fetch_impl.hh revision 9480:d059f8a95a42
1298SN/A/*
22188SN/A * Copyright (c) 2010-2012 ARM Limited
3298SN/A * All rights reserved.
4298SN/A *
5298SN/A * The license below extends only to copyright in the software and shall
6298SN/A * not be construed as granting a license to any other intellectual
7298SN/A * property including but not limited to intellectual property relating
8298SN/A * to a hardware implementation of the functionality of the software
9298SN/A * licensed hereunder.  You may use the software subject to the license
10298SN/A * terms below provided that you ensure that this notice is replicated
11298SN/A * unmodified and in its entirety in all distributions of the software,
12298SN/A * modified or unmodified, in source code or in binary form.
13298SN/A *
14298SN/A * Copyright (c) 2004-2006 The Regents of The University of Michigan
15298SN/A * All rights reserved.
16298SN/A *
17298SN/A * Redistribution and use in source and binary forms, with or without
18298SN/A * modification, are permitted provided that the following conditions are
19298SN/A * met: redistributions of source code must retain the above copyright
20298SN/A * notice, this list of conditions and the following disclaimer;
21298SN/A * redistributions in binary form must reproduce the above copyright
22298SN/A * notice, this list of conditions and the following disclaimer in the
23298SN/A * documentation and/or other materials provided with the distribution;
24298SN/A * neither the name of the copyright holders nor the names of its
25298SN/A * contributors may be used to endorse or promote products derived from
26298SN/A * this software without specific prior written permission.
272665Ssaidi@eecs.umich.edu *
282665Ssaidi@eecs.umich.edu * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29298SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30298SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
311642SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32954SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33956SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34956SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35299SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36299SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
372170SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
383089Ssaidi@eecs.umich.edu * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
391717SN/A *
402680Sktlim@umich.edu * Authors: Kevin Lim
412313SN/A *          Korey Sewell
423565Sgblack@eecs.umich.edu */
43299SN/A
443565Sgblack@eecs.umich.edu#include <algorithm>
45298SN/A#include <cstring>
46298SN/A#include <list>
47695SN/A#include <map>
48695SN/A#include <queue>
49954SN/A
501052SN/A#include "arch/isa_traits.hh"
512080SN/A#include "arch/tlb.hh"
52298SN/A#include "arch/utility.hh"
53299SN/A#include "arch/vtophys.hh"
541052SN/A#include "base/types.hh"
55729SN/A#include "config/the_isa.hh"
562107SN/A#include "cpu/base.hh"
57298SN/A//#include "cpu/checker/cpu.hh"
58298SN/A#include "cpu/o3/fetch.hh"
59298SN/A#include "cpu/exetrace.hh"
60299SN/A#include "debug/Activity.hh"
61299SN/A#include "debug/Drain.hh"
62310SN/A#include "debug/Fetch.hh"
63310SN/A#include "mem/packet.hh"
64310SN/A#include "params/DerivO3CPU.hh"
652680Sktlim@umich.edu#include "sim/byteswap.hh"
66711SN/A#include "sim/core.hh"
672680Sktlim@umich.edu#include "sim/eventq.hh"
682680Sktlim@umich.edu#include "sim/full_system.hh"
69711SN/A#include "sim/system.hh"
70711SN/A
71711SN/Ausing namespace std;
722680Sktlim@umich.edu
73310SN/Atemplate<class Impl>
74310SN/ADefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
75310SN/A    : cpu(_cpu),
76310SN/A      decodeToFetchDelay(params->decodeToFetchDelay),
773373Sstever@eecs.umich.edu      renameToFetchDelay(params->renameToFetchDelay),
783373Sstever@eecs.umich.edu      iewToFetchDelay(params->iewToFetchDelay),
792680Sktlim@umich.edu      commitToFetchDelay(params->commitToFetchDelay),
802680Sktlim@umich.edu      fetchWidth(params->fetchWidth),
812680Sktlim@umich.edu      retryPkt(NULL),
82310SN/A      retryTid(InvalidThreadID),
83299SN/A      numThreads(params->numThreads),
84298SN/A      numFetchingThreads(params->smtNumFetchingThreads),
852680Sktlim@umich.edu      finishTranslationEvent(this)
862188SN/A{
872188SN/A    if (numThreads > Impl::MaxThreads)
882188SN/A        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
892188SN/A              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
902680Sktlim@umich.edu              numThreads, static_cast<int>(Impl::MaxThreads));
912235SN/A    if (fetchWidth > Impl::MaxWidth)
923368Sstever@eecs.umich.edu        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
933368Sstever@eecs.umich.edu             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
942235SN/A             fetchWidth, static_cast<int>(Impl::MaxWidth));
953368Sstever@eecs.umich.edu
962188SN/A    std::string policy = params->smtFetchPolicy;
973368Sstever@eecs.umich.edu
983368Sstever@eecs.umich.edu    // Convert string to lowercase
993368Sstever@eecs.umich.edu    std::transform(policy.begin(), policy.end(), policy.begin(),
1003368Sstever@eecs.umich.edu                   (int(*)(int)) tolower);
1012188SN/A
1022680Sktlim@umich.edu    // Figure out fetch policy
1032680Sktlim@umich.edu    if (policy == "singlethread") {
1042680Sktlim@umich.edu        fetchPolicy = SingleThread;
1052188SN/A        if (numThreads > 1)
1062188SN/A            panic("Invalid Fetch Policy for a SMT workload.");
1072188SN/A    } else if (policy == "roundrobin") {
1082680Sktlim@umich.edu        fetchPolicy = RoundRobin;
1092188SN/A        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
1102188SN/A    } else if (policy == "branch") {
1112188SN/A        fetchPolicy = Branch;
1122188SN/A        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
1132680Sktlim@umich.edu    } else if (policy == "iqcount") {
1142235SN/A        fetchPolicy = IQ;
1153368Sstever@eecs.umich.edu        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
1163368Sstever@eecs.umich.edu    } else if (policy == "lsqcount") {
1172235SN/A        fetchPolicy = LSQ;
1183368Sstever@eecs.umich.edu        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
1192188SN/A    } else {
1203368Sstever@eecs.umich.edu        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
1213368Sstever@eecs.umich.edu              " RoundRobin,LSQcount,IQcount}\n");
1223368Sstever@eecs.umich.edu    }
1233368Sstever@eecs.umich.edu
1242188SN/A    // Get the size of an instruction.
