fetch_impl.hh revision 8887:20ea02da9c53
1/* 2 * Copyright (c) 2010-2011 ARM Limited 3 * All rights reserved. 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2004-2006 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Kevin Lim 41 * Korey Sewell 42 */ 43 44#include <algorithm> 45#include <cstring> 46#include <list> 47#include <map> 48#include <queue> 49 50#include "arch/isa_traits.hh" 51#include "arch/tlb.hh" 52#include "arch/utility.hh" 53#include "arch/vtophys.hh" 54#include "base/types.hh" 55#include "config/the_isa.hh" 56#include "cpu/base.hh" 57//#include "cpu/checker/cpu.hh" 58#include "cpu/o3/fetch.hh" 59#include "cpu/exetrace.hh" 60#include "debug/Activity.hh" 61#include "debug/Fetch.hh" 62#include "mem/packet.hh" 63#include "mem/request.hh" 64#include "params/DerivO3CPU.hh" 65#include "sim/byteswap.hh" 66#include "sim/core.hh" 67#include "sim/eventq.hh" 68#include "sim/full_system.hh" 69#include "sim/system.hh" 70 71using namespace std; 72 73template<class Impl> 74DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params) 75 : cpu(_cpu), 76 branchPred(params), 77 predecoder(NULL), 78 numInst(0), 79 decodeToFetchDelay(params->decodeToFetchDelay), 80 renameToFetchDelay(params->renameToFetchDelay), 81 iewToFetchDelay(params->iewToFetchDelay), 82 commitToFetchDelay(params->commitToFetchDelay), 83 fetchWidth(params->fetchWidth), 84 cacheBlocked(false), 85 retryPkt(NULL), 86 retryTid(InvalidThreadID), 87 numThreads(params->numThreads), 88 numFetchingThreads(params->smtNumFetchingThreads), 89 interruptPending(false), 90 drainPending(false), 91 switchedOut(false), 92 finishTranslationEvent(this) 93{ 94 if (numThreads > Impl::MaxThreads) 95 fatal("numThreads (%d) is larger than compiled limit (%d),\n" 96 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n", 97 numThreads, static_cast<int>(Impl::MaxThreads)); 98 99 // Set fetch stage's status to inactive. 100 _status = Inactive; 101 102 std::string policy = params->smtFetchPolicy; 103 104 // Convert string to lowercase 105 std::transform(policy.begin(), policy.end(), policy.begin(), 106 (int(*)(int)) tolower); 107 108 // Figure out fetch policy 109 if (policy == "singlethread") { 110 fetchPolicy = SingleThread; 111 if (numThreads > 1) 112 panic("Invalid Fetch Policy for a SMT workload."); 113 } else if (policy == "roundrobin") { 114 fetchPolicy = RoundRobin; 115 DPRINTF(Fetch, "Fetch policy set to Round Robin\n"); 116 } else if (policy == "branch") { 117 fetchPolicy = Branch; 118 DPRINTF(Fetch, "Fetch policy set to Branch Count\n"); 119 } else if (policy == "iqcount") { 120 fetchPolicy = IQ; 121 DPRINTF(Fetch, "Fetch policy set to IQ count\n"); 122 } else if (policy == "lsqcount") { 123 fetchPolicy = LSQ; 124 DPRINTF(Fetch, "Fetch policy set to LSQ count\n"); 125 } else { 126 fatal("Invalid Fetch Policy. Options Are: {SingleThread," 127 " RoundRobin,LSQcount,IQcount}\n"); 128 } 129 130 // Get the size of an instruction. 131 instSize = sizeof(TheISA::MachInst); 132} 133 134template <class Impl> 135std::string 136DefaultFetch<Impl>::name() const 137{ 138 return cpu->name() + ".fetch"; 139} 140 141template <class Impl> 142void 143DefaultFetch<Impl>::regStats() 144{ 145 icacheStallCycles 146 .name(name() + ".icacheStallCycles") 147 .desc("Number of cycles fetch is stalled on an Icache miss") 148 .prereq(icacheStallCycles); 149 150 fetchedInsts 151 .name(name() + ".Insts") 152 .desc("Number of instructions fetch has processed") 153 .prereq(fetchedInsts); 154 155 fetchedBranches 156 .name(name() + ".Branches") 157 .desc("Number of branches that fetch encountered") 158 .prereq(fetchedBranches); 159 160 predictedBranches 161 .name(name() + ".predictedBranches") 162 .desc("Number of branches that fetch has predicted taken") 163 .prereq(predictedBranches); 164 165 fetchCycles 166 .name(name() + ".Cycles") 167 .desc("Number of cycles fetch has run and was not squashing or" 168 " blocked") 169 .prereq(fetchCycles); 170 171 fetchSquashCycles 172 .name(name() + ".SquashCycles") 173 .desc("Number of cycles fetch has spent squashing") 174 .prereq(fetchSquashCycles); 175 176 fetchTlbCycles 177 .name(name() + ".TlbCycles") 178 .desc("Number of cycles fetch has spent waiting for tlb") 179 .prereq(fetchTlbCycles); 180 181 fetchIdleCycles 182 .name(name() + ".IdleCycles") 183 .desc("Number of cycles fetch was idle") 184 .prereq(fetchIdleCycles); 185 186 fetchBlockedCycles 187 .name(name() + ".BlockedCycles") 188 .desc("Number of cycles fetch has spent blocked") 189 .prereq(fetchBlockedCycles); 190 191 fetchedCacheLines 192 .name(name() + ".CacheLines") 193 .desc("Number of cache lines fetched") 194 .prereq(fetchedCacheLines); 195 196 fetchMiscStallCycles 197 .name(name() + ".MiscStallCycles") 198 .desc("Number of cycles fetch has spent waiting on interrupts, or " 199 "bad addresses, or out of MSHRs") 200 .prereq(fetchMiscStallCycles); 201 202 fetchPendingDrainCycles 203 .name(name() + ".PendingDrainCycles") 204 .desc("Number of cycles fetch has spent waiting on pipes to drain") 205 .prereq(fetchPendingDrainCycles); 206 207 