiesceStallCycles);
223
224    fetchIcacheWaitRetryStallCycles
225        .name(name() + ".IcacheWaitRetryStallCycles")
226        .desc("Number of stall cycles due to full MSHR")
227        .prereq(fetchIcacheWaitRetryStallCycles);
228
229    fetchIcacheSquashes
230        .name(name() + ".IcacheSquashes")
231        .desc("Number of outstanding Icache misses that were squashed")
232        .prereq(fetchIcacheSquashes);
233
234    fetchTlbSquashes
235        .name(name() + ".ItlbSquashes")
236        .desc("Number of outstanding ITLB misses that were squashed")
237        .prereq(fetchTlbSquashes);
238
239    fetchNisnDist
240        .init(/* base value */ 0,
241              /* last value */ fetchWidth,
242              /* bucket size */ 1)
243        .name(name() + ".rateDist")
244        .desc("Number of instructions fetched each cycle (Total)")
245        .flags(Stats::pdf);
246
247    idleRate
248        .name(name() + ".idleRate")
249        .desc("Percent of cycles fetch was idle")
250        .prereq(idleRate);
251    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
252
253    branchRate
254        .name(name() + ".branchRate")
255        .desc("Number of branch fetches per cycle")
256        .flags(Stats::total);
257    branchRate = fetchedBranches / cpu->numCycles;
258
259    fetchRate
260        .name(name() + ".rate")
261        .desc("Number of inst fetches per cycle")
262        .flags(Stats::total);
263    fetchRate = fetchedInsts / cpu->numCycles;
264}
265
266template<class Impl>
267void
268DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
269{
270    timeBuffer = time_buffer;
271
272    // Create wires to get information from proper places in time buffer.
273    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
274    fromRename = timeBuffer->getWire(-renameToFetchDelay);
275    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
276    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
277}
278
279template<class Impl>
280void
281DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
282{
283    activeThreads = at_ptr;
284}
285
286template<class Impl>
287void
288DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
289{
290    fetchQueue = fq_ptr;
291
292    // Create wire to write information to proper place in fetch queue.
293    toDecode = fetchQueue->getWire(0);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::startupStage()
299{
300    assert(priorityList.empty());
301    resetStage();
302
303    // Fetch needs to start fetching instructions at the very beginning,
304    // so it must start up in active state.
305    switchToActive();
306}
307
308template<class Impl>
309void
310DefaultFetch<Impl>::resetStage()
311{
312    numInst = 0;
313    interruptPending = false;
314    cacheBlocked = false;
315
316    priorityList.clear();
317
318    // Setup PC and nextPC with initial state.
319    for (ThreadID tid = 0; tid < numThreads; tid++) {
320        fetchStatus[tid] = Running;
321        pc[tid] = cpu->pcState(tid);
322        fetchOffset[tid] = 0;
323        macroop[tid] = NULL;
324
325        delayedCommit[tid] = false;
326        memReq[tid] = NULL;
327
328        stalls[tid].decode = false;
329        stalls[tid].rename = false;
330        stalls[tid].iew = false;
331        stalls[tid].commit = false;
332        stalls[tid].drain = false;
333
334        priorityList.push_back(tid);
335    }
336
337    wroteToTimeBuffer = false;
338    _status = Inactive;
339
340    // this CPU could still be unconnected if we are restoring from a
341    // checkpoint and this CPU is to be switched in, thus we can only
342    // do this here if the instruction port is actually connected, if
343    // not we have to do it as part of takeOverFrom.
344    if (cpu->getInstPort().isConnected())
345        setIcache();
346}
347
348template<class Impl>
349void
350DefaultFetch<Impl>::setIcache()
351{
352    assert(cpu->getInstPort().isConnected());
353
354    // Size of cache block.
355    cacheBlkSize = cpu->getInstPort().peerBlockSize();
356
357    // Create mask to get rid of offset bits.
358    cacheBlkMask = (cacheBlkSize - 1);
359
360    for (ThreadID tid = 0; tid < numThreads; tid++) {
361        // Create space to store a cache line.
362        if (!cacheData[tid])
363            cacheData[tid] = new uint8_t[cacheBlkSize];
364        cacheDataPC[tid] = 0;
365        cacheDataValid[tid] = false;
366    }
367}
368
369template<class Impl>
370void
371DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
372{
373    ThreadID tid = pkt->req->threadId();
374
375    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
376    assert(!cpu->switchedOut());
377
378    // Only change the status if it's still waiting on the icache access
379    // to return.
380    if (fetchStatus[tid] != IcacheWaitResponse ||
381        pkt->req != memReq[tid]) {
382        ++fetchIcacheSquashes;
383        delete pkt->req;
384        delete pkt;
385        return;
386    }
387
388    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
389    cacheDataValid[tid] = true;
390
391    // Wake up the CPU (if it went to sleep and was waiting on
392    // this completion event).
393    cpu->wakeCPU();
394
395    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
396            tid);
397
398    switchToActive();
399
400    // Only switch to IcacheAccessComplete if we're not stalled as well.
