fetch_impl.hh revision 8887:20ea02da9c53
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "mem/request.hh"
64#include "params/DerivO3CPU.hh"
65#include "sim/byteswap.hh"
66#include "sim/core.hh"
67#include "sim/eventq.hh"
68#include "sim/full_system.hh"
69#include "sim/system.hh"
70
71using namespace std;
72
73template<class Impl>
74DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
75    : cpu(_cpu),
76      branchPred(params),
77      predecoder(NULL),
78      numInst(0),
79      decodeToFetchDelay(params->decodeToFetchDelay),
80      renameToFetchDelay(params->renameToFetchDelay),
81      iewToFetchDelay(params->iewToFetchDelay),
82      commitToFetchDelay(params->commitToFetchDelay),
83      fetchWidth(params->fetchWidth),
84      cacheBlocked(false),
85      retryPkt(NULL),
86      retryTid(InvalidThreadID),
87      numThreads(params->numThreads),
88      numFetchingThreads(params->smtNumFetchingThreads),
89      interruptPending(false),
90      drainPending(false),
91      switchedOut(false),
92      finishTranslationEvent(this)
93{
94    if (numThreads > Impl::MaxThreads)
95        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
96              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
97              numThreads, static_cast<int>(Impl::MaxThreads));
98
99    // Set fetch stage's status to inactive.
100    _status = Inactive;
101
102    std::string policy = params->smtFetchPolicy;
103
104    // Convert string to lowercase
105    std::transform(policy.begin(), policy.end(), policy.begin(),
106                   (int(*)(int)) tolower);
107
108    // Figure out fetch policy
109    if (policy == "singlethread") {
110        fetchPolicy = SingleThread;
111        if (numThreads > 1)
112            panic("Invalid Fetch Policy for a SMT workload.");
113    } else if (policy == "roundrobin") {
114        fetchPolicy = RoundRobin;
115        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
116    } else if (policy == "branch") {
117        fetchPolicy = Branch;
118        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
119    } else if (policy == "iqcount") {
120        fetchPolicy = IQ;
121        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
122    } else if (policy == "lsqcount") {
123        fetchPolicy = LSQ;
124        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
125    } else {
126        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
127              " RoundRobin,LSQcount,IQcount}\n");
128    }
129
130    // Get the size of an instruction.
131    instSize = sizeof(TheISA::MachInst);
132}
133
134template <class Impl>
135std::string
136DefaultFetch<Impl>::name() const
137{
138    return cpu->name() + ".fetch";
139}
140
141template <class Impl>
142void
143DefaultFetch<Impl>::regStats()
144{
145    icacheStallCycles
146        .name(name() + ".icacheStallCycles")
147        .desc("Number of cycles fetch is stalled on an Icache miss")
148        .prereq(icacheStallCycles);
149
150    fetchedInsts
151        .name(name() + ".Insts")
152        .desc("Number of instructions fetch has processed")
153        .prereq(fetchedInsts);
154
155    fetchedBranches
156        .name(name() + ".Branches")
157        .desc("Number of branches that fetch encountered")
158        .prereq(fetchedBranches);
159
160    predictedBranches
161        .name(name() + ".predictedBranches")
162        .desc("Number of branches that fetch has predicted taken")
163        .prereq(predictedBranches);
164
165    fetchCycles
166        .name(name() + ".Cycles")
167        .desc("Number of cycles fetch has run and was not squashing or"
168              " blocked")
169        .prereq(fetchCycles);
170
171    fetchSquashCycles
172        .name(name() + ".SquashCycles")
173        .desc("Number of cycles fetch has spent squashing")
174        .prereq(fetchSquashCycles);
175
176    fetchTlbCycles
177        .name(name() + ".TlbCycles")
178        .desc("Number of cycles fetch has spent waiting for tlb")
179        .prereq(fetchTlbCycles);
180
181    fetchIdleCycles
182        .name(name() + ".IdleCycles")
183        .desc("Number of cycles fetch was idle")
184        .prereq(fetchIdleCycles);
185
186    fetchBlockedCycles
187        .name(name() + ".BlockedCycles")
188        .desc("Number of cycles fetch has spent blocked")
189        .prereq(fetchBlockedCycles);
190
191    fetchedCacheLines
192        .name(name() + ".CacheLines")
193        .desc("Number of cache lines fetched")
194        .prereq(fetchedCacheLines);
195
196    fetchMiscStallCycles
197        .name(name() + ".MiscStallCycles")
198        .desc("Number of cycles fetch has spent waiting on interrupts, or "
199              "bad addresses, or out of MSHRs")
200        .prereq(fetchMiscStallCycles);
201
202    fetchPendingDrainCycles
203        .name(name() + ".PendingDrainCycles")
204        .desc("Number of cycles fetch has spent waiting on pipes to drain")
205        .prereq(fetchPendingDrainCycles);
206
207    fetchNoActiveThreadStallCycles
208        .name(name() + ".NoActiveThreadStallCycles")
209        .desc("Number of stall cycles due to no active thread to fetch from")
210        .prereq(fetchNoActiveThreadStallCycles);
211
212    fetchPendingTrapStallCycles
213        .name(name() + ".PendingTrapStallCycles")
214        .desc("Number of stall cycles due to pending traps")
215        .prereq(fetchPendingTrapStallCycles);
216
217    fetchPendingQuiesceStallCycles
218        .name(name() + ".PendingQuiesceStallCycles")
219        .desc("Number of stall cycles due to pending quiesce instructions")
220        .prereq(fetchPendingQuiesceStallCycles);
221
222    fetchIcacheWaitRetryStallCycles
223        .name(name() + ".IcacheWaitRetryStallCycles")
224        .desc("Number of stall cycles due to full MSHR")
225        .prereq(fetchIcacheWaitRetryStallCycles);
226
227    fetchIcacheSquashes
228        .name(name() + ".IcacheSquashes")
229        .desc("Number of outstanding Icache misses that were squashed")
230        .prereq(fetchIcacheSquashes);
231
232    fetchTlbSquashes
233        .name(name() + ".ItlbSquashes")
234        .desc("Number of outstanding ITLB misses that were squashed")
235        .prereq(fetchTlbSquashes);
236
237    fetchNisnDist
238        .init(/* base value */ 0,
239              /* last value */ fetchWidth,
240              /* bucket size */ 1)
241        .name(name() + ".rateDist")
242        .desc("Number of instructions fetched each cycle (Total)")
243        .flags(Stats::pdf);
244
245    idleRate
246        .name(name() + ".idleRate")
247        .desc("Percent of cycles fetch was idle")
248        .prereq(idleRate);
249    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
250
251    branchRate
252        .name(name() + ".branchRate")
253        .desc("Number of branch fetches per cycle")
254        .flags(Stats::total);
255    branchRate = fetchedBranches / cpu->numCycles;
256
257    fetchRate
258        .name(name() + ".rate")
259        .desc("Number of inst fetches per cycle")
260        .flags(Stats::total);
261    fetchRate = fetchedInsts / cpu->numCycles;
262
263    branchPred.regStats();
264}
265
266template<class Impl>
267void
268DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
269{
270    timeBuffer = time_buffer;
271
272    // Create wires to get information from proper places in time buffer.