fetchNoActiveThreadStallCycles 208 .name(name() + ".NoActiveThreadStallCycles") 209 .desc("Number of stall cycles due to no active thread to fetch from") 210 .prereq(fetchNoActiveThreadStallCycles); 211 212 fetchPendingTrapStallCycles 213 .name(name() + ".PendingTrapStallCycles") 214 .desc("Number of stall cycles due to pending traps") 215 .prereq(fetchPendingTrapStallCycles); 216 217 fetchPendingQuiesceStallCycles 218 .name(name() + ".PendingQuiesceStallCycles") 219 .desc("Number of stall cycles due to pending quiesce instructions") 220 .prereq(fetchPendingQuiesceStallCycles); 221 222 fetchIcacheWaitRetryStallCycles 223 .name(name() + ".IcacheWaitRetryStallCycles") 224 .desc("Number of stall cycles due to full MSHR") 225 .prereq(fetchIcacheWaitRetryStallCycles); 226 227 fetchIcacheSquashes 228 .name(name() + ".IcacheSquashes") 229 .desc("Number of outstanding Icache misses that were squashed") 230 .prereq(fetchIcacheSquashes); 231 232 fetchTlbSquashes 233 .name(name() + ".ItlbSquashes") 234 .desc("Number of outstanding ITLB misses that were squashed") 235 .prereq(fetchTlbSquashes); 236 237 fetchNisnDist 238 .init(/* base value */ 0, 239 /* last value */ fetchWidth, 240 /* bucket size */ 1) 241 .name(name() + ".rateDist") 242 .desc("Number of instructions fetched each cycle (Total)") 243 .flags(Stats::pdf); 244 245 idleRate 246 .name(name() + ".idleRate") 247 .desc("Percent of cycles fetch was idle") 248 .prereq(idleRate); 249 idleRate = fetchIdleCycles * 100 / cpu->numCycles; 250 251 branchRate 252 .name(name() + ".branchRate") 253 .desc("Number of branch fetches per cycle") 254 .flags(Stats::total); 255 branchRate = fetchedBranches / cpu->numCycles; 256 257 fetchRate 258 .name(name() + ".rate") 259 .desc("Number of inst fetches per cycle") 260 .flags(Stats::total); 261 fetchRate = fetchedInsts / cpu->numCycles; 262 263 branchPred.regStats(); 264} 265 266template<class Impl> 267void 268DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer) 269{ 270 timeBuffer = time_buffer; 271 272 // Create wires to get information from proper places in time buffer. 273 fromDecode = timeBuffer->getWire(-decodeToFetchDelay); 274 fromRename = timeBuffer->getWire(-renameToFetchDelay); 275 fromIEW = timeBuffer->getWire(-iewToFetchDelay); 276 fromCommit = timeBuffer->getWire(-commitToFetchDelay); 277} 278 279template<class Impl> 280void 281DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr) 282{ 283 activeThreads = at_ptr; 284} 285 286template<class Impl> 287void 288DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr) 289{ 290 fetchQueue = fq_ptr; 291 292 // Create wire to write information to proper place in fetch queue. 293 toDecode = fetchQueue->getWire(0); 294} 295 296template<class Impl> 297void 298DefaultFetch<Impl>::initStage() 299{ 300 // Setup PC and nextPC with initial state. 301 for (ThreadID tid = 0; tid < numThreads; tid++) { 302 pc[tid] = cpu->pcState(tid); 303 fetchOffset[tid] = 0; 304 macroop[tid] = NULL; 305 delayedCommit[tid] = false; 306 } 307 308 for (ThreadID tid = 0; tid < numThreads; tid++) { 309 310 fetchStatus[tid] = Running; 311 312 priorityList.push_back(tid); 313 314 memReq[tid] = NULL; 315 316 stalls[tid].decode = false; 317 stalls[tid].rename = false; 318 stalls[tid].iew = false; 319 stalls[tid].commit = false; 320 } 321 322 // Schedule fetch to get the correct PC from the CPU 323 // scheduleFetchStartupEvent(1); 324 325 // Fetch needs to start fetching instructions at the very beginning, 326 // so it must start up in active state. 327 switchToActive(); 328} 329 330template<class Impl> 331void 332DefaultFetch<Impl>::setIcache() 333{ 334 assert(cpu->getInstPort().isConnected()); 335 336 // Size of cache block. 337 cacheBlkSize = cpu->getInstPort().peerBlockSize(); 338 339 // Create mask to get rid of offset bits. 340 cacheBlkMask = (cacheBlkSize - 1); 341 342 for (ThreadID tid = 0; tid < numThreads; tid++) { 343 // Create space to store a cache line. 344 cacheData[tid] = new uint8_t[cacheBlkSize]; 345 cacheDataPC[tid] = 0; 346 cacheDataValid[tid] = false; 347 } 348} 349 350template<class Impl> 351void 352DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt) 353{ 354 ThreadID tid = pkt->req->threadId(); 355 356 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid); 357 358 assert(!pkt->wasNacked()); 359 360 // Only change the status if it's still waiting on the icache access 361 // to return. 362 if (fetchStatus[tid] != IcacheWaitResponse || 363 pkt->req != memReq[tid] || 364 isSwitchedOut()) { 365 ++fetchIcacheSquashes; 366 delete pkt->req; 367 delete pkt; 368 return; 369 } 370 371 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize); 372 cacheDataValid[tid] = true; 373 374 if (!drainPending) { 375 // Wake up the CPU (if it went to sleep and was waiting on 376 // this completion event). 