401    if (checkStall(tid)) {
402        fetchStatus[tid] = Blocked;
403    } else {
404        fetchStatus[tid] = IcacheAccessComplete;
405    }
406
407    // Reset the mem req to NULL.
408    delete pkt->req;
409    delete pkt;
410    memReq[tid] = NULL;
411}
412
413template <class Impl>
414void
415DefaultFetch<Impl>::drainResume()
416{
417    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
418        stalls[i].drain = false;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::drainSanityCheck() const
424{
425    assert(isDrained());
426    assert(retryPkt == NULL);
427    assert(retryTid == InvalidThreadID);
428    assert(cacheBlocked == false);
429    assert(interruptPending == false);
430
431    for (ThreadID i = 0; i < numThreads; ++i) {
432        assert(!memReq[i]);
433        assert(!stalls[i].decode);
434        assert(!stalls[i].rename);
435        assert(!stalls[i].iew);
436        assert(!stalls[i].commit);
437        assert(fetchStatus[i] == Idle || stalls[i].drain);
438    }
439
440    branchPred->drainSanityCheck();
441}
442
443template <class Impl>
444bool
445DefaultFetch<Impl>::isDrained() const
446{
447    /* Make sure that threads are either idle of that the commit stage
448     * has signaled that draining has completed by setting the drain
449     * stall flag. This effectively forces the pipeline to be disabled
450     * until the whole system is drained (simulation may continue to
451     * drain other components).
452     */
453    for (ThreadID i = 0; i < numThreads; ++i) {
454        if (!(fetchStatus[i] == Idle ||
455              (fetchStatus[i] == Blocked && stalls[i].drain)))
456            return false;
457    }
458
459    /* The pipeline might start up again in the middle of the drain
460     * cycle if the finish translation event is scheduled, so make
461     * sure that's not the case.
462     */
463    return !finishTranslationEvent.scheduled();
464}
465
466template <class Impl>
467void
468DefaultFetch<Impl>::takeOverFrom()
469{
470    assert(cpu->getInstPort().isConnected());
471    resetStage();
472
473}
474
475template <class Impl>
476void
477DefaultFetch<Impl>::drainStall(ThreadID tid)
478{
479    assert(cpu->isDraining());
480    assert(!stalls[tid].drain);
481    DPRINTF(Drain, "%i: Thread drained.\n", tid);
482    stalls[tid].drain = true;
483}
484
485template <class Impl>
486void
487DefaultFetch<Impl>::wakeFromQuiesce()
488{
489    DPRINTF(Fetch, "Waking up from quiesce\n");
490    // Hopefully this is safe
491    // @todo: Allow other threads to wake from quiesce.
492    fetchStatus[0] = Running;
493}
494
495template <class Impl>
496inline void
497DefaultFetch<Impl>::switchToActive()
498{
499    if (_status == Inactive) {
500        DPRINTF(Activity, "Activating stage.\n");
501
502        cpu->activateStage(O3CPU::FetchIdx);
503
504        _status = Active;
505    }
506}
507
508template <class Impl>
509inline void
510DefaultFetch<Impl>::switchToInactive()
511{
512    if (_status == Active) {
513        DPRINTF(Activity, "Deactivating stage.\n");
514
515        cpu->deactivateStage(O3CPU::FetchIdx);
516
517        _status = Inactive;
518    }
519}
520
521template <class Impl>
522bool
523DefaultFetch<Impl>::lookupAndUpdateNextPC(
524        DynInstPtr &inst, TheISA::PCState &nextPC)
525{
526    // Do branch prediction check here.
527    // A bit of a misnomer...next_PC is actually the current PC until
528    // this function updates it.
529    bool predict_taken;
530
531    if (!inst->isControl()) {
532        TheISA::advancePC(nextPC, inst->staticInst);
533        inst->setPredTarg(nextPC);
534        inst->setPredTaken(false);
535        return false;
536    }
537
538    ThreadID tid = inst->threadNumber;
539    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
540                                        nextPC, tid);
541
542    if (predict_taken) {
543        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
544                tid, inst->seqNum, nextPC);
545    } else {
546        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
547                tid, inst->seqNum);
548    }
549
550    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
551            tid, inst->seqNum, nextPC);
552    inst->setPredTarg(nextPC);
553    inst->setPredTaken(predict_taken);
554
555    ++fetchedBranches;
556
557    if (predict_taken) {
558        ++predictedBranches;
559    }
560
561    return predict_taken;
562}
563
564template <class Impl>
565bool
566DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
567{
568    Fault fault = NoFault;
569
570    assert(!cpu->switchedOut());
571
572    // @todo: not sure if these should block translation.
573    //AlphaDep
574    if (cacheBlocked) {
575        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
576                tid);
577        return false;
578    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
579        // Hold off fetch from getting new instructions when:
580        // Cache is blocked, or
581        // while an interrupt is pending and we're not in PAL mode, or
582        // fetch is switched out.
583        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
584                tid);
585        return false;
586    }
587
588    // Align the fetch address so it's at the start of a cache block.
589    Addr block_PC = icacheBlockAlignPC(vaddr);
590
591    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
592            tid, block_PC, vaddr);
593
594    // Setup the memReq to do a read of the first instruction's address.