1252680Sktlim@umich.edu    instSize = sizeof(TheISA::MachInst);
1262680Sktlim@umich.edu
1272680Sktlim@umich.edu    for (int i = 0; i < Impl::MaxThreads; i++) {
1282188SN/A        cacheData[i] = NULL;
1292188SN/A        decoder[i] = new TheISA::Decoder;
1302188SN/A    }
1312680Sktlim@umich.edu
1322188SN/A    branchPred = params->branchPred;
1332680Sktlim@umich.edu}
1342188SN/A
1352188SN/Atemplate <class Impl>
1362188SN/Astd::string
1372680Sktlim@umich.eduDefaultFetch<Impl>::name() const
138298SN/A{
1393144Shsul@eecs.umich.edu    return cpu->name() + ".fetch";
140298SN/A}
141298SN/A
142298SN/Atemplate <class Impl>
1432680Sktlim@umich.eduvoid
144298SN/ADefaultFetch<Impl>::regStats()
1451609SN/A{
1463144Shsul@eecs.umich.edu    icacheStallCycles
147298SN/A        .name(name() + ".icacheStallCycles")
148298SN/A        .desc("Number of cycles fetch is stalled on an Icache miss")
149298SN/A        .prereq(icacheStallCycles);
1503126Sktlim@umich.edu
1512358SN/A    fetchedInsts
1523126Sktlim@umich.edu        .name(name() + ".Insts")
1532358SN/A        .desc("Number of instructions fetch has processed")
1542358SN/A        .prereq(fetchedInsts);
1552358SN/A
1562358SN/A    fetchedBranches
1572358SN/A        .name(name() + ".Branches")
1582358SN/A        .desc("Number of branches that fetch encountered")
1592358SN/A        .prereq(fetchedBranches);
1602358SN/A
1612358SN/A    predictedBranches
1622358SN/A        .name(name() + ".predictedBranches")
1632358SN/A        .desc("Number of branches that fetch has predicted taken")
1642358SN/A        .prereq(predictedBranches);
1652358SN/A
1662358SN/A    fetchCycles
1672358SN/A        .name(name() + ".Cycles")
1682358SN/A        .desc("Number of cycles fetch has run and was not squashing or"
1692358SN/A              " blocked")
1702358SN/A        .prereq(fetchCycles);
1712358SN/A
1722358SN/A    fetchSquashCycles
1732358SN/A        .name(name() + ".SquashCycles")
1742358SN/A        .desc("Number of cycles fetch has spent squashing")
1752358SN/A        .prereq(fetchSquashCycles);
1762358SN/A
1772358SN/A    fetchTlbCycles
1782358SN/A        .name(name() + ".TlbCycles")
1792358SN/A        .desc("Number of cycles fetch has spent waiting for tlb")
1802358SN/A        .prereq(fetchTlbCycles);
1812358SN/A
1822358SN/A    fetchIdleCycles
1832358SN/A        .name(name() + ".IdleCycles")
1842358SN/A        .desc("Number of cycles fetch was idle")
1852358SN/A        .prereq(fetchIdleCycles);
1862358SN/A
1872358SN/A    fetchBlockedCycles
1883126Sktlim@umich.edu        .name(name() + ".BlockedCycles")
1892358SN/A        .desc("Number of cycles fetch has spent blocked")
1902358SN/A        .prereq(fetchBlockedCycles);
1912358SN/A
1922358SN/A    fetchedCacheLines
1932358SN/A        .name(name() + ".CacheLines")
1942358SN/A        .desc("Number of cache lines fetched")
1952358SN/A        .prereq(fetchedCacheLines);
1962358SN/A
1972358SN/A    fetchMiscStallCycles
1982680Sktlim@umich.edu        .name(name() + ".MiscStallCycles")
199298SN/A        .desc("Number of cycles fetch has spent waiting on interrupts, or "
200299SN/A              "bad addresses, or out of MSHRs")
201299SN/A        .prereq(fetchMiscStallCycles);
202299SN/A
203298SN/A    fetchPendingDrainCycles
2041609SN/A        .name(name() + ".PendingDrainCycles")
2051609SN/A        .desc("Number of cycles fetch has spent waiting on pipes to drain")
206298SN/A        .prereq(fetchPendingDrainCycles);
207729SN/A
208298SN/A    fetchNoActiveThreadStallCycles
209298SN/A        .name(name() + ".NoActiveThreadStallCycles")
210298SN/A        .desc("Number of stall cycles due to no active thread to fetch from")
211298SN/A        .prereq(fetchNoActiveThreadStallCycles);
2122680Sktlim@umich.edu
213298SN/A    fetchPendingTrapStallCycles
214299SN/A        .name(name() + ".PendingTrapStallCycles")
215299SN/A        .desc("Number of stall cycles due to pending traps")
216299SN/A        .prereq(fetchPendingTrapStallCycles);
217298SN/A
2181609SN/A    fetchPendingQuiesceStallCycles
2191609SN/A        .name(name() + ".PendingQuiesceStallCycles")
220298SN/A        .desc("Number of stall cycles due to pending quiesce instructions")
221729SN/A        .prereq(fetchPendingQuiesceStallCycles);
222298SN/A
223298SN/A    fetchIcacheWaitRetryStallCycles
224298SN/A        .name(name() + ".IcacheWaitRetryStallCycles")
225298SN/A        .desc("Number of stall cycles due to full MSHR")
2262680Sktlim@umich.edu        .prereq(fetchIcacheWaitRetryStallCycles);
2271973SN/A
2281973SN/A    fetchIcacheSquashes
2292680Sktlim@umich.edu        .name(name() + ".IcacheSquashes")
2301973SN/A        .desc("Number of outstanding Icache misses that were squashed")
2311973SN/A        .prereq(fetchIcacheSquashes);
2321973SN/A
2331973SN/A    fetchTlbSquashes
2342680Sktlim@umich.edu        .name(name() + ".ItlbSquashes")
2351973SN/A        .desc("Number of outstanding ITLB misses that were squashed")
2361973SN/A        .prereq(fetchTlbSquashes);
2371973SN/A
2383089Ssaidi@eecs.umich.edu    fetchNisnDist
2393089Ssaidi@eecs.umich.edu        .init(/* base value */ 0,
2403089Ssaidi@eecs.umich.edu              /* last value */ fetchWidth,
2413089Ssaidi@eecs.umich.edu              /* bucket size */ 1)
2423089Ssaidi@eecs.umich.edu        .name(name() + ".rateDist")
2433089Ssaidi@eecs.umich.edu        .desc("Number of instructions fetched each cycle (Total)")
2443089Ssaidi@eecs.umich.edu        .flags(Stats::pdf);
2453089Ssaidi@eecs.umich.edu
2463089Ssaidi@eecs.umich.edu    idleRate
2473089Ssaidi@eecs.umich.edu        .name(name() + ".idleRate")
2483089Ssaidi@eecs.umich.edu        .desc("Percent of cycles fetch was idle")
2493089Ssaidi@eecs.umich.edu        .prereq(idleRate);
2503089Ssaidi@eecs.umich.edu    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
2513089Ssaidi@eecs.umich.edu
2523089Ssaidi@eecs.umich.edu    branchRate
2532680Sktlim@umich.edu        .name(name() + ".branchRate")
254298SN/A        .desc("Number of branch fetches per cycle")
255299SN/A        .flags(Stats::total);
256299SN/A    branchRate = fetchedBranches / cpu->numCycles;
257299SN/A
258298SN/A    fetchRate
2591609SN/A        .name(name() + ".rate")
2601609SN/A        .desc("Number of inst fetches per cycle")
261298SN/A        .flags(Stats::total);
262729SN/A    fetchRate = fetchedInsts / cpu->numCycles;
263298SN/A}
264298SN/A
265298SN/Atemplate<class Impl>
266298SN/Avoid
2672680Sktlim@umich.eduDefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
268298SN/A{
269299SN/A    timeBuffer = time_buffer;
270299SN/A
2713144Shsul@eecs.umich.edu    // Create wires to get information from proper places in time buffer.