377 cpu->wakeCPU(); 378 379 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n", 380 tid); 381 382 switchToActive(); 383 } 384 385 // Only switch to IcacheAccessComplete if we're not stalled as well. 386 if (checkStall(tid)) { 387 fetchStatus[tid] = Blocked; 388 } else { 389 fetchStatus[tid] = IcacheAccessComplete; 390 } 391 392 // Reset the mem req to NULL. 393 delete pkt->req; 394 delete pkt; 395 memReq[tid] = NULL; 396} 397 398template <class Impl> 399bool 400DefaultFetch<Impl>::drain() 401{ 402 // Fetch is ready to drain at any time. 403 cpu->signalDrained(); 404 drainPending = true; 405 return true; 406} 407 408template <class Impl> 409void 410DefaultFetch<Impl>::resume() 411{ 412 drainPending = false; 413} 414 415template <class Impl> 416void 417DefaultFetch<Impl>::switchOut() 418{ 419 switchedOut = true; 420 // Branch predictor needs to have its state cleared. 421 branchPred.switchOut(); 422} 423 424template <class Impl> 425void 426DefaultFetch<Impl>::takeOverFrom() 427{ 428 // the instruction port is now connected so we can get the block 429 // size 430 setIcache(); 431 432 // Reset all state 433 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) { 434 stalls[i].decode = 0; 435 stalls[i].rename = 0; 436 stalls[i].iew = 0; 437 stalls[i].commit = 0; 438 pc[i] = cpu->pcState(i); 439 fetchStatus[i] = Running; 440 } 441 numInst = 0; 442 wroteToTimeBuffer = false; 443 _status = Inactive; 444 switchedOut = false; 445 interruptPending = false; 446 branchPred.takeOverFrom(); 447} 448 449template <class Impl> 450void 451DefaultFetch<Impl>::wakeFromQuiesce() 452{ 453 DPRINTF(Fetch, "Waking up from quiesce\n"); 454 // Hopefully this is safe 455 // @todo: Allow other threads to wake from quiesce. 456 fetchStatus[0] = Running; 457} 458 459template <class Impl> 460inline void 461DefaultFetch<Impl>::switchToActive() 462{ 463 if (_status == Inactive) { 464 DPRINTF(Activity, "Activating stage.\n"); 465 466 cpu->activateStage(O3CPU::FetchIdx); 467 468 _status = Active; 469 } 470} 471 472template <class Impl> 473inline void 474DefaultFetch<Impl>::switchToInactive() 475{ 476 if (_status == Active) { 477 DPRINTF(Activity, "Deactivating stage.\n"); 478 479 cpu->deactivateStage(O3CPU::FetchIdx); 480 481 _status = Inactive; 482 } 483} 484 485template <class Impl> 486bool 487DefaultFetch<Impl>::lookupAndUpdateNextPC( 488 DynInstPtr &inst, TheISA::PCState &nextPC) 489{ 490 // Do branch prediction check here. 491 // A bit of a misnomer...next_PC is actually the current PC until 492 // this function updates it. 493 bool predict_taken; 494 495 if (!inst->isControl()) { 496 TheISA::advancePC(nextPC, inst->staticInst); 497 inst->setPredTarg(nextPC); 498 inst->setPredTaken(false); 499 return false; 500 } 501 502 ThreadID tid = inst->threadNumber; 503 predict_taken = branchPred.predict(inst, nextPC, tid); 504 505 if (predict_taken) { 506 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n", 507 tid, inst->seqNum, nextPC); 508 } else { 509 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n", 510 tid, inst->seqNum); 511 } 512 513 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n", 514 tid, inst->seqNum, nextPC); 515 inst->setPredTarg(nextPC); 516 inst->setPredTaken(predict_taken); 517 518 ++fetchedBranches; 519 520 if (predict_taken) { 521 ++predictedBranches; 522 } 523 524 return predict_taken; 525} 526 527template <class Impl> 528bool 529DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc) 530{ 531 Fault fault = NoFault; 532 533 // @todo: not sure if these should block translation. 534 //AlphaDep 535 if (cacheBlocked) { 536 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n", 537 tid); 538 return false; 539 } else if (isSwitchedOut()) { 540 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n", 541 tid); 542 return false; 543 } else if (checkInterrupt(pc) && !delayedCommit[tid]) { 544 // Hold off fetch from getting new instructions when: 545 // Cache is blocked, or 546 // while an interrupt is pending and we're not in PAL mode, or 547 // fetch is switched out. 548 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n", 549 tid); 550 return false; 551 } 552 553 // Align the fetch address so it's at the start of a cache block. 554 Addr block_PC = icacheBlockAlignPC(vaddr); 555 556 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n", 557 tid, block_PC, vaddr); 558 559 // Setup the memReq to do a read of the first instruction's address. 560 // Set the appropriate read size and flags as well. 561 // Build request here. 562 RequestPtr mem_req = 563 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH, 564 cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid); 565 566 memReq[tid] = mem_req; 567 568 // Initiate translation of the icache block 569 fetchStatus[tid] = ItlbWait; 570 FetchTranslation *trans = new FetchTranslation(this); 571 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(), 572 trans, BaseTLB::Execute); 573 return true; 574} 575 576template <class Impl> 577void 578DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req) 579{ 580 ThreadID tid = mem_req->threadId(); 581 Addr block_PC = mem_req->getVaddr(); 582 583 // Wake up CPU if it was idle 584 cpu->wakeCPU(); 585 586 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] || 587 mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) { 588 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n", 589 tid); 590 ++fetchTlbSquashes; 591 delete mem_req; 592 return; 593 } 594 595 596 // If translation was successful, attempt to read the icache block. 