595    // Set the appropriate read size and flags as well.
596    // Build request here.
597    RequestPtr mem_req =
598        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
599                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
600
601    memReq[tid] = mem_req;
602
603    // Initiate translation of the icache block
604    fetchStatus[tid] = ItlbWait;
605    FetchTranslation *trans = new FetchTranslation(this);
606    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
607                              trans, BaseTLB::Execute);
608    return true;
609}
610
611template <class Impl>
612void
613DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
614{
615    ThreadID tid = mem_req->threadId();
616    Addr block_PC = mem_req->getVaddr();
617
618    assert(!cpu->switchedOut());
619
620    // Wake up CPU if it was idle
621    cpu->wakeCPU();
622
623    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
624        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
625        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
626                tid);
627        ++fetchTlbSquashes;
628        delete mem_req;
629        return;
630    }
631
632
633    // If translation was successful, attempt to read the icache block.
634    if (fault == NoFault) {
635        // Check that we're not going off into random memory
636        // If we have, just wait around for commit to squash something and put
637        // us on the right track
638        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
639            warn("Address %#x is outside of physical memory, stopping fetch\n",
640                    mem_req->getPaddr());
641            fetchStatus[tid] = NoGoodAddr;
642            delete mem_req;
643            memReq[tid] = NULL;
644            return;
645        }
646
647        // Build packet here.
648        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
649        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
650
651        cacheDataPC[tid] = block_PC;
652        cacheDataValid[tid] = false;
653        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
654
655        fetchedCacheLines++;
656
657        // Access the cache.
658        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
659            assert(retryPkt == NULL);
660            assert(retryTid == InvalidThreadID);
661            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
662
663            fetchStatus[tid] = IcacheWaitRetry;
664            retryPkt = data_pkt;
665            retryTid = tid;
666            cacheBlocked = true;
667        } else {
668            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
669            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
670                    "response.\n", tid);
671
672            lastIcacheStall[tid] = curTick();
673            fetchStatus[tid] = IcacheWaitResponse;
674        }
675    } else {
676        if (!(numInst < fetchWidth)) {
677            assert(!finishTranslationEvent.scheduled());
678            finishTranslationEvent.setFault(fault);
679            finishTranslationEvent.setReq(mem_req);
680            cpu->schedule(finishTranslationEvent,
681                          cpu->clockEdge(Cycles(1)));
682            return;
683        }
684        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
685                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
686        // Translation faulted, icache request won't be sent.
687        delete mem_req;
688        memReq[tid] = NULL;
689
690        // Send the fault to commit.  This thread will not do anything
691        // until commit handles the fault.  The only other way it can
692        // wake up is if a squash comes along and changes the PC.
693        TheISA::PCState fetchPC = pc[tid];
694
695        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
696        // We will use a nop in ordier to carry the fault.
697        DynInstPtr instruction = buildInst(tid,
698                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
699                NULL, fetchPC, fetchPC, false);
700
701        instruction->setPredTarg(fetchPC);
702        instruction->fault = fault;
703        wroteToTimeBuffer = true;
704
705        DPRINTF(Activity, "Activity this cycle.\n");
706        cpu->activityThisCycle();
707
708        fetchStatus[tid] = TrapPending;
709
710        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
711        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
712                tid, fault->name(), pc[tid]);
713    }
714    _status = updateFetchStatus();
715}
716
717template <class Impl>
718inline void
719DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
720                             const DynInstPtr squashInst, ThreadID tid)
721{
722    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
723            tid, newPC);
724
725    pc[tid] = newPC;
726    fetchOffset[tid] = 0;
727    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
728        macroop[tid] = squashInst->macroop;
729    else
730        macroop[tid] = NULL;
731    decoder[tid]->reset();
732
733    // Clear the icache miss if it's outstanding.
734    if (fetchStatus[tid] == IcacheWaitResponse) {
735        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
736                tid);
737        memReq[tid] = NULL;
738    } else if (fetchStatus[tid] == ItlbWait) {
739        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
740                tid);
741        memReq[tid] = NULL;
742    }
743
744    // Get rid of the retrying packet if it was from this thread.
745    if (retryTid == tid) {
746        assert(cacheBlocked);
747        if (retryPkt) {
748            delete retryPkt->req;
749            delete retryPkt;
750        }
751        retryPkt = NULL;
752        retryTid = InvalidThreadID;
753    }
754
755    fetchStatus[tid] = Squashing;
756
757    // microops are being squashed, it is not known wheather the
758    // youngest non-squashed microop was  marked delayed commit
759    // or not. Setting the flag to true ensures that the
760    // interrupts are not handled when they cannot be, though
761    // some opportunities to handle interrupts may be missed.
762    delayedCommit[tid] = true;
763
764    ++fetchSquashCycles;
765}
766
767template<class Impl>
768void
769DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
770                                     const DynInstPtr squashInst,
771                                     const InstSeqNum seq_num, ThreadID tid)
772{
773    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
774
775    doSquash(newPC, squashInst, tid);
776
777    // Tell the CPU to remove any instructions that are in flight between
778    // fetch and decode.