273    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
274    fromRename = timeBuffer->getWire(-renameToFetchDelay);
275    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
276    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
277}
278
279template<class Impl>
280void
281DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
282{
283    activeThreads = at_ptr;
284}
285
286template<class Impl>
287void
288DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
289{
290    fetchQueue = fq_ptr;
291
292    // Create wire to write information to proper place in fetch queue.
293    toDecode = fetchQueue->getWire(0);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::initStage()
299{
300    // Setup PC and nextPC with initial state.
301    for (ThreadID tid = 0; tid < numThreads; tid++) {
302        pc[tid] = cpu->pcState(tid);
303        fetchOffset[tid] = 0;
304        macroop[tid] = NULL;
305        delayedCommit[tid] = false;
306    }
307
308    for (ThreadID tid = 0; tid < numThreads; tid++) {
309
310        fetchStatus[tid] = Running;
311
312        priorityList.push_back(tid);
313
314        memReq[tid] = NULL;
315
316        stalls[tid].decode = false;
317        stalls[tid].rename = false;
318        stalls[tid].iew = false;
319        stalls[tid].commit = false;
320    }
321
322    // Schedule fetch to get the correct PC from the CPU
323    // scheduleFetchStartupEvent(1);
324
325    // Fetch needs to start fetching instructions at the very beginning,
326    // so it must start up in active state.
327    switchToActive();
328}
329
330template<class Impl>
331void
332DefaultFetch<Impl>::setIcache()
333{
334    assert(cpu->getInstPort().isConnected());
335
336    // Size of cache block.
337    cacheBlkSize = cpu->getInstPort().peerBlockSize();
338
339    // Create mask to get rid of offset bits.
340    cacheBlkMask = (cacheBlkSize - 1);
341
342    for (ThreadID tid = 0; tid < numThreads; tid++) {
343        // Create space to store a cache line.
344        cacheData[tid] = new uint8_t[cacheBlkSize];
345        cacheDataPC[tid] = 0;
346        cacheDataValid[tid] = false;
347    }
348}
349
350template<class Impl>
351void
352DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
353{
354    ThreadID tid = pkt->req->threadId();
355
356    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
357
358    assert(!pkt->wasNacked());
359
360    // Only change the status if it's still waiting on the icache access
361    // to return.
362    if (fetchStatus[tid] != IcacheWaitResponse ||
363        pkt->req != memReq[tid] ||
364        isSwitchedOut()) {
365        ++fetchIcacheSquashes;
366        delete pkt->req;
367        delete pkt;
368        return;
369    }
370
371    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
372    cacheDataValid[tid] = true;
373
374    if (!drainPending) {
375        // Wake up the CPU (if it went to sleep and was waiting on
376        // this completion event).
377        cpu->wakeCPU();
378
379        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
380                tid);
381
382        switchToActive();
383    }
384
385    // Only switch to IcacheAccessComplete if we're not stalled as well.
386    if (checkStall(tid)) {
387        fetchStatus[tid] = Blocked;
388    } else {
389        fetchStatus[tid] = IcacheAccessComplete;
390    }
391
392    // Reset the mem req to NULL.
393    delete pkt->req;
394    delete pkt;
395    memReq[tid] = NULL;
396}
397
398template <class Impl>
399bool
400DefaultFetch<Impl>::drain()
401{
402    // Fetch is ready to drain at any time.
403    cpu->signalDrained();
404    drainPending = true;
405    return true;
406}
407
408template <class Impl>
409void
410DefaultFetch<Impl>::resume()
411{
412    drainPending = false;
413}
414
415template <class Impl>
416void
417DefaultFetch<Impl>::switchOut()
418{
419    switchedOut = true;
420    // Branch predictor needs to have its state cleared.