597 if (fault == NoFault) { 598 // Check that we're not going off into random memory 599 // If we have, just wait around for commit to squash something and put 600 // us on the right track 601 if (!cpu->system->isMemory(mem_req->getPaddr())) { 602 warn("Address %#x is outside of physical memory, stopping fetch\n", 603 mem_req->getPaddr()); 604 fetchStatus[tid] = NoGoodAddr; 605 delete mem_req; 606 memReq[tid] = NULL; 607 return; 608 } 609 610 // Build packet here. 611 PacketPtr data_pkt = new Packet(mem_req, 612 MemCmd::ReadReq, Packet::Broadcast); 613 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]); 614 615 cacheDataPC[tid] = block_PC; 616 cacheDataValid[tid] = false; 617 DPRINTF(Fetch, "Fetch: Doing instruction read.\n"); 618 619 fetchedCacheLines++; 620 621 // Access the cache. 622 if (!cpu->getInstPort().sendTiming(data_pkt)) { 623 assert(retryPkt == NULL); 624 assert(retryTid == InvalidThreadID); 625 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid); 626 627 fetchStatus[tid] = IcacheWaitRetry; 628 retryPkt = data_pkt; 629 retryTid = tid; 630 cacheBlocked = true; 631 } else { 632 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid); 633 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache " 634 "response.\n", tid); 635 636 lastIcacheStall[tid] = curTick(); 637 fetchStatus[tid] = IcacheWaitResponse; 638 } 639 } else { 640 if (!(numInst < fetchWidth)) { 641 assert(!finishTranslationEvent.scheduled()); 642 finishTranslationEvent.setFault(fault); 643 finishTranslationEvent.setReq(mem_req); 644 cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1))); 645 return; 646 } 647 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n", 648 tid, mem_req->getVaddr(), memReq[tid]->getVaddr()); 649 // Translation faulted, icache request won't be sent. 650 delete mem_req; 651 memReq[tid] = NULL; 652 653 // Send the fault to commit. This thread will not do anything 654 // until commit handles the fault. The only other way it can 655 // wake up is if a squash comes along and changes the PC. 656 TheISA::PCState fetchPC = pc[tid]; 657 658 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid); 659 // We will use a nop in ordier to carry the fault. 660 DynInstPtr instruction = buildInst(tid, 661 decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()), 662 NULL, fetchPC, fetchPC, false); 663 664 instruction->setPredTarg(fetchPC); 665 instruction->fault = fault; 666 wroteToTimeBuffer = true; 667 668 DPRINTF(Activity, "Activity this cycle.\n"); 669 cpu->activityThisCycle(); 670 671 fetchStatus[tid] = TrapPending; 672 673 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid); 674 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n", 675 tid, fault->name(), pc[tid]); 676 } 677 _status = updateFetchStatus(); 678} 679 680template <class Impl> 681inline void 682DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC, 683 const DynInstPtr squashInst, ThreadID tid) 684{ 685 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n", 686 tid, newPC); 687 688 pc[tid] = newPC; 689 fetchOffset[tid] = 0; 690 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr()) 691 macroop[tid] = squashInst->macroop; 692 else 693 macroop[tid] = NULL; 694 predecoder.reset(); 695 696 // Clear the icache miss if it's outstanding. 697 if (fetchStatus[tid] == IcacheWaitResponse) { 698 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n", 699 tid); 700 memReq[tid] = NULL; 701 } else if (fetchStatus[tid] == ItlbWait) { 702 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n", 703 tid); 704 memReq[tid] = NULL; 705 } 706 707 // Get rid of the retrying packet if it was from this thread. 708 if (retryTid == tid) { 709 assert(cacheBlocked); 710 if (retryPkt) { 711 delete retryPkt->req; 712 delete retryPkt; 713 } 714 retryPkt = NULL; 715 retryTid = InvalidThreadID; 716 } 717 718 fetchStatus[tid] = Squashing; 719 720 // microops are being squashed, it is not known wheather the 721 // youngest non-squashed microop was marked delayed commit 722 // or not. Setting the flag to true ensures that the 723 // interrupts are not handled when they cannot be, though 724 // some opportunities to handle interrupts may be missed. 725 delayedCommit[tid] = true; 726 727 ++fetchSquashCycles; 728} 729 730template<class Impl> 731void 732DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC, 733 const DynInstPtr squashInst, 734 const InstSeqNum seq_num, ThreadID tid) 735{ 736 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid); 737 738 doSquash(newPC, squashInst, tid); 739 740 // Tell the CPU to remove any instructions that are in flight between 741 // fetch and decode. 