779    cpu->removeInstsUntil(seq_num, tid);
780}
781
782template<class Impl>
783bool
784DefaultFetch<Impl>::checkStall(ThreadID tid) const
785{
786    bool ret_val = false;
787
788    if (cpu->contextSwitch) {
789        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
790        ret_val = true;
791    } else if (stalls[tid].drain) {
792        assert(cpu->isDraining());
793        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
794        ret_val = true;
795    } else if (stalls[tid].decode) {
796        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
797        ret_val = true;
798    } else if (stalls[tid].rename) {
799        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
800        ret_val = true;
801    } else if (stalls[tid].iew) {
802        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
803        ret_val = true;
804    } else if (stalls[tid].commit) {
805        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
806        ret_val = true;
807    }
808
809    return ret_val;
810}
811
812template<class Impl>
813typename DefaultFetch<Impl>::FetchStatus
814DefaultFetch<Impl>::updateFetchStatus()
815{
816    //Check Running
817    list<ThreadID>::iterator threads = activeThreads->begin();
818    list<ThreadID>::iterator end = activeThreads->end();
819
820    while (threads != end) {
821        ThreadID tid = *threads++;
822
823        if (fetchStatus[tid] == Running ||
824            fetchStatus[tid] == Squashing ||
825            fetchStatus[tid] == IcacheAccessComplete) {
826
827            if (_status == Inactive) {
828                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
829
830                if (fetchStatus[tid] == IcacheAccessComplete) {
831                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
832                            "completion\n",tid);
833                }
834
835                cpu->activateStage(O3CPU::FetchIdx);
836            }
837
838            return Active;
839        }
840    }
841
842    // Stage is switching from active to inactive, notify CPU of it.
843    if (_status == Active) {
844        DPRINTF(Activity, "Deactivating stage.\n");
845
846        cpu->deactivateStage(O3CPU::FetchIdx);
847    }
848
849    return Inactive;
850}
851
852template <class Impl>
853void
854DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
855                           const InstSeqNum seq_num, DynInstPtr squashInst,
856                           ThreadID tid)
857{
858    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
859
860    doSquash(newPC, squashInst, tid);
861
862    // Tell the CPU to remove any instructions that are not in the ROB.
863    cpu->removeInstsNotInROB(tid);
864}
865
866template <class Impl>
867void
868DefaultFetch<Impl>::tick()
869{
870    list<ThreadID>::iterator threads = activeThreads->begin();
871    list<ThreadID>::iterator end = activeThreads->end();
872    bool status_change = false;
873
874    wroteToTimeBuffer = false;
875
876    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
877        issuePipelinedIfetch[i] = false;
878    }
879
880    while (threads != end) {
881        ThreadID tid = *threads++;
882
883        // Check the signals for each thread to determine the proper status
884        // for each thread.
885        bool updated_status = checkSignalsAndUpdate(tid);
886        status_change =  status_change || updated_status;
887    }
888
889    DPRINTF(Fetch, "Running stage.\n");
890
891    if (FullSystem) {
892        if (fromCommit->commitInfo[0].interruptPending) {
893            interruptPending = true;
894        }
895
896        if (fromCommit->commitInfo[0].clearInterrupt) {
897            interruptPending = false;
898        }
899    }
900
901    for (threadFetched = 0; threadFetched < numFetchingThreads;
902         threadFetched++) {
903        // Fetch each of the actively fetching threads.
904        fetch(status_change);
905    }
906
907    // Record number of instructions fetched this cycle for distribution.
908    fetchNisnDist.sample(numInst);
909
910    if (status_change) {
911        // Change the fetch stage status if there was a status change.
912        _status = updateFetchStatus();
913    }
914
915    // If there was activity this cycle, inform the CPU of it.
916    if (wroteToTimeBuffer || cpu->contextSwitch) {
917        DPRINTF(Activity, "Activity this cycle.\n");
918
919        cpu->activityThisCycle();
920    }
921
922    // Issue the next I-cache request if possible.
923    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
924        if (issuePipelinedIfetch[i]) {
925            pipelineIcacheAccesses(i);
926        }
927    }
928
929    // Reset the number of the instruction we've fetched.
930    numInst = 0;
931}
932
933template <class Impl>
934bool
935DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
936{
937    // Update the per thread stall statuses.
938    if (fromDecode->decodeBlock[tid]) {
939        stalls[tid].decode = true;
940    }
941
942    if (fromDecode->decodeUnblock[tid]) {
943        assert(stalls[tid].decode);
944        assert(!fromDecode->decodeBlock[tid]);
945        stalls[tid].decode = false;
946    }
947
948    if (fromRename->renameBlock[tid]) {
949        stalls[tid].rename = true;
950    }
951
952    if (fromRename->renameUnblock[tid]) {
953        assert(stalls[tid].rename);
954        assert(!fromRename->renameBlock[tid]);
955        stalls[tid].rename = false;
956    }
957
958    if (fromIEW->iewBlock[tid]) {
959        stalls[tid].iew = true;
960    }
961
962    if (fromIEW->iewUnblock[tid]) {
963        assert(stalls[tid].iew);
964        assert(!fromIEW->iewBlock[tid]);
965        stalls[tid].iew = false;
966    }
967
968    if (fromCommit->commitBlock[tid]) {
969        stalls[tid].commit = true;
970    }
971
972    if (fromCommit->commitUnblock[tid]) {
973        assert(stalls[tid].commit);
974        assert(!fromCommit->commitBlock[tid]);
975        stalls[tid].commit = false;
976    }
977
978    // Check squash signals from commit.