421    branchPred.switchOut();
422}
423
424template <class Impl>
425void
426DefaultFetch<Impl>::takeOverFrom()
427{
428    // the instruction port is now connected so we can get the block
429    // size
430    setIcache();
431
432    // Reset all state
433    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
434        stalls[i].decode = 0;
435        stalls[i].rename = 0;
436        stalls[i].iew = 0;
437        stalls[i].commit = 0;
438        pc[i] = cpu->pcState(i);
439        fetchStatus[i] = Running;
440    }
441    numInst = 0;
442    wroteToTimeBuffer = false;
443    _status = Inactive;
444    switchedOut = false;
445    interruptPending = false;
446    branchPred.takeOverFrom();
447}
448
449template <class Impl>
450void
451DefaultFetch<Impl>::wakeFromQuiesce()
452{
453    DPRINTF(Fetch, "Waking up from quiesce\n");
454    // Hopefully this is safe
455    // @todo: Allow other threads to wake from quiesce.
456    fetchStatus[0] = Running;
457}
458
459template <class Impl>
460inline void
461DefaultFetch<Impl>::switchToActive()
462{
463    if (_status == Inactive) {
464        DPRINTF(Activity, "Activating stage.\n");
465
466        cpu->activateStage(O3CPU::FetchIdx);
467
468        _status = Active;
469    }
470}
471
472template <class Impl>
473inline void
474DefaultFetch<Impl>::switchToInactive()
475{
476    if (_status == Active) {
477        DPRINTF(Activity, "Deactivating stage.\n");
478
479        cpu->deactivateStage(O3CPU::FetchIdx);
480
481        _status = Inactive;
482    }
483}
484
485template <class Impl>
486bool
487DefaultFetch<Impl>::lookupAndUpdateNextPC(
488        DynInstPtr &inst, TheISA::PCState &nextPC)
489{
490    // Do branch prediction check here.
491    // A bit of a misnomer...next_PC is actually the current PC until
492    // this function updates it.
493    bool predict_taken;
494
495    if (!inst->isControl()) {
496        TheISA::advancePC(nextPC, inst->staticInst);
497        inst->setPredTarg(nextPC);
498        inst->setPredTaken(false);
499        return false;
500    }
501
502    ThreadID tid = inst->threadNumber;
503    predict_taken = branchPred.predict(inst, nextPC, tid);
504
505    if (predict_taken) {
506        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
507                tid, inst->seqNum, nextPC);
508    } else {
509        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
510                tid, inst->seqNum);
511    }
512
513    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
514            tid, inst->seqNum, nextPC);
515    inst->setPredTarg(nextPC);
516    inst->setPredTaken(predict_taken);
517
518    ++fetchedBranches;
519
520    if (predict_taken) {
521        ++predictedBranches;
522    }
523
524    return predict_taken;
525}
526
527template <class Impl>
528bool
529DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
530{
531    Fault fault = NoFault;
532
533    // @todo: not sure if these should block translation.
534    //AlphaDep
535    if (cacheBlocked) {
536        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
537                tid);
538        return false;
539    } else if (isSwitchedOut()) {
540        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
541                tid);
542        return false;
543    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
544        // Hold off fetch from getting new instructions when:
545        // Cache is blocked, or
546        // while an interrupt is pending and we're not in PAL mode, or
547        // fetch is switched out.
548        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
549                tid);
550        return false;
551    }
552
553    // Align the fetch address so it's at the start of a cache block.
554    Addr block_PC = icacheBlockAlignPC(vaddr);
555
556    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
557            tid, block_PC, vaddr);
558
559    // Setup the memReq to do a read of the first instruction's address.
560    // Set the appropriate read size and flags as well.
561    // Build request here.
562    RequestPtr mem_req =
563        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
564                    cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
565
566    memReq[tid] = mem_req;
567
568    // Initiate translation of the icache block
569    fetchStatus[tid] = ItlbWait;
570    FetchTranslation *trans = new FetchTranslation(this);
571    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
572                              trans, BaseTLB::Execute);
573    return true;
574}
575
576template <class Impl>
577void
578DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
579{
580    ThreadID tid = mem_req->threadId();
581    Addr block_PC = mem_req->getVaddr();
582
583    // Wake up CPU if it was idle
584    cpu->wakeCPU();
585
586    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
587        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
588        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
589                tid);
590        ++fetchTlbSquashes;
591        delete mem_req;
592        return;
593    }
594
595
596    // If translation was successful, attempt to read the icache block.
597    if (fault == NoFault) {
598        // Check that we're not going off into random memory
599        // If we have, just wait around for commit to squash something and put
600        // us on the right track
601        if (!cpu->system->isMemory(mem_req->getPaddr())) {
602            warn("Address %#x is outside of physical memory, stopping fetch\n",
603                    mem_req->getPaddr());
604            fetchStatus[tid] = NoGoodAddr;
605            delete mem_req;
606            memReq[tid] = NULL;
607            return;
608        }
609
610        // Build packet here.
611        PacketPtr data_pkt = new Packet(mem_req,
612                                        MemCmd::ReadReq, Packet::Broadcast);
613        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
614
615        cacheDataPC[tid] = block_PC;
616        cacheDataValid[tid] = false;
617        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
618
619        fetchedCacheLines++;
620
621        // Access the cache.
622        if (!cpu->getInstPort().sendTiming(data_pkt)) {
623            assert(retryPkt == NULL);
624            assert(retryTid == InvalidThreadID);
625            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
626
627            fetchStatus[tid] = IcacheWaitRetry;
628            retryPkt = data_pkt;
629            retryTid = tid;
630            cacheBlocked = true;
631        } else {
632            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
633            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
634                    "response.\n", tid);
635
636            lastIcacheStall[tid] = curTick();
637            fetchStatus[tid] = IcacheWaitResponse;
638        }
639    } else {
640        if (!(numInst < fetchWidth)) {
641            assert(!finishTranslationEvent.scheduled());
642            finishTranslationEvent.setFault(fault);
643            finishTranslationEvent.setReq(mem_req);
644            cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
645            return;
646        }
647        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
648                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
649        // Translation faulted, icache request won't be sent.