742 cpu->removeInstsUntil(seq_num, tid); 743} 744 745template<class Impl> 746bool 747DefaultFetch<Impl>::checkStall(ThreadID tid) const 748{ 749 bool ret_val = false; 750 751 if (cpu->contextSwitch) { 752 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid); 753 ret_val = true; 754 } else if (stalls[tid].decode) { 755 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid); 756 ret_val = true; 757 } else if (stalls[tid].rename) { 758 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid); 759 ret_val = true; 760 } else if (stalls[tid].iew) { 761 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid); 762 ret_val = true; 763 } else if (stalls[tid].commit) { 764 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid); 765 ret_val = true; 766 } 767 768 return ret_val; 769} 770 771template<class Impl> 772typename DefaultFetch<Impl>::FetchStatus 773DefaultFetch<Impl>::updateFetchStatus() 774{ 775 //Check Running 776 list<ThreadID>::iterator threads = activeThreads->begin(); 777 list<ThreadID>::iterator end = activeThreads->end(); 778 779 while (threads != end) { 780 ThreadID tid = *threads++; 781 782 if (fetchStatus[tid] == Running || 783 fetchStatus[tid] == Squashing || 784 fetchStatus[tid] == IcacheAccessComplete) { 785 786 if (_status == Inactive) { 787 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid); 788 789 if (fetchStatus[tid] == IcacheAccessComplete) { 790 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache" 791 "completion\n",tid); 792 } 793 794 cpu->activateStage(O3CPU::FetchIdx); 795 } 796 797 return Active; 798 } 799 } 800 801 // Stage is switching from active to inactive, notify CPU of it. 802 if (_status == Active) { 803 DPRINTF(Activity, "Deactivating stage.\n"); 804 805 cpu->deactivateStage(O3CPU::FetchIdx); 806 } 807 808 return Inactive; 809} 810 811template <class Impl> 812void 813DefaultFetch<Impl>::squash(const TheISA::PCState &newPC, 814 const InstSeqNum seq_num, DynInstPtr squashInst, 815 ThreadID tid) 816{ 817 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid); 818 819 doSquash(newPC, squashInst, tid); 820 821 // Tell the CPU to remove any instructions that are not in the ROB. 822 cpu->removeInstsNotInROB(tid); 823} 824 825template <class Impl> 826void 827DefaultFetch<Impl>::tick() 828{ 829 list<ThreadID>::iterator threads = activeThreads->begin(); 830 list<ThreadID>::iterator end = activeThreads->end(); 831 bool status_change = false; 832 833 wroteToTimeBuffer = false; 834 835 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) { 836 issuePipelinedIfetch[i] = false; 837 } 838 839 while (threads != end) { 840 ThreadID tid = *threads++; 841 842 // Check the signals for each thread to determine the proper status 843 // for each thread. 844 bool updated_status = checkSignalsAndUpdate(tid); 845 status_change = status_change || updated_status; 846 } 847 848 DPRINTF(Fetch, "Running stage.\n"); 849 850 if (FullSystem) { 851 if (fromCommit->commitInfo[0].interruptPending) { 852 interruptPending = true; 853 } 854 855 if (fromCommit->commitInfo[0].clearInterrupt) { 856 interruptPending = false; 857 } 858 } 859 860 for (threadFetched = 0; threadFetched < numFetchingThreads; 861 threadFetched++) { 862 // Fetch each of the actively fetching threads. 863 fetch(status_change); 864 } 865 866 // Record number of instructions fetched this cycle for distribution. 867 fetchNisnDist.sample(numInst); 868 869 if (status_change) { 870 // Change the fetch stage status if there was a status change. 871 _status = updateFetchStatus(); 872 } 873 874 // If there was activity this cycle, inform the CPU of it. 875 if (wroteToTimeBuffer || cpu->contextSwitch) { 876 DPRINTF(Activity, "Activity this cycle.\n"); 877 878 cpu->activityThisCycle(); 879 } 880 881 // Issue the next I-cache request if possible. 882 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) { 883 if (issuePipelinedIfetch[i]) { 884 pipelineIcacheAccesses(i); 885 } 886 } 887 888 // Reset the number of the instruction we've fetched. 889 numInst = 0; 890} 891 892template <class Impl> 893bool 894DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid) 895{ 896 // Update the per thread stall statuses. 897 if (fromDecode->decodeBlock[tid]) { 898 stalls[tid].decode = true; 899 } 900 901 if (fromDecode->decodeUnblock[tid]) { 902 assert(stalls[tid].decode); 903 assert(!fromDecode->decodeBlock[tid]); 904 stalls[tid].decode = false; 905 } 906 907 if (fromRename->renameBlock[tid]) { 908 stalls[tid].rename = true; 909 } 910 911 if (fromRename->renameUnblock[tid]) { 912 assert(stalls[tid].rename); 913 assert(!fromRename->renameBlock[tid]); 914 stalls[tid].rename = false; 915 } 916 917 if (fromIEW->iewBlock[tid]) { 918 stalls[tid].iew = true; 919 } 920 921 if (fromIEW->iewUnblock[tid]) { 922 assert(stalls[tid].iew); 923 assert(!fromIEW->iewBlock[tid]); 924 stalls[tid].iew = false; 925 } 926 927 if (fromCommit->commitBlock[tid]) { 928 stalls[tid].commit = true; 929 } 930 931 if (fromCommit->commitUnblock[tid]) { 932 assert(stalls[tid].commit); 933 assert(!fromCommit->commitBlock[tid]); 934 stalls[tid].commit = false; 935 } 936 937 // Check squash signals from commit. 938 if (fromCommit->commitInfo[tid].squash) { 939 940 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash " 941 "from commit.\n",tid); 942 // In any case, squash. 