979    if (fromCommit->commitInfo[tid].squash) {
980
981        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
982                "from commit.\n",tid);
983        // In any case, squash.
984        squash(fromCommit->commitInfo[tid].pc,
985               fromCommit->commitInfo[tid].doneSeqNum,
986               fromCommit->commitInfo[tid].squashInst, tid);
987
988        // If it was a branch mispredict on a control instruction, update the
989        // branch predictor with that instruction, otherwise just kill the
990        // invalid state we generated in after sequence number
991        if (fromCommit->commitInfo[tid].mispredictInst &&
992            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
993            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
994                              fromCommit->commitInfo[tid].pc,
995                              fromCommit->commitInfo[tid].branchTaken,
996                              tid);
997        } else {
998            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
999                              tid);
1000        }
1001
1002        return true;
1003    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1004        // Update the branch predictor if it wasn't a squashed instruction
1005        // that was broadcasted.
1006        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1007    }
1008
1009    // Check ROB squash signals from commit.
1010    if (fromCommit->commitInfo[tid].robSquashing) {
1011        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1012
1013        // Continue to squash.
1014        fetchStatus[tid] = Squashing;
1015
1016        return true;
1017    }
1018
1019    // Check squash signals from decode.
1020    if (fromDecode->decodeInfo[tid].squash) {
1021        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1022                "from decode.\n",tid);
1023
1024        // Update the branch predictor.
1025        if (fromDecode->decodeInfo[tid].branchMispredict) {
1026            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1027                              fromDecode->decodeInfo[tid].nextPC,
1028                              fromDecode->decodeInfo[tid].branchTaken,
1029                              tid);
1030        } else {
1031            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1032                              tid);
1033        }
1034
1035        if (fetchStatus[tid] != Squashing) {
1036
1037            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1038                fromDecode->decodeInfo[tid].nextPC);
1039            // Squash unless we're already squashing
1040            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1041                             fromDecode->decodeInfo[tid].squashInst,
1042                             fromDecode->decodeInfo[tid].doneSeqNum,
1043                             tid);
1044
1045            return true;
1046        }
1047    }
1048
1049    if (checkStall(tid) &&
1050        fetchStatus[tid] != IcacheWaitResponse &&
1051        fetchStatus[tid] != IcacheWaitRetry) {
1052        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1053
1054        fetchStatus[tid] = Blocked;
1055
1056        return true;
1057    }
1058
1059    if (fetchStatus[tid] == Blocked ||
1060        fetchStatus[tid] == Squashing) {
1061        // Switch status to running if fetch isn't being told to block or
1062        // squash this cycle.
1063        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1064                tid);
1065
1066        fetchStatus[tid] = Running;
1067
1068        return true;
1069    }
1070
1071    // If we've reached this point, we have not gotten any signals that
1072    // cause fetch to change its status.  Fetch remains the same as before.
1073    return false;
1074}
1075
1076template<class Impl>
1077typename Impl::DynInstPtr
1078DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1079                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1080                              TheISA::PCState nextPC, bool trace)
1081{
1082    // Get a sequence number.
1083    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1084
1085    // Create a new DynInst from the instruction fetched.
1086    DynInstPtr instruction =
1087        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1088    instruction->setTid(tid);
1089
1090    instruction->setASID(tid);
1091
1092    instruction->setThreadState(cpu->thread[tid]);
1093
1094    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1095            "[sn:%lli].\n", tid, thisPC.instAddr(),
1096            thisPC.microPC(), seq);
1097
1098    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1099            instruction->staticInst->
1100            disassemble(thisPC.instAddr()));
1101
1102#if TRACING_ON
1103    if (trace) {
1104        instruction->traceData =
1105            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1106                    instruction->staticInst, thisPC, curMacroop);
1107    }
1108#else
1109    instruction->traceData = NULL;
1110#endif
1111
1112    // Add instruction to the CPU's list of instructions.
1113    instruction->setInstListIt(cpu->addInst(instruction));
1114
1115    // Write the instruction to the first slot in the queue
1116    // that heads to decode.
1117    assert(numInst < fetchWidth);
1118    toDecode->insts[toDecode->size++] = instruction;
1119
1120    // Keep track of if we can take an interrupt at this boundary
1121    delayedCommit[tid] = instruction->isDelayedCommit();
1122
1123    return instruction;
1124}
1125
1126template<class Impl>
1127void
1128DefaultFetch<Impl>::fetch(bool &status_change)
1129{
1130    //////////////////////////////////////////
1131    // Start actual fetch
1132    //////////////////////////////////////////
1133    ThreadID tid = getFetchingThread(fetchPolicy);
1134
1135    assert(!cpu->switchedOut());
1136
1137    if (tid == InvalidThreadID) {
1138        // Breaks looping condition in tick()
1139        threadFetched = numFetchingThreads;
1140
1141        if (numThreads == 1) {  // @todo Per-thread stats
1142            profileStall(0);
1143        }
1144
1145        return;
1146    }
1147
1148    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1149
1150    // The current PC.