2723144Shsul@eecs.umich.edu    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
2733144Shsul@eecs.umich.edu    fromRename = timeBuffer->getWire(-renameToFetchDelay);
2743144Shsul@eecs.umich.edu    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
2753144Shsul@eecs.umich.edu    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
276298SN/A}
277298SN/A
2782081SN/Atemplate<class Impl>
2792680Sktlim@umich.eduvoid
280954SN/ADefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
2812680Sktlim@umich.edu{
282954SN/A    activeThreads = at_ptr;
2832081SN/A}
284954SN/A
285954SN/Atemplate<class Impl>
286954SN/Avoid
287954SN/ADefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
288954SN/A{
289954SN/A    fetchQueue = fq_ptr;
290954SN/A
291954SN/A    // Create wire to write information to proper place in fetch queue.
2921642SN/A    toDecode = fetchQueue->getWire(0);
2931642SN/A}
2941642SN/A
295954SN/Atemplate<class Impl>
296954SN/Avoid
297954SN/ADefaultFetch<Impl>::startupStage()
2981642SN/A{
299954SN/A    assert(priorityList.empty());
300954SN/A    resetStage();
301954SN/A
302954SN/A    // Fetch needs to start fetching instructions at the very beginning,
303954SN/A    // so it must start up in active state.
304954SN/A    switchToActive();
305954SN/A}
306954SN/A
307954SN/Atemplate<class Impl>
3082680Sktlim@umich.eduvoid
309954SN/ADefaultFetch<Impl>::resetStage()
3102081SN/A{
311954SN/A    numInst = 0;
312954SN/A    interruptPending = false;
313299SN/A    cacheBlocked = false;
314299SN/A
315299SN/A    priorityList.clear();
316299SN/A
317299SN/A    // Setup PC and nextPC with initial state.
318299SN/A    for (ThreadID tid = 0; tid < numThreads; tid++) {
319299SN/A        fetchStatus[tid] = Running;
3201343SN/A        pc[tid] = cpu->pcState(tid);
321299SN/A        fetchOffset[tid] = 0;
322310SN/A        macroop[tid] = NULL;
323310SN/A
324310SN/A        delayedCommit[tid] = false;
325300SN/A        memReq[tid] = NULL;
326310SN/A
327301SN/A        stalls[tid].decode = false;
328300SN/A        stalls[tid].rename = false;
329310SN/A        stalls[tid].iew = false;
330301SN/A        stalls[tid].commit = false;
331299SN/A        stalls[tid].drain = false;
332299SN/A
333299SN/A        priorityList.push_back(tid);
334299SN/A    }
335310SN/A
336299SN/A    wroteToTimeBuffer = false;
337299SN/A    _status = Inactive;
338299SN/A
3391052SN/A    // this CPU could still be unconnected if we are restoring from a
3402680Sktlim@umich.edu    // checkpoint and this CPU is to be switched in, thus we can only
3411052SN/A    // do this here if the instruction port is actually connected, if
3421052SN/A    // not we have to do it as part of takeOverFrom.
3431052SN/A    if (cpu->getInstPort().isConnected())
3441052SN/A        setIcache();
3452680Sktlim@umich.edu}
3461052SN/A
3472841Sktlim@umich.edutemplate<class Impl>
3481052SN/Avoid
349298SN/ADefaultFetch<Impl>::setIcache()
350{
351    assert(cpu->getInstPort().isConnected());
352
353    // Size of cache block.
354    cacheBlkSize = cpu->getInstPort().peerBlockSize();
355
356    // Create mask to get rid of offset bits.
357    cacheBlkMask = (cacheBlkSize - 1);
358
359    for (ThreadID tid = 0; tid < numThreads; tid++) {
360        // Create space to store a cache line.
361        if (!cacheData[tid])
362            cacheData[tid] = new uint8_t[cacheBlkSize];
363        cacheDataPC[tid] = 0;
364        cacheDataValid[tid] = false;
365    }
366}
367
368template<class Impl>
369void
370DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
371{
372    ThreadID tid = pkt->req->threadId();
373
374    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
375    assert(!cpu->switchedOut());
376
377    // Only change the status if it's still waiting on the icache access
378    // to return.
379    if (fetchStatus[tid] != IcacheWaitResponse ||
380        pkt->req != memReq[tid]) {
381        ++fetchIcacheSquashes;
382        delete pkt->req;
383        delete pkt;
384        return;
385    }
386
387    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
388    cacheDataValid[tid] = true;
389
390    // Wake up the CPU (if it went to sleep and was waiting on
391    // this completion event).
392    cpu->wakeCPU();
393
394    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
395            tid);
396
397    switchToActive();
398
399    // Only switch to IcacheAccessComplete if we're not stalled as well.
400    if (checkStall(tid)) {
401        fetchStatus[tid] = Blocked;
402    } else {
403        fetchStatus[tid] = IcacheAccessComplete;
404    }
405
406    // Reset the mem req to NULL.
407    delete pkt->req;
408    delete pkt;
409    memReq[tid] = NULL;
410}
411
412template <class Impl>
413void
414DefaultFetch<Impl>::drainResume()
415{
416    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
417        stalls[i].drain = false;
418}
419
420template <class Impl>
421void
422DefaultFetch<Impl>::drainSanityCheck() const
423{
424    assert(isDrained());
425    assert(retryPkt == NULL);
426    assert(retryTid == InvalidThreadID);
427    assert(cacheBlocked == false);
428    assert(interruptPending == false);
429
430    for (ThreadID i = 0; i < numThreads; ++i) {
431        assert(!memReq[i]);
432        assert(!stalls[i].decode);
433        assert(!stalls[i].rename);
434        assert(!stalls[i].iew);
435        assert(!stalls[i].commit);
436        assert(fetchStatus[i] == Idle || stalls[i].drain);
437    }
438
439    branchPred->drainSanityCheck();
440}
441
442template <class Impl>
443bool
444DefaultFetch<Impl>::isDrained() const
445{
446    /* Make sure that threads are either idle of that the commit stage
447     * has signaled that draining has completed by setting the drain
448     * stall flag. This effectively forces the pipeline to be disabled
449     * until the whole system is drained (simulation may continue to
450     * drain other components).