650        delete mem_req;
651        memReq[tid] = NULL;
652
653        // Send the fault to commit.  This thread will not do anything
654        // until commit handles the fault.  The only other way it can
655        // wake up is if a squash comes along and changes the PC.
656        TheISA::PCState fetchPC = pc[tid];
657
658        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
659        // We will use a nop in ordier to carry the fault.
660        DynInstPtr instruction = buildInst(tid,
661                decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
662                NULL, fetchPC, fetchPC, false);
663
664        instruction->setPredTarg(fetchPC);
665        instruction->fault = fault;
666        wroteToTimeBuffer = true;
667
668        DPRINTF(Activity, "Activity this cycle.\n");
669        cpu->activityThisCycle();
670
671        fetchStatus[tid] = TrapPending;
672
673        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
674        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
675                tid, fault->name(), pc[tid]);
676    }
677    _status = updateFetchStatus();
678}
679
680template <class Impl>
681inline void
682DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
683                             const DynInstPtr squashInst, ThreadID tid)
684{
685    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
686            tid, newPC);
687
688    pc[tid] = newPC;
689    fetchOffset[tid] = 0;
690    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
691        macroop[tid] = squashInst->macroop;
692    else
693        macroop[tid] = NULL;
694    predecoder.reset();
695
696    // Clear the icache miss if it's outstanding.
697    if (fetchStatus[tid] == IcacheWaitResponse) {
698        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
699                tid);
700        memReq[tid] = NULL;
701    } else if (fetchStatus[tid] == ItlbWait) {
702        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
703                tid);
704        memReq[tid] = NULL;
705    }
706
707    // Get rid of the retrying packet if it was from this thread.
708    if (retryTid == tid) {
709        assert(cacheBlocked);
710        if (retryPkt) {
711            delete retryPkt->req;
712            delete retryPkt;
713        }
714        retryPkt = NULL;
715        retryTid = InvalidThreadID;
716    }
717
718    fetchStatus[tid] = Squashing;
719
720    // microops are being squashed, it is not known wheather the
721    // youngest non-squashed microop was  marked delayed commit
722    // or not. Setting the flag to true ensures that the
723    // interrupts are not handled when they cannot be, though
724    // some opportunities to handle interrupts may be missed.
725    delayedCommit[tid] = true;
726
727    ++fetchSquashCycles;
728}
729
730template<class Impl>
731void
732DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
733                                     const DynInstPtr squashInst,
734                                     const InstSeqNum seq_num, ThreadID tid)
735{
736    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
737
738    doSquash(newPC, squashInst, tid);
739
740    // Tell the CPU to remove any instructions that are in flight between
741    // fetch and decode.
742    cpu->removeInstsUntil(seq_num, tid);
743}
744
745template<class Impl>
746bool
747DefaultFetch<Impl>::checkStall(ThreadID tid) const
748{
749    bool ret_val = false;
750
751    if (cpu->contextSwitch) {
752        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
753        ret_val = true;
754    } else if (stalls[tid].decode) {
755        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
756        ret_val = true;
757    } else if (stalls[tid].rename) {
758        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
759        ret_val = true;
760    } else if (stalls[tid].iew) {
761        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
762        ret_val = true;
763    } else if (stalls[tid].commit) {
764        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
765        ret_val = true;
766    }
767
768    return ret_val;
769}
770
771template<class Impl>
772typename DefaultFetch<Impl>::FetchStatus
773DefaultFetch<Impl>::updateFetchStatus()
774{
775    //Check Running
776    list<ThreadID>::iterator threads = activeThreads->begin();
777    list<ThreadID>::iterator end = activeThreads->end();
778
779    while (threads != end) {
780        ThreadID tid = *threads++;
781
782        if (fetchStatus[tid] == Running ||
783            fetchStatus[tid] == Squashing ||
784            fetchStatus[tid] == IcacheAccessComplete) {
785
786            if (_status == Inactive) {
787                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
788
789                if (fetchStatus[tid] == IcacheAccessComplete) {
790                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
791                            "completion\n",tid);
792                }
793
794                cpu->activateStage(O3CPU::FetchIdx);
795            }
796
797            return Active;
798        }
799    }
800
801    // Stage is switching from active to inactive, notify CPU of it.
802    if (_status == Active) {
803        DPRINTF(Activity, "Deactivating stage.\n");
804
805        cpu->deactivateStage(O3CPU::FetchIdx);
806    }
807
808    return Inactive;
809}
810
811template <class Impl>
812void
813DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
814                           const InstSeqNum seq_num, DynInstPtr squashInst,
815                           ThreadID tid)
816{
817    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
818
819    doSquash(newPC, squashInst, tid);
820
821    // Tell the CPU to remove any instructions that are not in the ROB.
822    cpu->removeInstsNotInROB(tid);
823}
824
825template <class Impl>
826void
827DefaultFetch<Impl>::tick()
828{
829    list<ThreadID>::iterator threads = activeThreads->begin();
830    list<ThreadID>::iterator end = activeThreads->end();
831    bool status_change = false;
832
833    wroteToTimeBuffer = false;
834
835    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
836        issuePipelinedIfetch[i] = false;
837    }
838
839    while (threads != end) {
840        ThreadID tid = *threads++;
841
842        // Check the signals for each thread to determine the proper status
843        // for each thread.