943 squash(fromCommit->commitInfo[tid].pc, 944 fromCommit->commitInfo[tid].doneSeqNum, 945 fromCommit->commitInfo[tid].squashInst, tid); 946 947 // If it was a branch mispredict on a control instruction, update the 948 // branch predictor with that instruction, otherwise just kill the 949 // invalid state we generated in after sequence number 950 if (fromCommit->commitInfo[tid].mispredictInst && 951 fromCommit->commitInfo[tid].mispredictInst->isControl()) { 952 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum, 953 fromCommit->commitInfo[tid].pc, 954 fromCommit->commitInfo[tid].branchTaken, 955 tid); 956 } else { 957 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum, 958 tid); 959 } 960 961 return true; 962 } else if (fromCommit->commitInfo[tid].doneSeqNum) { 963 // Update the branch predictor if it wasn't a squashed instruction 964 // that was broadcasted. 965 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid); 966 } 967 968 // Check ROB squash signals from commit. 969 if (fromCommit->commitInfo[tid].robSquashing) { 970 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid); 971 972 // Continue to squash. 973 fetchStatus[tid] = Squashing; 974 975 return true; 976 } 977 978 // Check squash signals from decode. 979 if (fromDecode->decodeInfo[tid].squash) { 980 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash " 981 "from decode.\n",tid); 982 983 // Update the branch predictor. 984 if (fromDecode->decodeInfo[tid].branchMispredict) { 985 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum, 986 fromDecode->decodeInfo[tid].nextPC, 987 fromDecode->decodeInfo[tid].branchTaken, 988 tid); 989 } else { 990 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum, 991 tid); 992 } 993 994 if (fetchStatus[tid] != Squashing) { 995 996 DPRINTF(Fetch, "Squashing from decode with PC = %s\n", 997 fromDecode->decodeInfo[tid].nextPC); 998 // Squash unless we're already squashing 999 squashFromDecode(fromDecode->decodeInfo[tid].nextPC, 1000 fromDecode->decodeInfo[tid].squashInst, 1001 fromDecode->decodeInfo[tid].doneSeqNum, 1002 tid); 1003 1004 return true; 1005 } 1006 } 1007 1008 if (checkStall(tid) && 1009 fetchStatus[tid] != IcacheWaitResponse && 1010 fetchStatus[tid] != IcacheWaitRetry) { 1011 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid); 1012 1013 fetchStatus[tid] = Blocked; 1014 1015 return true; 1016 } 1017 1018 if (fetchStatus[tid] == Blocked || 1019 fetchStatus[tid] == Squashing) { 1020 // Switch status to running if fetch isn't being told to block or 1021 // squash this cycle. 1022 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n", 1023 tid); 1024 1025 fetchStatus[tid] = Running; 1026 1027 return true; 1028 } 1029 1030 // If we've reached this point, we have not gotten any signals that 1031 // cause fetch to change its status. Fetch remains the same as before. 1032 return false; 1033} 1034 1035template<class Impl> 1036typename Impl::DynInstPtr 1037DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst, 1038 StaticInstPtr curMacroop, TheISA::PCState thisPC, 1039 TheISA::PCState nextPC, bool trace) 1040{ 1041 // Get a sequence number. 1042 InstSeqNum seq = cpu->getAndIncrementInstSeq(); 1043 1044 // Create a new DynInst from the instruction fetched. 1045 DynInstPtr instruction = 1046 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu); 1047 instruction->setTid(tid); 1048 1049 instruction->setASID(tid); 1050 1051 instruction->setThreadState(cpu->thread[tid]); 1052 1053 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created " 1054 "[sn:%lli].\n", tid, thisPC.instAddr(), 1055 thisPC.microPC(), seq); 1056 1057 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid, 1058 instruction->staticInst-> 1059 disassemble(thisPC.instAddr())); 1060 1061#if TRACING_ON 1062 if (trace) { 1063 instruction->traceData = 1064 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid), 1065 instruction->staticInst, thisPC, curMacroop); 1066 } 1067#else 1068 instruction->traceData = NULL; 1069#endif 1070 1071 // Add instruction to the CPU's list of instructions. 1072 instruction->setInstListIt(cpu->addInst(instruction)); 1073 1074 // Write the instruction to the first slot in the queue 1075 // that heads to decode. 1076 assert(numInst < fetchWidth); 1077 toDecode->insts[toDecode->size++] = instruction; 1078 1079 // Keep track of if we can take an interrupt at this boundary 1080 delayedCommit[tid] = instruction->isDelayedCommit(); 1081 1082 return instruction; 1083} 1084 1085template<class Impl> 1086void 1087DefaultFetch<Impl>::fetch(bool &status_change) 1088{ 1089 ////////////////////////////////////////// 1090 // Start actual fetch 1091 ////////////////////////////////////////// 1092 ThreadID tid = getFetchingThread(fetchPolicy); 1093 1094 if (tid == InvalidThreadID || drainPending) { 1095 // Breaks looping condition in tick() 1096 threadFetched = numFetchingThreads; 1097 1098 if (numThreads == 1) { // @todo Per-thread stats 1099 profileStall(0); 1100 } 1101 1102 return; 1103 } 1104 1105 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid); 1106 1107 // The current PC. 1108 TheISA::PCState thisPC = pc[tid]; 1109 1110 Addr pcOffset = fetchOffset[tid]; 1111 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask; 1112 1113 bool inRom = isRomMicroPC(thisPC.microPC()); 1114 1115 // If returning from the delay of a cache miss, then update the status 1116 // to running, otherwise do the cache access. Possibly move this up 1117 // to tick() function. 