451     */
452    for (ThreadID i = 0; i < numThreads; ++i) {
453        if (!(fetchStatus[i] == Idle ||
454              (fetchStatus[i] == Blocked && stalls[i].drain)))
455            return false;
456    }
457
458    /* The pipeline might start up again in the middle of the drain
459     * cycle if the finish translation event is scheduled, so make
460     * sure that's not the case.
461     */
462    return !finishTranslationEvent.scheduled();
463}
464
465template <class Impl>
466void
467DefaultFetch<Impl>::takeOverFrom()
468{
469    assert(cpu->getInstPort().isConnected());
470    resetStage();
471
472}
473
474template <class Impl>
475void
476DefaultFetch<Impl>::drainStall(ThreadID tid)
477{
478    assert(cpu->isDraining());
479    assert(!stalls[tid].drain);
480    DPRINTF(Drain, "%i: Thread drained.\n", tid);
481    stalls[tid].drain = true;
482}
483
484template <class Impl>
485void
486DefaultFetch<Impl>::wakeFromQuiesce()
487{
488    DPRINTF(Fetch, "Waking up from quiesce\n");
489    // Hopefully this is safe
490    // @todo: Allow other threads to wake from quiesce.
491    fetchStatus[0] = Running;
492}
493
494template <class Impl>
495inline void
496DefaultFetch<Impl>::switchToActive()
497{
498    if (_status == Inactive) {
499        DPRINTF(Activity, "Activating stage.\n");
500
501        cpu->activateStage(O3CPU::FetchIdx);
502
503        _status = Active;
504    }
505}
506
507template <class Impl>
508inline void
509DefaultFetch<Impl>::switchToInactive()
510{
511    if (_status == Active) {
512        DPRINTF(Activity, "Deactivating stage.\n");
513
514        cpu->deactivateStage(O3CPU::FetchIdx);
515
516        _status = Inactive;
517    }
518}
519
520template <class Impl>
521bool
522DefaultFetch<Impl>::lookupAndUpdateNextPC(
523        DynInstPtr &inst, TheISA::PCState &nextPC)
524{
525    // Do branch prediction check here.
526    // A bit of a misnomer...next_PC is actually the current PC until
527    // this function updates it.
528    bool predict_taken;
529
530    if (!inst->isControl()) {
531        TheISA::advancePC(nextPC, inst->staticInst);
532        inst->setPredTarg(nextPC);
533        inst->setPredTaken(false);
534        return false;
535    }
536
537    ThreadID tid = inst->threadNumber;
538    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
539                                        nextPC, tid);
540
541    if (predict_taken) {
542        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
543                tid, inst->seqNum, nextPC);
544    } else {
545        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
546                tid, inst->seqNum);
547    }
548
549    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
550            tid, inst->seqNum, nextPC);
551    inst->setPredTarg(nextPC);
552    inst->setPredTaken(predict_taken);
553
554    ++fetchedBranches;
555
556    if (predict_taken) {
557        ++predictedBranches;
558    }
559
560    return predict_taken;
561}
562
563template <class Impl>
564bool
565DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
566{
567    Fault fault = NoFault;
568
569    assert(!cpu->switchedOut());
570
571    // @todo: not sure if these should block translation.
572    //AlphaDep
573    if (cacheBlocked) {
574        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
575                tid);
576        return false;
577    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
578        // Hold off fetch from getting new instructions when:
579        // Cache is blocked, or
580        // while an interrupt is pending and we're not in PAL mode, or
581        // fetch is switched out.
582        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
583                tid);
584        return false;
585    }
586
587    // Align the fetch address so it's at the start of a cache block.
588    Addr block_PC = icacheBlockAlignPC(vaddr);
589
590    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
591            tid, block_PC, vaddr);
592
593    // Setup the memReq to do a read of the first instruction's address.
594    // Set the appropriate read size and flags as well.
595    // Build request here.
596    RequestPtr mem_req =
597        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
598                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
599
600    memReq[tid] = mem_req;
601
602    // Initiate translation of the icache block
603    fetchStatus[tid] = ItlbWait;
604    FetchTranslation *trans = new FetchTranslation(this);
605    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
606                              trans, BaseTLB::Execute);
607    return true;
608}
609
610template <class Impl>
611void
612DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
613{
614    ThreadID tid = mem_req->threadId();
615    Addr block_PC = mem_req->getVaddr();
616
617    assert(!cpu->switchedOut());
618
619    // Wake up CPU if it was idle
620    cpu->wakeCPU();
621
622    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
623        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
624        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
625                tid);
626        ++fetchTlbSquashes;
627        delete mem_req;
628        return;
629    }
630
631
632    // If translation was successful, attempt to read the icache block.
633    if (fault == NoFault) {
634        // Check that we're not going off into random memory
635        // If we have, just wait around for commit to squash something and put
636        // us on the right track
637        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
638            warn("Address %#x is outside of physical memory, stopping fetch\n",
639                    mem_req->getPaddr());
640            fetchStatus[tid] = NoGoodAddr;
641            delete mem_req;
642            memReq[tid] = NULL;
643            return;
644        }
645
646        // Build packet here.
647        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
648        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
649
650        cacheDataPC[tid] = block_PC;
651        cacheDataValid[tid] = false;
652        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
653
654        fetchedCacheLines++;
655
656        // Access the cache.
657        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
658            assert(retryPkt == NULL);
659            assert(retryTid == InvalidThreadID);
660            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
661
662            fetchStatus[tid] = IcacheWaitRetry;
663            retryPkt = data_pkt;
664            retryTid = tid;
665            cacheBlocked = true;
666        } else {
667            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
668            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
669                    "response.\n", tid);
670
671            lastIcacheStall[tid] = curTick();
672            fetchStatus[tid] = IcacheWaitResponse;
673        }
674    } else {
675        if (!(numInst < fetchWidth)) {
676            assert(!finishTranslationEvent.scheduled());
677            finishTranslationEvent.setFault(fault);
678            finishTranslationEvent.setReq(mem_req);
679            cpu->schedule(finishTranslationEvent,
680                          cpu->clockEdge(Cycles(1)));
681            return;
682        }
683        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
684                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
685        // Translation faulted, icache request won't be sent.
686        delete mem_req;
687        memReq[tid] = NULL;
688
689        // Send the fault to commit.  This thread will not do anything
690        // until commit handles the fault.  The only other way it can
691        // wake up is if a squash comes along and changes the PC.
692        TheISA::PCState fetchPC = pc[tid];
693
694        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
695        // We will use a nop in ordier to carry the fault.