1151    TheISA::PCState thisPC = pc[tid];
1152
1153    Addr pcOffset = fetchOffset[tid];
1154    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1155
1156    bool inRom = isRomMicroPC(thisPC.microPC());
1157
1158    // If returning from the delay of a cache miss, then update the status
1159    // to running, otherwise do the cache access.  Possibly move this up
1160    // to tick() function.
1161    if (fetchStatus[tid] == IcacheAccessComplete) {
1162        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1163
1164        fetchStatus[tid] = Running;
1165        status_change = true;
1166    } else if (fetchStatus[tid] == Running) {
1167        // Align the fetch PC so its at the start of a cache block.
1168        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1169
1170        // If buffer is no longer valid or fetchAddr has moved to point
1171        // to the next cache block, AND we have no remaining ucode
1172        // from a macro-op, then start fetch from icache.
1173        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1174            && !inRom && !macroop[tid]) {
1175            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1176                    "instruction, starting at PC %s.\n", tid, thisPC);
1177
1178            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1179
1180            if (fetchStatus[tid] == IcacheWaitResponse)
1181                ++icacheStallCycles;
1182            else if (fetchStatus[tid] == ItlbWait)
1183                ++fetchTlbCycles;
1184            else
1185                ++fetchMiscStallCycles;
1186            return;
1187        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1188            // Stall CPU if an interrupt is posted and we're not issuing
1189            // an delayed commit micro-op currently (delayed commit instructions
1190            // are not interruptable by interrupts, only faults)
1191            ++fetchMiscStallCycles;
1192            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1193            return;
1194        }
1195    } else {
1196        if (fetchStatus[tid] == Idle) {
1197            ++fetchIdleCycles;
1198            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1199        }
1200
1201        // Status is Idle, so fetch should do nothing.
1202        return;
1203    }
1204
1205    ++fetchCycles;
1206
1207    TheISA::PCState nextPC = thisPC;
1208
1209    StaticInstPtr staticInst = NULL;
1210    StaticInstPtr curMacroop = macroop[tid];
1211
1212    // If the read of the first instruction was successful, then grab the
1213    // instructions from the rest of the cache line and put them into the
1214    // queue heading to decode.
1215
1216    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1217            "decode.\n", tid);
1218
1219    // Need to keep track of whether or not a predicted branch
1220    // ended this fetch block.
1221    bool predictedBranch = false;
1222
1223    TheISA::MachInst *cacheInsts =
1224        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1225
1226    const unsigned numInsts = cacheBlkSize / instSize;
1227    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1228
1229    // Loop through instruction memory from the cache.
1230    // Keep issuing while fetchWidth is available and branch is not
1231    // predicted taken
1232    while (numInst < fetchWidth && !predictedBranch) {
1233
1234        // We need to process more memory if we aren't going to get a
1235        // StaticInst from the rom, the current macroop, or what's already
1236        // in the decoder.
1237        bool needMem = !inRom && !curMacroop &&
1238            !decoder[tid]->instReady();
1239        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1240        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1241
1242        if (needMem) {
1243            // If buffer is no longer valid or fetchAddr has moved to point
1244            // to the next cache block then start fetch from icache.
1245            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1246                break;
1247
1248            if (blkOffset >= numInsts) {
1249                // We need to process more memory, but we've run out of the
1250                // current block.
1251                break;
1252            }
1253
1254            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1255                // Walk past any annulled delay slot instructions.
1256                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1257                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1258                    blkOffset++;
1259                    fetchAddr += instSize;
1260                }
1261                if (blkOffset >= numInsts)
1262                    break;
1263            }
1264
1265            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1266            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1267
1268            if (decoder[tid]->needMoreBytes()) {
1269                blkOffset++;
1270                fetchAddr += instSize;
1271                pcOffset += instSize;
1272            }
1273        }
1274
1275        // Extract as many instructions and/or microops as we can from
1276        // the memory we've processed so far.
1277        do {
1278            if (!(curMacroop || inRom)) {
1279                if (decoder[tid]->instReady()) {
1280                    staticInst = decoder[tid]->decode(thisPC);
1281
1282                    // Increment stat of fetched instructions.
1283                    ++fetchedInsts;
1284
1285                    if (staticInst->isMacroop()) {
1286                        curMacroop = staticInst;
1287                    } else {
1288                        pcOffset = 0;
1289                    }
1290                } else {
1291                    // We need more bytes for this instruction so blkOffset and
1292                    // pcOffset will be updated
1293                    break;
1294                }
1295            }
1296            // Whether we're moving to a new macroop because we're at the
1297            // end of the current one, or the branch predictor incorrectly
1298            // thinks we are...