844        bool updated_status = checkSignalsAndUpdate(tid);
845        status_change =  status_change || updated_status;
846    }
847
848    DPRINTF(Fetch, "Running stage.\n");
849
850    if (FullSystem) {
851        if (fromCommit->commitInfo[0].interruptPending) {
852            interruptPending = true;
853        }
854
855        if (fromCommit->commitInfo[0].clearInterrupt) {
856            interruptPending = false;
857        }
858    }
859
860    for (threadFetched = 0; threadFetched < numFetchingThreads;
861         threadFetched++) {
862        // Fetch each of the actively fetching threads.
863        fetch(status_change);
864    }
865
866    // Record number of instructions fetched this cycle for distribution.
867    fetchNisnDist.sample(numInst);
868
869    if (status_change) {
870        // Change the fetch stage status if there was a status change.
871        _status = updateFetchStatus();
872    }
873
874    // If there was activity this cycle, inform the CPU of it.
875    if (wroteToTimeBuffer || cpu->contextSwitch) {
876        DPRINTF(Activity, "Activity this cycle.\n");
877
878        cpu->activityThisCycle();
879    }
880
881    // Issue the next I-cache request if possible.
882    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
883        if (issuePipelinedIfetch[i]) {
884            pipelineIcacheAccesses(i);
885        }
886    }
887
888    // Reset the number of the instruction we've fetched.
889    numInst = 0;
890}
891
892template <class Impl>
893bool
894DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
895{
896    // Update the per thread stall statuses.
897    if (fromDecode->decodeBlock[tid]) {
898        stalls[tid].decode = true;
899    }
900
901    if (fromDecode->decodeUnblock[tid]) {
902        assert(stalls[tid].decode);
903        assert(!fromDecode->decodeBlock[tid]);
904        stalls[tid].decode = false;
905    }
906
907    if (fromRename->renameBlock[tid]) {
908        stalls[tid].rename = true;
909    }
910
911    if (fromRename->renameUnblock[tid]) {
912        assert(stalls[tid].rename);
913        assert(!fromRename->renameBlock[tid]);
914        stalls[tid].rename = false;
915    }
916
917    if (fromIEW->iewBlock[tid]) {
918        stalls[tid].iew = true;
919    }
920
921    if (fromIEW->iewUnblock[tid]) {
922        assert(stalls[tid].iew);
923        assert(!fromIEW->iewBlock[tid]);
924        stalls[tid].iew = false;
925    }
926
927    if (fromCommit->commitBlock[tid]) {
928        stalls[tid].commit = true;
929    }
930
931    if (fromCommit->commitUnblock[tid]) {
932        assert(stalls[tid].commit);
933        assert(!fromCommit->commitBlock[tid]);
934        stalls[tid].commit = false;
935    }
936
937    // Check squash signals from commit.
938    if (fromCommit->commitInfo[tid].squash) {
939
940        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
941                "from commit.\n",tid);
942        // In any case, squash.
943        squash(fromCommit->commitInfo[tid].pc,
944               fromCommit->commitInfo[tid].doneSeqNum,
945               fromCommit->commitInfo[tid].squashInst, tid);
946
947        // If it was a branch mispredict on a control instruction, update the
948        // branch predictor with that instruction, otherwise just kill the
949        // invalid state we generated in after sequence number
950        if (fromCommit->commitInfo[tid].mispredictInst &&
951            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
952            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
953                              fromCommit->commitInfo[tid].pc,
954                              fromCommit->commitInfo[tid].branchTaken,
955                              tid);
956        } else {
957            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
958                              tid);
959        }
960
961        return true;
962    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
963        // Update the branch predictor if it wasn't a squashed instruction
964        // that was broadcasted.
965        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
966    }
967
968    // Check ROB squash signals from commit.
969    if (fromCommit->commitInfo[tid].robSquashing) {
970        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
971
972        // Continue to squash.
973        fetchStatus[tid] = Squashing;
974
975        return true;
976    }
977
978    // Check squash signals from decode.
979    if (fromDecode->decodeInfo[tid].squash) {
980        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
981                "from decode.\n",tid);
982
983        // Update the branch predictor.
984        if (fromDecode->decodeInfo[tid].branchMispredict) {
985            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
986                              fromDecode->decodeInfo[tid].nextPC,
987                              fromDecode->decodeInfo[tid].branchTaken,
988                              tid);
989        } else {
990            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
991                              tid);
992        }
993
994        if (fetchStatus[tid] != Squashing) {
995
996            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
997                fromDecode->decodeInfo[tid].nextPC);
998            // Squash unless we're already squashing
999            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1000                             fromDecode->decodeInfo[tid].squashInst,
1001                             fromDecode->decodeInfo[tid].doneSeqNum,
1002                             tid);
1003
1004            return true;
1005        }
1006    }
1007
1008    if (checkStall(tid) &&
1009        fetchStatus[tid] != IcacheWaitResponse &&
1010        fetchStatus[tid] != IcacheWaitRetry) {
1011        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1012
1013        fetchStatus[tid] = Blocked;
1014
1015        return true;
1016    }
1017
1018    if (fetchStatus[tid] == Blocked ||
1019        fetchStatus[tid] == Squashing) {
1020        // Switch status to running if fetch isn't being told to block or
1021        // squash this cycle.
1022        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1023                tid);
1024
1025        fetchStatus[tid] = Running;
1026
1027        return true;
1028    }
1029
1030    // If we've reached this point, we have not gotten any signals that
1031    // cause fetch to change its status.  Fetch remains the same as before.
1032    return false;
1033}
1034
1035template<class Impl>
1036typename Impl::DynInstPtr
1037DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1038                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1039                              TheISA::PCState nextPC, bool trace)
1040{
1041    // Get a sequence number.