1118 if (fetchStatus[tid] == IcacheAccessComplete) { 1119 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid); 1120 1121 fetchStatus[tid] = Running; 1122 status_change = true; 1123 } else if (fetchStatus[tid] == Running) { 1124 // Align the fetch PC so its at the start of a cache block. 1125 Addr block_PC = icacheBlockAlignPC(fetchAddr); 1126 1127 // If buffer is no longer valid or fetchAddr has moved to point 1128 // to the next cache block, AND we have no remaining ucode 1129 // from a macro-op, then start fetch from icache. 1130 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid]) 1131 && !inRom && !macroop[tid]) { 1132 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read " 1133 "instruction, starting at PC %s.\n", tid, thisPC); 1134 1135 fetchCacheLine(fetchAddr, tid, thisPC.instAddr()); 1136 1137 if (fetchStatus[tid] == IcacheWaitResponse) 1138 ++icacheStallCycles; 1139 else if (fetchStatus[tid] == ItlbWait) 1140 ++fetchTlbCycles; 1141 else 1142 ++fetchMiscStallCycles; 1143 return; 1144 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid]) 1145 || isSwitchedOut()) { 1146 // Stall CPU if an interrupt is posted and we're not issuing 1147 // an delayed commit micro-op currently (delayed commit instructions 1148 // are not interruptable by interrupts, only faults) 1149 ++fetchMiscStallCycles; 1150 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid); 1151 return; 1152 } 1153 } else { 1154 if (fetchStatus[tid] == Idle) { 1155 ++fetchIdleCycles; 1156 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid); 1157 } 1158 1159 // Status is Idle, so fetch should do nothing. 1160 return; 1161 } 1162 1163 ++fetchCycles; 1164 1165 TheISA::PCState nextPC = thisPC; 1166 1167 StaticInstPtr staticInst = NULL; 1168 StaticInstPtr curMacroop = macroop[tid]; 1169 1170 // If the read of the first instruction was successful, then grab the 1171 // instructions from the rest of the cache line and put them into the 1172 // queue heading to decode. 1173 1174 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to " 1175 "decode.\n", tid); 1176 1177 // Need to keep track of whether or not a predicted branch 1178 // ended this fetch block. 1179 bool predictedBranch = false; 1180 1181 TheISA::MachInst *cacheInsts = 1182 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]); 1183 1184 const unsigned numInsts = cacheBlkSize / instSize; 1185 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize; 1186 1187 // Loop through instruction memory from the cache. 1188 // Keep issuing while fetchWidth is available and branch is not 1189 // predicted taken 1190 while (numInst < fetchWidth && !predictedBranch) { 1191 1192 // We need to process more memory if we aren't going to get a 1193 // StaticInst from the rom, the current macroop, or what's already 1194 // in the predecoder. 1195 bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady(); 1196 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask; 1197 Addr block_PC = icacheBlockAlignPC(fetchAddr); 1198 1199 if (needMem) { 1200 // If buffer is no longer valid or fetchAddr has moved to point 1201 // to the next cache block then start fetch from icache. 1202 if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid]) 1203 break; 1204 1205 if (blkOffset >= numInsts) { 1206 // We need to process more memory, but we've run out of the 1207 // current block. 1208 break; 1209 } 1210 1211 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) { 1212 // Walk past any annulled delay slot instructions. 1213 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask; 1214 while (fetchAddr != pcAddr && blkOffset < numInsts) { 1215 blkOffset++; 1216 fetchAddr += instSize; 1217 } 1218 if (blkOffset >= numInsts) 1219 break; 1220 } 1221 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]); 1222 1223 predecoder.setTC(cpu->thread[tid]->getTC()); 1224 predecoder.moreBytes(thisPC, fetchAddr, inst); 1225 1226 if (predecoder.needMoreBytes()) { 1227 blkOffset++; 1228 fetchAddr += instSize; 1229 pcOffset += instSize; 1230 } 1231 } 1232 1233 // Extract as many instructions and/or microops as we can from 1234 // the memory we've processed so far. 1235 do { 1236 if (!(curMacroop || inRom)) { 1237 if (predecoder.extMachInstReady()) { 1238 ExtMachInst extMachInst = 1239 predecoder.getExtMachInst(thisPC); 1240 staticInst = 1241 decoder.decode(extMachInst, thisPC.instAddr()); 1242 1243 // Increment stat of fetched instructions. 