696        DynInstPtr instruction = buildInst(tid,
697                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
698                NULL, fetchPC, fetchPC, false);
699
700        instruction->setPredTarg(fetchPC);
701        instruction->fault = fault;
702        wroteToTimeBuffer = true;
703
704        DPRINTF(Activity, "Activity this cycle.\n");
705        cpu->activityThisCycle();
706
707        fetchStatus[tid] = TrapPending;
708
709        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
710        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
711                tid, fault->name(), pc[tid]);
712    }
713    _status = updateFetchStatus();
714}
715
716template <class Impl>
717inline void
718DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
719                             const DynInstPtr squashInst, ThreadID tid)
720{
721    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
722            tid, newPC);
723
724    pc[tid] = newPC;
725    fetchOffset[tid] = 0;
726    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
727        macroop[tid] = squashInst->macroop;
728    else
729        macroop[tid] = NULL;
730    decoder[tid]->reset();
731
732    // Clear the icache miss if it's outstanding.
733    if (fetchStatus[tid] == IcacheWaitResponse) {
734        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
735                tid);
736        memReq[tid] = NULL;
737    } else if (fetchStatus[tid] == ItlbWait) {
738        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
739                tid);
740        memReq[tid] = NULL;
741    }
742
743    // Get rid of the retrying packet if it was from this thread.
744    if (retryTid == tid) {
745        assert(cacheBlocked);
746        if (retryPkt) {
747            delete retryPkt->req;
748            delete retryPkt;
749        }
750        retryPkt = NULL;
751        retryTid = InvalidThreadID;
752    }
753
754    fetchStatus[tid] = Squashing;
755
756    // microops are being squashed, it is not known wheather the
757    // youngest non-squashed microop was  marked delayed commit
758    // or not. Setting the flag to true ensures that the
759    // interrupts are not handled when they cannot be, though
760    // some opportunities to handle interrupts may be missed.
761    delayedCommit[tid] = true;
762
763    ++fetchSquashCycles;
764}
765
766template<class Impl>
767void
768DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
769                                     const DynInstPtr squashInst,
770                                     const InstSeqNum seq_num, ThreadID tid)
771{
772    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
773
774    doSquash(newPC, squashInst, tid);
775
776    // Tell the CPU to remove any instructions that are in flight between
777    // fetch and decode.
778    cpu->removeInstsUntil(seq_num, tid);
779}
780
781template<class Impl>
782bool
783DefaultFetch<Impl>::checkStall(ThreadID tid) const
784{
785    bool ret_val = false;
786
787    if (cpu->contextSwitch) {
788        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
789        ret_val = true;
790    } else if (stalls[tid].drain) {
791        assert(cpu->isDraining());
792        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
793        ret_val = true;
794    } else if (stalls[tid].decode) {
795        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
796        ret_val = true;
797    } else if (stalls[tid].rename) {
798        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
799        ret_val = true;
800    } else if (stalls[tid].iew) {
801        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
802        ret_val = true;
803    } else if (stalls[tid].commit) {
804        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
805        ret_val = true;
806    }
807
808    return ret_val;
809}
810
811template<class Impl>
812typename DefaultFetch<Impl>::FetchStatus
813DefaultFetch<Impl>::updateFetchStatus()
814{
815    //Check Running
816    list<ThreadID>::iterator threads = activeThreads->begin();
817    list<ThreadID>::iterator end = activeThreads->end();
818
819    while (threads != end) {
820        ThreadID tid = *threads++;
821
822        if (fetchStatus[tid] == Running ||
823            fetchStatus[tid] == Squashing ||
824            fetchStatus[tid] == IcacheAccessComplete) {
825
826            if (_status == Inactive) {
827                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
828
829                if (fetchStatus[tid] == IcacheAccessComplete) {
830                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
831                            "completion\n",tid);
832                }
833
834                cpu->activateStage(O3CPU::FetchIdx);
835            }
836
837            return Active;
838        }
839    }
840
841    // Stage is switching from active to inactive, notify CPU of it.
842    if (_status == Active) {
843        DPRINTF(Activity, "Deactivating stage.\n");
844
845        cpu->deactivateStage(O3CPU::FetchIdx);
846    }
847
848    return Inactive;
849}
850
851template <class Impl>
852void
853DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
854                           const InstSeqNum seq_num, DynInstPtr squashInst,
855                           ThreadID tid)
856{
857    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
858
859    doSquash(newPC, squashInst, tid);
860
861    // Tell the CPU to remove any instructions that are not in the ROB.
862    cpu->removeInstsNotInROB(tid);
863}
864
865template <class Impl>
866void
867DefaultFetch<Impl>::tick()
868{
869    list<ThreadID>::iterator threads = activeThreads->begin();
870    list<ThreadID>::iterator end = activeThreads->end();
871    bool status_change = false;
872
873    wroteToTimeBuffer = false;
874
875    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
876        issuePipelinedIfetch[i] = false;
877    }
878
879    while (threads != end) {
880        ThreadID tid = *threads++;
881
882        // Check the signals for each thread to determine the proper status
883        // for each thread.
884        bool updated_status = checkSignalsAndUpdate(tid);
885        status_change =  status_change || updated_status;
886    }
887
888    DPRINTF(Fetch, "Running stage.\n");
889
890    if (FullSystem) {
891        if (fromCommit->commitInfo[0].interruptPending) {
892            interruptPending = true;
893        }
894
895        if (fromCommit->commitInfo[0].clearInterrupt) {
896            interruptPending = false;
897        }
898    }
899
900    for (threadFetched = 0; threadFetched < numFetchingThreads;
901         threadFetched++) {
902        // Fetch each of the actively fetching threads.
903        fetch(status_change);
904    }
905
906    // Record number of instructions fetched this cycle for distribution.
907    fetchNisnDist.sample(numInst);
908
909    if (status_change) {
910        // Change the fetch stage status if there was a status change.
911        _status = updateFetchStatus();
912    }
913
914    // If there was activity this cycle, inform the CPU of it.
915    if (wroteToTimeBuffer || cpu->contextSwitch) {
916        DPRINTF(Activity, "Activity this cycle.\n");
917
918        cpu->activityThisCycle();
919    }
920
921    // Issue the next I-cache request if possible.
922    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
923        if (issuePipelinedIfetch[i]) {
924            pipelineIcacheAccesses(i);
925        }
926    }
927
928    // Reset the number of the instruction we've fetched.
929    numInst = 0;
930}
931
932template <class Impl>
933bool
934DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
935{
936    // Update the per thread stall statuses.