1042    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1043
1044    // Create a new DynInst from the instruction fetched.
1045    DynInstPtr instruction =
1046        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1047    instruction->setTid(tid);
1048
1049    instruction->setASID(tid);
1050
1051    instruction->setThreadState(cpu->thread[tid]);
1052
1053    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1054            "[sn:%lli].\n", tid, thisPC.instAddr(),
1055            thisPC.microPC(), seq);
1056
1057    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1058            instruction->staticInst->
1059            disassemble(thisPC.instAddr()));
1060
1061#if TRACING_ON
1062    if (trace) {
1063        instruction->traceData =
1064            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1065                    instruction->staticInst, thisPC, curMacroop);
1066    }
1067#else
1068    instruction->traceData = NULL;
1069#endif
1070
1071    // Add instruction to the CPU's list of instructions.
1072    instruction->setInstListIt(cpu->addInst(instruction));
1073
1074    // Write the instruction to the first slot in the queue
1075    // that heads to decode.
1076    assert(numInst < fetchWidth);
1077    toDecode->insts[toDecode->size++] = instruction;
1078
1079    // Keep track of if we can take an interrupt at this boundary
1080    delayedCommit[tid] = instruction->isDelayedCommit();
1081
1082    return instruction;
1083}
1084
1085template<class Impl>
1086void
1087DefaultFetch<Impl>::fetch(bool &status_change)
1088{
1089    //////////////////////////////////////////
1090    // Start actual fetch
1091    //////////////////////////////////////////
1092    ThreadID tid = getFetchingThread(fetchPolicy);
1093
1094    if (tid == InvalidThreadID || drainPending) {
1095        // Breaks looping condition in tick()
1096        threadFetched = numFetchingThreads;
1097
1098        if (numThreads == 1) {  // @todo Per-thread stats
1099            profileStall(0);
1100        }
1101
1102        return;
1103    }
1104
1105    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1106
1107    // The current PC.
1108    TheISA::PCState thisPC = pc[tid];
1109
1110    Addr pcOffset = fetchOffset[tid];
1111    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1112
1113    bool inRom = isRomMicroPC(thisPC.microPC());
1114
1115    // If returning from the delay of a cache miss, then update the status
1116    // to running, otherwise do the cache access.  Possibly move this up
1117    // to tick() function.
1118    if (fetchStatus[tid] == IcacheAccessComplete) {
1119        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1120
1121        fetchStatus[tid] = Running;
1122        status_change = true;
1123    } else if (fetchStatus[tid] == Running) {
1124        // Align the fetch PC so its at the start of a cache block.
1125        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1126
1127        // If buffer is no longer valid or fetchAddr has moved to point
1128        // to the next cache block, AND we have no remaining ucode
1129        // from a macro-op, then start fetch from icache.
1130        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1131            && !inRom && !macroop[tid]) {
1132            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1133                    "instruction, starting at PC %s.\n", tid, thisPC);
1134
1135            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1136
1137            if (fetchStatus[tid] == IcacheWaitResponse)
1138                ++icacheStallCycles;
1139            else if (fetchStatus[tid] == ItlbWait)
1140                ++fetchTlbCycles;
1141            else
1142                ++fetchMiscStallCycles;
1143            return;
1144        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1145                   || isSwitchedOut()) {
1146            // Stall CPU if an interrupt is posted and we're not issuing
1147            // an delayed commit micro-op currently (delayed commit instructions
1148            // are not interruptable by interrupts, only faults)
1149            ++fetchMiscStallCycles;
1150            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1151            return;
1152        }
1153    } else {
1154        if (fetchStatus[tid] == Idle) {
1155            ++fetchIdleCycles;
1156            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1157        }
1158
1159        // Status is Idle, so fetch should do nothing.
1160        return;
1161    }
1162
1163    ++fetchCycles;
1164
1165    TheISA::PCState nextPC = thisPC;
1166
1167    StaticInstPtr staticInst = NULL;
1168    StaticInstPtr curMacroop = macroop[tid];
1169
1170    // If the read of the first instruction was successful, then grab the
1171    // instructions from the rest of the cache line and put them into the
1172    // queue heading to decode.
1173
1174    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1175            "decode.\n", tid);
1176
1177    // Need to keep track of whether or not a predicted branch
1178    // ended this fetch block.
1179    bool predictedBranch = false;
1180
1181    TheISA::MachInst *cacheInsts =
1182        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1183
1184    const unsigned numInsts = cacheBlkSize / instSize;
1185    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1186
1187    // Loop through instruction memory from the cache.
1188    // Keep issuing while fetchWidth is available and branch is not
1189    // predicted taken
1190    while (numInst < fetchWidth && !predictedBranch) {
1191
1192        // We need to process more memory if we aren't going to get a
1193        // StaticInst from the rom, the current macroop, or what's already
1194        // in the predecoder.
1195        bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1196        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1197        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1198
1199        if (needMem) {
1200            // If buffer is no longer valid or fetchAddr has moved to point
1201            // to the next cache block then start fetch from icache.
1202            if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1203                break;
1204
1205            if (blkOffset >= numInsts) {
1206                // We need to process more memory, but we've run out of the
1207                // current block.
1208                break;
1209            }
1210
1211            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1212                // Walk past any annulled delay slot instructions.
1213                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1214                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1215                    blkOffset++;
1216                    fetchAddr += instSize;
1217                }
1218                if (blkOffset >= numInsts)
1219                    break;
1220            }
1221            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1222
1223            predecoder.setTC(cpu->thread[tid]->getTC());
1224            predecoder.moreBytes(thisPC, fetchAddr, inst);
1225
1226            if (predecoder.needMoreBytes()) {
1227                blkOffset++;
1228                fetchAddr += instSize;
1229                pcOffset += instSize;
1230            }
1231        }
1232
1233        // Extract as many instructions and/or microops as we can from
1234        // the memory we've processed so far.