1299            bool newMacro = false;
1300            if (curMacroop || inRom) {
1301                if (inRom) {
1302                    staticInst = cpu->microcodeRom.fetchMicroop(
1303                            thisPC.microPC(), curMacroop);
1304                } else {
1305                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1306                }
1307                newMacro |= staticInst->isLastMicroop();
1308            }
1309
1310            DynInstPtr instruction =
1311                buildInst(tid, staticInst, curMacroop,
1312                          thisPC, nextPC, true);
1313
1314            numInst++;
1315
1316#if TRACING_ON
1317            if (DTRACE(O3PipeView)) {
1318                instruction->fetchTick = curTick();
1319            }
1320#endif
1321
1322            nextPC = thisPC;
1323
1324            // If we're branching after this instruction, quite fetching
1325            // from the same block then.
1326            predictedBranch |= thisPC.branching();
1327            predictedBranch |=
1328                lookupAndUpdateNextPC(instruction, nextPC);
1329            if (predictedBranch) {
1330                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1331            }
1332
1333            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1334
1335            // Move to the next instruction, unless we have a branch.
1336            thisPC = nextPC;
1337            inRom = isRomMicroPC(thisPC.microPC());
1338
1339            if (newMacro) {
1340                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1341                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1342                pcOffset = 0;
1343                curMacroop = NULL;
1344            }
1345
1346            if (instruction->isQuiesce()) {
1347                DPRINTF(Fetch,
1348                        "Quiesce instruction encountered, halting fetch!");
1349                fetchStatus[tid] = QuiescePending;
1350                status_change = true;
1351                break;
1352            }
1353        } while ((curMacroop || decoder[tid]->instReady()) &&
1354                 numInst < fetchWidth);
1355    }
1356
1357    if (predictedBranch) {
1358        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1359                "instruction encountered.\n", tid);
1360    } else if (numInst >= fetchWidth) {
1361        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1362                "for this cycle.\n", tid);
1363    } else if (blkOffset >= cacheBlkSize) {
1364        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1365                "block.\n", tid);
1366    }
1367
1368    macroop[tid] = curMacroop;
1369    fetchOffset[tid] = pcOffset;
1370
1371    if (numInst > 0) {
1372        wroteToTimeBuffer = true;
1373    }
1374
1375    pc[tid] = thisPC;
1376
1377    // pipeline a fetch if we're crossing a cache boundary and not in
1378    // a state that would preclude fetching
1379    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1380    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1381    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1382        fetchStatus[tid] != IcacheWaitResponse &&
1383        fetchStatus[tid] != ItlbWait &&
1384        fetchStatus[tid] != IcacheWaitRetry &&
1385        fetchStatus[tid] != QuiescePending &&
1386        !curMacroop;
1387}
1388
1389template<class Impl>
1390void
1391DefaultFetch<Impl>::recvRetry()
1392{
1393    if (retryPkt != NULL) {
1394        assert(cacheBlocked);
1395        assert(retryTid != InvalidThreadID);
1396        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1397
1398        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1399            fetchStatus[retryTid] = IcacheWaitResponse;
1400            retryPkt = NULL;
1401            retryTid = InvalidThreadID;
1402            cacheBlocked = false;
1403        }
1404    } else {
1405        assert(retryTid == InvalidThreadID);
1406        // Access has been squashed since it was sent out.  Just clear
1407        // the cache being blocked.
1408        cacheBlocked = false;
1409    }
1410}
1411
1412///////////////////////////////////////
1413//                                   //
1414//  SMT FETCH POLICY MAINTAINED HERE //
1415//                                   //
1416///////////////////////////////////////
1417template<class Impl>
1418ThreadID
1419DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1420{
1421    if (numThreads > 1) {
1422        switch (fetch_priority) {
1423
1424          case SingleThread:
1425            return 0;
1426
1427          case RoundRobin:
1428            return roundRobin();
1429
1430          case IQ:
1431            return iqCount();
1432
1433          case LSQ:
1434            return lsqCount();
1435
1436          case Branch:
1437            return branchCount();
1438
1439          default:
1440            return InvalidThreadID;
1441        }
1442    } else {
1443        list<ThreadID>::iterator thread = activeThreads->begin();
1444        if (thread == activeThreads->end()) {
1445            return InvalidThreadID;
1446        }
1447
1448        ThreadID tid = *thread;
1449
1450        if (fetchStatus[tid] == Running ||
1451            fetchStatus[tid] == IcacheAccessComplete ||
1452            fetchStatus[tid] == Idle) {
1453            return tid;
1454        } else {
1455            return InvalidThreadID;
1456        }
1457    }
1458}
1459
1460
1461template<class Impl>
1462ThreadID
1463DefaultFetch<Impl>::roundRobin()
1464{
1465    list<ThreadID>::iterator pri_iter = priorityList.begin();
1466    list<ThreadID>::iterator end      = priorityList.end();
1467
1468    ThreadID high_pri;