937    if (fromDecode->decodeBlock[tid]) {
938        stalls[tid].decode = true;
939    }
940
941    if (fromDecode->decodeUnblock[tid]) {
942        assert(stalls[tid].decode);
943        assert(!fromDecode->decodeBlock[tid]);
944        stalls[tid].decode = false;
945    }
946
947    if (fromRename->renameBlock[tid]) {
948        stalls[tid].rename = true;
949    }
950
951    if (fromRename->renameUnblock[tid]) {
952        assert(stalls[tid].rename);
953        assert(!fromRename->renameBlock[tid]);
954        stalls[tid].rename = false;
955    }
956
957    if (fromIEW->iewBlock[tid]) {
958        stalls[tid].iew = true;
959    }
960
961    if (fromIEW->iewUnblock[tid]) {
962        assert(stalls[tid].iew);
963        assert(!fromIEW->iewBlock[tid]);
964        stalls[tid].iew = false;
965    }
966
967    if (fromCommit->commitBlock[tid]) {
968        stalls[tid].commit = true;
969    }
970
971    if (fromCommit->commitUnblock[tid]) {
972        assert(stalls[tid].commit);
973        assert(!fromCommit->commitBlock[tid]);
974        stalls[tid].commit = false;
975    }
976
977    // Check squash signals from commit.
978    if (fromCommit->commitInfo[tid].squash) {
979
980        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
981                "from commit.\n",tid);
982        // In any case, squash.
983        squash(fromCommit->commitInfo[tid].pc,
984               fromCommit->commitInfo[tid].doneSeqNum,
985               fromCommit->commitInfo[tid].squashInst, tid);
986
987        // If it was a branch mispredict on a control instruction, update the
988        // branch predictor with that instruction, otherwise just kill the
989        // invalid state we generated in after sequence number
990        if (fromCommit->commitInfo[tid].mispredictInst &&
991            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
992            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
993                              fromCommit->commitInfo[tid].pc,
994                              fromCommit->commitInfo[tid].branchTaken,
995                              tid);
996        } else {
997            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
998                              tid);
999        }
1000
1001        return true;
1002    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1003        // Update the branch predictor if it wasn't a squashed instruction
1004        // that was broadcasted.
1005        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1006    }
1007
1008    // Check ROB squash signals from commit.
1009    if (fromCommit->commitInfo[tid].robSquashing) {
1010        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1011
1012        // Continue to squash.
1013        fetchStatus[tid] = Squashing;
1014
1015        return true;
1016    }
1017
1018    // Check squash signals from decode.
1019    if (fromDecode->decodeInfo[tid].squash) {
1020        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1021                "from decode.\n",tid);
1022
1023        // Update the branch predictor.
1024        if (fromDecode->decodeInfo[tid].branchMispredict) {
1025            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1026                              fromDecode->decodeInfo[tid].nextPC,
1027                              fromDecode->decodeInfo[tid].branchTaken,
1028                              tid);
1029        } else {
1030            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1031                              tid);
1032        }
1033
1034        if (fetchStatus[tid] != Squashing) {
1035
1036            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1037                fromDecode->decodeInfo[tid].nextPC);
1038            // Squash unless we're already squashing
1039            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1040                             fromDecode->decodeInfo[tid].squashInst,
1041                             fromDecode->decodeInfo[tid].doneSeqNum,
1042                             tid);
1043
1044            return true;
1045        }
1046    }
1047
1048    if (checkStall(tid) &&
1049        fetchStatus[tid] != IcacheWaitResponse &&
1050        fetchStatus[tid] != IcacheWaitRetry) {
1051        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1052
1053        fetchStatus[tid] = Blocked;
1054
1055        return true;
1056    }
1057
1058    if (fetchStatus[tid] == Blocked ||
1059        fetchStatus[tid] == Squashing) {
1060        // Switch status to running if fetch isn't being told to block or
1061        // squash this cycle.
1062        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1063                tid);
1064
1065        fetchStatus[tid] = Running;
1066
1067        return true;
1068    }
1069
1070    // If we've reached this point, we have not gotten any signals that
1071    // cause fetch to change its status.  Fetch remains the same as before.
1072    return false;
1073}
1074
1075template<class Impl>
1076typename Impl::DynInstPtr
1077DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1078                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1079                              TheISA::PCState nextPC, bool trace)
1080{
1081    // Get a sequence number.
1082    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1083
1084    // Create a new DynInst from the instruction fetched.
1085    DynInstPtr instruction =
1086        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1087    instruction->setTid(tid);
1088
1089    instruction->setASID(tid);
1090
1091    instruction->setThreadState(cpu->thread[tid]);
1092
1093    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1094            "[sn:%lli].\n", tid, thisPC.instAddr(),
1095            thisPC.microPC(), seq);
1096
1097    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1098            instruction->staticInst->
1099            disassemble(thisPC.instAddr()));
1100
1101#if TRACING_ON
1102    if (trace) {
1103        instruction->traceData =
1104            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1105                    instruction->staticInst, thisPC, curMacroop);
1106    }
1107#else
1108    instruction->traceData = NULL;
1109#endif
1110
1111    // Add instruction to the CPU's list of instructions.
1112    instruction->setInstListIt(cpu->addInst(instruction));
1113
1114    // Write the instruction to the first slot in the queue
1115    // that heads to decode.
1116    assert(numInst < fetchWidth);
1117    toDecode->insts[toDecode->size++] = instruction;
1118
1119    // Keep track of if we can take an interrupt at this boundary
1120    delayedCommit[tid] = instruction->isDelayedCommit();
1121
1122    return instruction;
1123}
1124
1125template<class Impl>
1126void
1127DefaultFetch<Impl>::fetch(bool &status_change)
1128{
1129    //////////////////////////////////////////
1130    // Start actual fetch
1131    //////////////////////////////////////////
1132    ThreadID tid = getFetchingThread(fetchPolicy);
1133
1134    assert(!cpu->switchedOut());
1135
1136    if (tid == InvalidThreadID) {
1137        // Breaks looping condition in tick()
1138        threadFetched = numFetchingThreads;
1139
1140        if (numThreads == 1) {  // @todo Per-thread stats
1141            profileStall(0);
1142        }
1143
1144        return;
1145    }
1146
1147    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1148
1149    // The current PC.
1150    TheISA::PCState thisPC = pc[tid];
1151
1152    Addr pcOffset = fetchOffset[tid];
1153    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1154
1155    bool inRom = isRomMicroPC(thisPC.microPC());
1156
1157    // If returning from the delay of a cache miss, then update the status
1158    // to running, otherwise do the cache access.  Possibly move this up
1159    // to tick() function.
1160    if (fetchStatus[tid] == IcacheAccessComplete) {
1161        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1162
1163        fetchStatus[tid] = Running;
1164        status_change = true;
1165    } else if (fetchStatus[tid] == Running) {
1166        // Align the fetch PC so its at the start of a cache block.
1167        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1168
1169        // If buffer is no longer valid or fetchAddr has moved to point
1170        // to the next cache block, AND we have no remaining ucode
1171        // from a macro-op, then start fetch from icache.