1235        do {
1236            if (!(curMacroop || inRom)) {
1237                if (predecoder.extMachInstReady()) {
1238                    ExtMachInst extMachInst =
1239                        predecoder.getExtMachInst(thisPC);
1240                    staticInst =
1241                        decoder.decode(extMachInst, thisPC.instAddr());
1242
1243                    // Increment stat of fetched instructions.
1244                    ++fetchedInsts;
1245
1246                    if (staticInst->isMacroop()) {
1247                        curMacroop = staticInst;
1248                    } else {
1249                        pcOffset = 0;
1250                    }
1251                } else {
1252                    // We need more bytes for this instruction so blkOffset and
1253                    // pcOffset will be updated
1254                    break;
1255                }
1256            }
1257            // Whether we're moving to a new macroop because we're at the
1258            // end of the current one, or the branch predictor incorrectly
1259            // thinks we are...
1260            bool newMacro = false;
1261            if (curMacroop || inRom) {
1262                if (inRom) {
1263                    staticInst = cpu->microcodeRom.fetchMicroop(
1264                            thisPC.microPC(), curMacroop);
1265                } else {
1266                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1267                }
1268                newMacro |= staticInst->isLastMicroop();
1269            }
1270
1271            DynInstPtr instruction =
1272                buildInst(tid, staticInst, curMacroop,
1273                          thisPC, nextPC, true);
1274
1275            numInst++;
1276
1277#if TRACING_ON
1278            instruction->fetchTick = curTick();
1279#endif
1280
1281            nextPC = thisPC;
1282
1283            // If we're branching after this instruction, quite fetching
1284            // from the same block then.
1285            predictedBranch |= thisPC.branching();
1286            predictedBranch |=
1287                lookupAndUpdateNextPC(instruction, nextPC);
1288            if (predictedBranch) {
1289                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1290            }
1291
1292            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1293
1294            // Move to the next instruction, unless we have a branch.
1295            thisPC = nextPC;
1296            inRom = isRomMicroPC(thisPC.microPC());
1297
1298            if (newMacro) {
1299                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1300                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1301                pcOffset = 0;
1302                curMacroop = NULL;
1303            }
1304
1305            if (instruction->isQuiesce()) {
1306                DPRINTF(Fetch,
1307                        "Quiesce instruction encountered, halting fetch!");
1308                fetchStatus[tid] = QuiescePending;
1309                status_change = true;
1310                break;
1311            }
1312        } while ((curMacroop || predecoder.extMachInstReady()) &&
1313                 numInst < fetchWidth);
1314    }
1315
1316    if (predictedBranch) {
1317        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1318                "instruction encountered.\n", tid);
1319    } else if (numInst >= fetchWidth) {
1320        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1321                "for this cycle.\n", tid);
1322    } else if (blkOffset >= cacheBlkSize) {
1323        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1324                "block.\n", tid);
1325    }
1326
1327    macroop[tid] = curMacroop;
1328    fetchOffset[tid] = pcOffset;
1329
1330    if (numInst > 0) {
1331        wroteToTimeBuffer = true;
1332    }
1333
1334    pc[tid] = thisPC;
1335
1336    // pipeline a fetch if we're crossing a cache boundary and not in
1337    // a state that would preclude fetching
1338    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1339    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1340    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1341        fetchStatus[tid] != IcacheWaitResponse &&
1342        fetchStatus[tid] != ItlbWait &&
1343        fetchStatus[tid] != IcacheWaitRetry &&
1344        fetchStatus[tid] != QuiescePending &&
1345        !curMacroop;
1346}
1347
1348template<class Impl>
1349void
1350DefaultFetch<Impl>::recvRetry()
1351{
1352    if (retryPkt != NULL) {
1353        assert(cacheBlocked);
1354        assert(retryTid != InvalidThreadID);
1355        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1356
1357        if (cpu->getInstPort().sendTiming(retryPkt)) {
1358            fetchStatus[retryTid] = IcacheWaitResponse;
1359            retryPkt = NULL;
1360            retryTid = InvalidThreadID;
1361            cacheBlocked = false;
1362        }
1363    } else {
1364        assert(retryTid == InvalidThreadID);
1365        // Access has been squashed since it was sent out.  Just clear
1366        // the cache being blocked.