1469
1470    while (pri_iter != end) {
1471        high_pri = *pri_iter;
1472
1473        assert(high_pri <= numThreads);
1474
1475        if (fetchStatus[high_pri] == Running ||
1476            fetchStatus[high_pri] == IcacheAccessComplete ||
1477            fetchStatus[high_pri] == Idle) {
1478
1479            priorityList.erase(pri_iter);
1480            priorityList.push_back(high_pri);
1481
1482            return high_pri;
1483        }
1484
1485        pri_iter++;
1486    }
1487
1488    return InvalidThreadID;
1489}
1490
1491template<class Impl>
1492ThreadID
1493DefaultFetch<Impl>::iqCount()
1494{
1495    std::priority_queue<unsigned> PQ;
1496    std::map<unsigned, ThreadID> threadMap;
1497
1498    list<ThreadID>::iterator threads = activeThreads->begin();
1499    list<ThreadID>::iterator end = activeThreads->end();
1500
1501    while (threads != end) {
1502        ThreadID tid = *threads++;
1503        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1504
1505        PQ.push(iqCount);
1506        threadMap[iqCount] = tid;
1507    }
1508
1509    while (!PQ.empty()) {
1510        ThreadID high_pri = threadMap[PQ.top()];
1511
1512        if (fetchStatus[high_pri] == Running ||
1513            fetchStatus[high_pri] == IcacheAccessComplete ||
1514            fetchStatus[high_pri] == Idle)
1515            return high_pri;
1516        else
1517            PQ.pop();
1518
1519    }
1520
1521    return InvalidThreadID;
1522}
1523
1524template<class Impl>
1525ThreadID
1526DefaultFetch<Impl>::lsqCount()
1527{
1528    std::priority_queue<unsigned> PQ;
1529    std::map<unsigned, ThreadID> threadMap;
1530
1531    list<ThreadID>::iterator threads = activeThreads->begin();
1532    list<ThreadID>::iterator end = activeThreads->end();
1533
1534    while (threads != end) {
1535        ThreadID tid = *threads++;
1536        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1537
1538        PQ.push(ldstqCount);
1539        threadMap[ldstqCount] = tid;
1540    }
1541
1542    while (!PQ.empty()) {
1543        ThreadID high_pri = threadMap[PQ.top()];
1544
1545        if (fetchStatus[high_pri] == Running ||
1546            fetchStatus[high_pri] == IcacheAccessComplete ||
1547            fetchStatus[high_pri] == Idle)
1548            return high_pri;
1549        else
1550            PQ.pop();
1551    }
1552
1553    return InvalidThreadID;
1554}
1555
1556template<class Impl>
1557ThreadID
1558DefaultFetch<Impl>::branchCount()
1559{
1560#if 0
1561    list<ThreadID>::iterator thread = activeThreads->begin();
1562    assert(thread != activeThreads->end());
1563    ThreadID tid = *thread;
1564#endif
1565
1566    panic("Branch Count Fetch policy unimplemented\n");
1567    return InvalidThreadID;
1568}
1569
1570template<class Impl>
1571void
1572DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1573{
1574    if (!issuePipelinedIfetch[tid]) {
1575        return;
1576    }
1577
1578    // The next PC to access.
1579    TheISA::PCState thisPC = pc[tid];
1580
1581    if (isRomMicroPC(thisPC.microPC())) {
1582        return;
1583    }
1584
1585    Addr pcOffset = fetchOffset[tid];
1586    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1587
1588    // Align the fetch PC so its at the start of a cache block.
1589    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1590
1591    // Unless buffer already got the block, fetch it from icache.
1592    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1593        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1594                "starting at PC %s.\n", tid, thisPC);
1595
1596        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1597    }
1598}
1599
1600template<class Impl>
1601void
1602DefaultFetch<Impl>::profileStall(ThreadID tid) {
1603    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1604
1605    // @todo Per-thread stats
1606
1607    if (stalls[tid].drain) {
1608        ++fetchPendingDrainCycles;
1609        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1610    } else if (activeThreads->empty()) {
1611        ++fetchNoActiveThreadStallCycles;
1612        DPRINTF(Fetch, "Fetch has no active thread!\n");
1613    } else if (fetchStatus[tid] == Blocked) {
1614        ++fetchBlockedCycles;
1615        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1616    } else if (fetchStatus[tid] == Squashing) {
1617        ++fetchSquashCycles;
1618        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1619    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1620        ++icacheStallCycles;
1621        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1622                tid);
1623    } else if (fetchStatus[tid] == ItlbWait) {
1624        ++fetchTlbCycles;
1625        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1626                "finish!\n", tid);
1627    } else if (fetchStatus[tid] == TrapPending) {
1628        ++fetchPendingTrapStallCycles;
1629        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1630                tid);
1631    } else if (fetchStatus[tid] == QuiescePending) {
1632        ++fetchPendingQuiesceStallCycles;
1633        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1634                "instruction!\n", tid);
1635    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1636        ++fetchIcacheWaitRetryStallCycles;
1637        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1638                tid);
1639    } else if (fetchStatus[tid] == NoGoodAddr) {
1640            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1641                    tid);
1642    } else {
1643        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1644             tid, fetchStatus[tid]);
1645    }
1646}
1647