1172        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1173            && !inRom && !macroop[tid]) {
1174            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1175                    "instruction, starting at PC %s.\n", tid, thisPC);
1176
1177            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1178
1179            if (fetchStatus[tid] == IcacheWaitResponse)
1180                ++icacheStallCycles;
1181            else if (fetchStatus[tid] == ItlbWait)
1182                ++fetchTlbCycles;
1183            else
1184                ++fetchMiscStallCycles;
1185            return;
1186        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1187            // Stall CPU if an interrupt is posted and we're not issuing
1188            // an delayed commit micro-op currently (delayed commit instructions
1189            // are not interruptable by interrupts, only faults)
1190            ++fetchMiscStallCycles;
1191            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1192            return;
1193        }
1194    } else {
1195        if (fetchStatus[tid] == Idle) {
1196            ++fetchIdleCycles;
1197            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1198        }
1199
1200        // Status is Idle, so fetch should do nothing.
1201        return;
1202    }
1203
1204    ++fetchCycles;
1205
1206    TheISA::PCState nextPC = thisPC;
1207
1208    StaticInstPtr staticInst = NULL;
1209    StaticInstPtr curMacroop = macroop[tid];
1210
1211    // If the read of the first instruction was successful, then grab the
1212    // instructions from the rest of the cache line and put them into the
1213    // queue heading to decode.
1214
1215    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1216            "decode.\n", tid);
1217
1218    // Need to keep track of whether or not a predicted branch
1219    // ended this fetch block.
1220    bool predictedBranch = false;
1221
1222    TheISA::MachInst *cacheInsts =
1223        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1224
1225    const unsigned numInsts = cacheBlkSize / instSize;
1226    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1227
1228    // Loop through instruction memory from the cache.
1229    // Keep issuing while fetchWidth is available and branch is not
1230    // predicted taken
1231    while (numInst < fetchWidth && !predictedBranch) {
1232
1233        // We need to process more memory if we aren't going to get a
1234        // StaticInst from the rom, the current macroop, or what's already
1235        // in the decoder.
1236        bool needMem = !inRom && !curMacroop &&
1237            !decoder[tid]->instReady();
1238        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1239        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1240
1241        if (needMem) {
1242            // If buffer is no longer valid or fetchAddr has moved to point
1243            // to the next cache block then start fetch from icache.
1244            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1245                break;
1246
1247            if (blkOffset >= numInsts) {
1248                // We need to process more memory, but we've run out of the
1249                // current block.
1250                break;
1251            }
1252
1253            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1254                // Walk past any annulled delay slot instructions.
1255                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1256                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1257                    blkOffset++;
1258                    fetchAddr += instSize;
1259                }
1260                if (blkOffset >= numInsts)
1261                    break;
1262            }
1263
1264            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1265            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1266
1267            if (decoder[tid]->needMoreBytes()) {
1268                blkOffset++;
1269                fetchAddr += instSize;
1270                pcOffset += instSize;
1271            }
1272        }
1273
1274        // Extract as many instructions and/or microops as we can from
1275        // the memory we've processed so far.
1276        do {
1277            if (!(curMacroop || inRom)) {
1278                if (decoder[tid]->instReady()) {
1279                    staticInst = decoder[tid]->decode(thisPC);
1280
1281                    // Increment stat of fetched instructions.
1282                    ++fetchedInsts;
1283
1284                    if (staticInst->isMacroop()) {
1285                        curMacroop = staticInst;
1286                    } else {
1287                        pcOffset = 0;
1288                    }
1289                } else {
1290                    // We need more bytes for this instruction so blkOffset and
1291                    // pcOffset will be updated
1292                    break;
1293                }
1294            }
1295            // Whether we're moving to a new macroop because we're at the
1296            // end of the current one, or the branch predictor incorrectly
1297            // thinks we are...
1298            bool newMacro = false;
1299            if (curMacroop || inRom) {
1300                if (inRom) {
1301                    staticInst = cpu->microcodeRom.fetchMicroop(
1302                            thisPC.microPC(), curMacroop);
1303                } else {
1304                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1305                }
1306                newMacro |= staticInst->isLastMicroop();
1307            }
1308
1309            DynInstPtr instruction =
1310                buildInst(tid, staticInst, curMacroop,
1311                          thisPC, nextPC, true);
1312
1313            numInst++;
1314
1315#if TRACING_ON
1316            instruction->fetchTick = curTick();
1317#endif
1318
1319            nextPC = thisPC;
1320
1321            // If we're branching after this instruction, quite fetching
1322            // from the same block then.
1323            predictedBranch |= thisPC.branching();
1324            predictedBranch |=
1325                lookupAndUpdateNextPC(instruction, nextPC);
1326            if (predictedBranch) {
1327                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1328            }
1329
1330            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1331
1332            // Move to the next instruction, unless we have a branch.
1333            thisPC = nextPC;
1334            inRom = isRomMicroPC(thisPC.microPC());
1335
1336            if (newMacro) {
1337                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1338                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1339                pcOffset = 0;
1340                curMacroop = NULL;
1341            }
1342
1343            if (instruction->isQuiesce()) {
1344                DPRINTF(Fetch,
1345                        "Quiesce instruction encountered, halting fetch!");
1346                fetchStatus[tid] = QuiescePending;
1347                status_change = true;
1348                break;
1349            }
1350        } while ((curMacroop || decoder[tid]->instReady()) &&
1351                 numInst < fetchWidth);
1352    }
1353
1354    if (predictedBranch) {
1355        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1356                "instruction encountered.\n", tid);
1357    } else if (numInst >= fetchWidth) {
1358        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1359                "for this cycle.\n", tid);
1360    } else if (blkOffset >= cacheBlkSize) {
1361        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1362                "block.\n", tid);
1363    }
1364
1365    macroop[tid] = curMacroop;
1366    fetchOffset[tid] = pcOffset;
1367
1368    if (numInst > 0) {
1369        wroteToTimeBuffer = true;
1370    }
1371
1372    pc[tid] = thisPC;
1373
1374    // pipeline a fetch if we're crossing a cache boundary and not in
1375    // a state that would preclude fetching
1376    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1377    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1378    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1379        fetchStatus[tid] != IcacheWaitResponse &&
1380        fetchStatus[tid] != ItlbWait &&
1381        fetchStatus[tid] != IcacheWaitRetry &&
1382        fetchStatus[tid] != QuiescePending &&
1383        !curMacroop;
1384}
1385
1386template<class Impl>
1387void
1388DefaultFetch<Impl>::recvRetry()
1389{
1390    if (retryPkt != NULL) {
1391        assert(cacheBlocked);
1392        assert(retryTid != InvalidThreadID);
1393        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1394
1395        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1396            fetchStatus[retryTid] = IcacheWaitResponse;
1397            retryPkt = NULL;
1398            retryTid = InvalidThreadID;
1399            cacheBlocked = false;
1400        }
1401    } else {
1402        assert(retryTid == InvalidThreadID);
1403        // Access has been squashed since it was sent out.  Just clear
1404        // the cache being blocked.