1367        cacheBlocked = false;
1368    }
1369}
1370
1371///////////////////////////////////////
1372//                                   //
1373//  SMT FETCH POLICY MAINTAINED HERE //
1374//                                   //
1375///////////////////////////////////////
1376template<class Impl>
1377ThreadID
1378DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1379{
1380    if (numThreads > 1) {
1381        switch (fetch_priority) {
1382
1383          case SingleThread:
1384            return 0;
1385
1386          case RoundRobin:
1387            return roundRobin();
1388
1389          case IQ:
1390            return iqCount();
1391
1392          case LSQ:
1393            return lsqCount();
1394
1395          case Branch:
1396            return branchCount();
1397
1398          default:
1399            return InvalidThreadID;
1400        }
1401    } else {
1402        list<ThreadID>::iterator thread = activeThreads->begin();
1403        if (thread == activeThreads->end()) {
1404            return InvalidThreadID;
1405        }
1406
1407        ThreadID tid = *thread;
1408
1409        if (fetchStatus[tid] == Running ||
1410            fetchStatus[tid] == IcacheAccessComplete ||
1411            fetchStatus[tid] == Idle) {
1412            return tid;
1413        } else {
1414            return InvalidThreadID;
1415        }
1416    }
1417}
1418
1419
1420template<class Impl>
1421ThreadID
1422DefaultFetch<Impl>::roundRobin()
1423{
1424    list<ThreadID>::iterator pri_iter = priorityList.begin();
1425    list<ThreadID>::iterator end      = priorityList.end();
1426
1427    ThreadID high_pri;
1428
1429    while (pri_iter != end) {
1430        high_pri = *pri_iter;
1431
1432        assert(high_pri <= numThreads);
1433
1434        if (fetchStatus[high_pri] == Running ||
1435            fetchStatus[high_pri] == IcacheAccessComplete ||
1436            fetchStatus[high_pri] == Idle) {
1437
1438            priorityList.erase(pri_iter);
1439            priorityList.push_back(high_pri);
1440
1441            return high_pri;
1442        }
1443
1444        pri_iter++;
1445    }
1446
1447    return InvalidThreadID;
1448}
1449
1450template<class Impl>
1451ThreadID
1452DefaultFetch<Impl>::iqCount()
1453{
1454    std::priority_queue<unsigned> PQ;
1455    std::map<unsigned, ThreadID> threadMap;
1456
1457    list<ThreadID>::iterator threads = activeThreads->begin();
1458    list<ThreadID>::iterator end = activeThreads->end();
1459
1460    while (threads != end) {
1461        ThreadID tid = *threads++;
1462        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1463
1464        PQ.push(iqCount);
1465        threadMap[iqCount] = tid;
1466    }
1467
1468    while (!PQ.empty()) {
1469        ThreadID high_pri = threadMap[PQ.top()];
1470
1471        if (fetchStatus[high_pri] == Running ||
1472            fetchStatus[high_pri] == IcacheAccessComplete ||
1473            fetchStatus[high_pri] == Idle)
1474            return high_pri;
1475        else
1476            PQ.pop();
1477
1478    }
1479
1480    return InvalidThreadID;
1481}
1482
1483template<class Impl>
1484ThreadID
1485DefaultFetch<Impl>::lsqCount()
1486{
1487    std::priority_queue<unsigned> PQ;
1488    std::map<unsigned, ThreadID> threadMap;
1489
1490    list<ThreadID>::iterator threads = activeThreads->begin();
1491    list<ThreadID>::iterator end = activeThreads->end();
1492
1493    while (threads != end) {
1494        ThreadID tid = *threads++;
1495        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1496
1497        PQ.push(ldstqCount);
1498        threadMap[ldstqCount] = tid;
1499    }
1500
1501    while (!PQ.empty()) {
1502        ThreadID high_pri = threadMap[PQ.top()];
1503
1504        if (fetchStatus[high_pri] == Running ||
1505            fetchStatus[high_pri] == IcacheAccessComplete ||
1506            fetchStatus[high_pri] == Idle)
1507            return high_pri;
1508        else
1509            PQ.pop();
1510    }
1511
1512    return InvalidThreadID;
1513}
1514
1515template<class Impl>
1516ThreadID
1517DefaultFetch<Impl>::branchCount()
1518{
1519#if 0
1520    list<ThreadID>::iterator thread = activeThreads->begin();
1521    assert(thread != activeThreads->end());
1522    ThreadID tid = *thread;
1523#endif
1524
1525    panic("Branch Count Fetch policy unimplemented\n");
1526    return InvalidThreadID;
1527}
1528
1529template<class Impl>
1530void
1531DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1532{
1533    if (!issuePipelinedIfetch[tid]) {
1534        return;
1535    }
1536
1537    // The next PC to access.
1538    TheISA::PCState thisPC = pc[tid];
1539
1540    if (isRomMicroPC(thisPC.microPC())) {
1541        return;
1542    }
1543
1544    Addr pcOffset = fetchOffset[tid];
1545    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1546
1547    // Align the fetch PC so its at the start of a cache block.
1548    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1549
1550    // Unless buffer already got the block, fetch it from icache.
1551    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1552        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1553                "starting at PC %s.\n", tid, thisPC);
1554
1555        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1556    }
1557}
1558
1559template<class Impl>
1560void
1561DefaultFetch<Impl>::profileStall(ThreadID tid) {
1562    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1563
1564    // @todo Per-thread stats
1565
1566    if (drainPending) {
1567        ++fetchPendingDrainCycles;
1568        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1569    } else if (activeThreads->empty()) {
1570        ++fetchNoActiveThreadStallCycles;
1571        DPRINTF(Fetch, "Fetch has no active thread!\n");
1572    } else if (fetchStatus[tid] == Blocked) {
1573        ++fetchBlockedCycles;
1574        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1575    } else if (fetchStatus[tid] == Squashing) {
1576        ++fetchSquashCycles;
1577        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1578    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1579        ++icacheStallCycles;
1580        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1581                tid);
1582    } else if (fetchStatus[tid] == ItlbWait) {
1583        ++fetchTlbCycles;
1584        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1585                "finish!\n", tid);
1586    } else if (fetchStatus[tid] == TrapPending) {
1587        ++fetchPendingTrapStallCycles;
1588        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1589                tid);
1590    } else if (fetchStatus[tid] == QuiescePending) {
1591        ++fetchPendingQuiesceStallCycles;
1592        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1593                "instruction!\n", tid);
1594    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1595        ++fetchIcacheWaitRetryStallCycles;
1596        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1597                tid);
1598    } else if (fetchStatus[tid] == NoGoodAddr) {
1599            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1600                    tid);
1601    } else {
1602        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1603             tid, fetchStatus[tid]);
1604    }
1605}
1606