1405        cacheBlocked = false;
1406    }
1407}
1408
1409///////////////////////////////////////
1410//                                   //
1411//  SMT FETCH POLICY MAINTAINED HERE //
1412//                                   //
1413///////////////////////////////////////
1414template<class Impl>
1415ThreadID
1416DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1417{
1418    if (numThreads > 1) {
1419        switch (fetch_priority) {
1420
1421          case SingleThread:
1422            return 0;
1423
1424          case RoundRobin:
1425            return roundRobin();
1426
1427          case IQ:
1428            return iqCount();
1429
1430          case LSQ:
1431            return lsqCount();
1432
1433          case Branch:
1434            return branchCount();
1435
1436          default:
1437            return InvalidThreadID;
1438        }
1439    } else {
1440        list<ThreadID>::iterator thread = activeThreads->begin();
1441        if (thread == activeThreads->end()) {
1442            return InvalidThreadID;
1443        }
1444
1445        ThreadID tid = *thread;
1446
1447        if (fetchStatus[tid] == Running ||
1448            fetchStatus[tid] == IcacheAccessComplete ||
1449            fetchStatus[tid] == Idle) {
1450            return tid;
1451        } else {
1452            return InvalidThreadID;
1453        }
1454    }
1455}
1456
1457
1458template<class Impl>
1459ThreadID
1460DefaultFetch<Impl>::roundRobin()
1461{
1462    list<ThreadID>::iterator pri_iter = priorityList.begin();
1463    list<ThreadID>::iterator end      = priorityList.end();
1464
1465    ThreadID high_pri;
1466
1467    while (pri_iter != end) {
1468        high_pri = *pri_iter;
1469
1470        assert(high_pri <= numThreads);
1471
1472        if (fetchStatus[high_pri] == Running ||
1473            fetchStatus[high_pri] == IcacheAccessComplete ||
1474            fetchStatus[high_pri] == Idle) {
1475
1476            priorityList.erase(pri_iter);
1477            priorityList.push_back(high_pri);
1478
1479            return high_pri;
1480        }
1481
1482        pri_iter++;
1483    }
1484
1485    return InvalidThreadID;
1486}
1487
1488template<class Impl>
1489ThreadID
1490DefaultFetch<Impl>::iqCount()
1491{
1492    std::priority_queue<unsigned> PQ;
1493    std::map<unsigned, ThreadID> threadMap;
1494
1495    list<ThreadID>::iterator threads = activeThreads->begin();
1496    list<ThreadID>::iterator end = activeThreads->end();
1497
1498    while (threads != end) {
1499        ThreadID tid = *threads++;
1500        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1501
1502        PQ.push(iqCount);
1503        threadMap[iqCount] = tid;
1504    }
1505
1506    while (!PQ.empty()) {
1507        ThreadID high_pri = threadMap[PQ.top()];
1508
1509        if (fetchStatus[high_pri] == Running ||
1510            fetchStatus[high_pri] == IcacheAccessComplete ||
1511            fetchStatus[high_pri] == Idle)
1512            return high_pri;
1513        else
1514            PQ.pop();
1515
1516    }
1517
1518    return InvalidThreadID;
1519}
1520
1521template<class Impl>
1522ThreadID
1523DefaultFetch<Impl>::lsqCount()
1524{
1525    std::priority_queue<unsigned> PQ;
1526    std::map<unsigned, ThreadID> threadMap;
1527
1528    list<ThreadID>::iterator threads = activeThreads->begin();
1529    list<ThreadID>::iterator end = activeThreads->end();
1530
1531    while (threads != end) {
1532        ThreadID tid = *threads++;
1533        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1534
1535        PQ.push(ldstqCount);
1536        threadMap[ldstqCount] = tid;
1537    }
1538
1539    while (!PQ.empty()) {
1540        ThreadID high_pri = threadMap[PQ.top()];
1541
1542        if (fetchStatus[high_pri] == Running ||
1543            fetchStatus[high_pri] == IcacheAccessComplete ||
1544            fetchStatus[high_pri] == Idle)
1545            return high_pri;
1546        else
1547            PQ.pop();
1548    }
1549
1550    return InvalidThreadID;
1551}
1552
1553template<class Impl>
1554ThreadID
1555DefaultFetch<Impl>::branchCount()
1556{
1557#if 0
1558    list<ThreadID>::iterator thread = activeThreads->begin();
1559    assert(thread != activeThreads->end());
1560    ThreadID tid = *thread;
1561#endif
1562
1563    panic("Branch Count Fetch policy unimplemented\n");
1564    return InvalidThreadID;
1565}
1566
1567template<class Impl>
1568void
1569DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1570{
1571    if (!issuePipelinedIfetch[tid]) {
1572        return;
1573    }
1574
1575    // The next PC to access.
1576    TheISA::PCState thisPC = pc[tid];
1577
1578    if (isRomMicroPC(thisPC.microPC())) {
1579        return;
1580    }
1581
1582    Addr pcOffset = fetchOffset[tid];
1583    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1584
1585    // Align the fetch PC so its at the start of a cache block.
1586    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1587
1588    // Unless buffer already got the block, fetch it from icache.
1589    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1590        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1591                "starting at PC %s.\n", tid, thisPC);
1592
1593        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1594    }
1595}
1596
1597template<class Impl>
1598void
1599DefaultFetch<Impl>::profileStall(ThreadID tid) {
1600    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1601
1602    // @todo Per-thread stats
1603
1604    if (stalls[tid].drain) {
1605        ++fetchPendingDrainCycles;
1606        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1607    } else if (activeThreads->empty()) {
1608        ++fetchNoActiveThreadStallCycles;
1609        DPRINTF(Fetch, "Fetch has no active thread!\n");
1610    } else if (fetchStatus[tid] == Blocked) {
1611        ++fetchBlockedCycles;
1612        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1613    } else if (fetchStatus[tid] == Squashing) {
1614        ++fetchSquashCycles;
1615        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1616    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1617        ++icacheStallCycles;
1618        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1619                tid);
1620    } else if (fetchStatus[tid] == ItlbWait) {
1621        ++fetchTlbCycles;
1622        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1623                "finish!\n", tid);
1624    } else if (fetchStatus[tid] == TrapPending) {
1625        ++fetchPendingTrapStallCycles;
1626        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1627                tid);
1628    } else if (fetchStatus[tid] == QuiescePending) {
1629        ++fetchPendingQuiesceStallCycles;
1630        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1631                "instruction!\n", tid);
1632    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1633        ++fetchIcacheWaitRetryStallCycles;
1634        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1635                tid);
1636    } else if (fetchStatus[tid] == NoGoodAddr) {
1637            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1638                    tid);
1639    } else {
1640        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1641             tid, fetchStatus[tid]);
1642    }
1643}
1644