1244 ++fetchedInsts; 1245 1246 if (staticInst->isMacroop()) { 1247 curMacroop = staticInst; 1248 } else { 1249 pcOffset = 0; 1250 } 1251 } else { 1252 // We need more bytes for this instruction so blkOffset and 1253 // pcOffset will be updated 1254 break; 1255 } 1256 } 1257 // Whether we're moving to a new macroop because we're at the 1258 // end of the current one, or the branch predictor incorrectly 1259 // thinks we are... 1260 bool newMacro = false; 1261 if (curMacroop || inRom) { 1262 if (inRom) { 1263 staticInst = cpu->microcodeRom.fetchMicroop( 1264 thisPC.microPC(), curMacroop); 1265 } else { 1266 staticInst = curMacroop->fetchMicroop(thisPC.microPC()); 1267 } 1268 newMacro |= staticInst->isLastMicroop(); 1269 } 1270 1271 DynInstPtr instruction = 1272 buildInst(tid, staticInst, curMacroop, 1273 thisPC, nextPC, true); 1274 1275 numInst++; 1276 1277#if TRACING_ON 1278 instruction->fetchTick = curTick(); 1279#endif 1280 1281 nextPC = thisPC; 1282 1283 // If we're branching after this instruction, quite fetching 1284 // from the same block then. 1285 predictedBranch |= thisPC.branching(); 1286 predictedBranch |= 1287 lookupAndUpdateNextPC(instruction, nextPC); 1288 if (predictedBranch) { 1289 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC); 1290 } 1291 1292 newMacro |= thisPC.instAddr() != nextPC.instAddr(); 1293 1294 // Move to the next instruction, unless we have a branch. 1295 thisPC = nextPC; 1296 inRom = isRomMicroPC(thisPC.microPC()); 1297 1298 if (newMacro) { 1299 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask; 1300 blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize; 1301 pcOffset = 0; 1302 curMacroop = NULL; 1303 } 1304 1305 if (instruction->isQuiesce()) { 1306 DPRINTF(Fetch, 1307 "Quiesce instruction encountered, halting fetch!"); 1308 fetchStatus[tid] = QuiescePending; 1309 status_change = true; 1310 break; 1311 } 1312 } while ((curMacroop || predecoder.extMachInstReady()) && 1313 numInst < fetchWidth); 1314 } 1315 1316 if (predictedBranch) { 1317 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch " 1318 "instruction encountered.\n", tid); 1319 } else if (numInst >= fetchWidth) { 1320 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth " 1321 "for this cycle.\n", tid); 1322 } else if (blkOffset >= cacheBlkSize) { 1323 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache " 1324 "block.\n", tid); 1325 } 1326 1327 macroop[tid] = curMacroop; 1328 fetchOffset[tid] = pcOffset; 1329 1330 if (numInst > 0) { 1331 wroteToTimeBuffer = true; 1332 } 1333 1334 pc[tid] = thisPC; 1335 1336 // pipeline a fetch if we're crossing a cache boundary and not in 1337 // a state that would preclude fetching 1338 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask; 1339 Addr block_PC = icacheBlockAlignPC(fetchAddr); 1340 issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] && 1341 fetchStatus[tid] != IcacheWaitResponse && 1342 fetchStatus[tid] != ItlbWait && 1343 fetchStatus[tid] != IcacheWaitRetry && 1344 fetchStatus[tid] != QuiescePending && 1345 !curMacroop; 1346} 1347 1348template<class Impl> 1349void 1350DefaultFetch<Impl>::recvRetry() 1351{ 1352 if (retryPkt != NULL) { 1353 assert(cacheBlocked); 1354 assert(retryTid != InvalidThreadID); 1355 assert(fetchStatus[retryTid] == IcacheWaitRetry); 1356 1357 if (cpu->getInstPort().sendTiming(retryPkt)) { 1358 fetchStatus[retryTid] = IcacheWaitResponse; 1359 retryPkt = NULL; 1360 retryTid = InvalidThreadID; 1361 cacheBlocked = false; 1362 } 1363 } else { 1364 assert(retryTid == InvalidThreadID); 1365 // Access has been squashed since it was sent out. Just clear 1366 // the cache being blocked. 1367 cacheBlocked = false; 1368 } 1369} 1370 1371/////////////////////////////////////// 1372// // 1373// SMT FETCH POLICY MAINTAINED HERE // 1374// // 1375/////////////////////////////////////// 1376template<class Impl> 1377ThreadID 1378DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority) 1379{ 1380 if (numThreads > 1) { 1381 switch (fetch_priority) { 1382 1383 case SingleThread: 1384 return 0; 1385 1386 case RoundRobin: 1387 return roundRobin(); 1388 1389 case IQ: 1390 return iqCount(); 1391 1392 case LSQ: 1393 return lsqCount(); 1394 1395 case Branch: 1396 return branchCount(); 1397 1398 default: 1399 return InvalidThreadID; 1400 } 1401 } else { 1402 list<ThreadID>::iterator thread = activeThreads->begin(); 1403 if (thread == activeThreads->end()) { 1404 return InvalidThreadID; 1405 } 1406 1407 ThreadID tid = *thread; 1408 1409 if (fetchStatus[tid] == Running || 1410 fetchStatus[tid] == IcacheAccessComplete || 1411 fetchStatus[tid] == Idle) { 1412 return tid; 1413 } else { 1414 return InvalidThreadID; 1415 } 1416 } 1417} 1418 1419 1420template<class Impl> 1421ThreadID 1422DefaultFetch<Impl>::roundRobin() 1423{ 1424 list<ThreadID>::iterator pri_iter = priorityList.begin(); 1425 list<ThreadID>::iterator end = priorityList.end(); 1426 1427 ThreadID high_pri; 1428 1429 while (pri_iter != end) { 1430 high_pri = *pri_iter; 1431 1432 assert(high_pri <= numThreads); 1433 1434 if (fetchStatus[high_pri] == Running || 1435 fetchStatus[high_pri] == IcacheAccessComplete || 1436 fetchStatus[high_pri] == Idle) { 1437 1438 priorityList.erase(pri_iter); 1439 priorityList.push_back(high_pri); 1440 1441 return high_pri; 1442 } 1443 1444 pri_iter++; 1445 } 1446 1447 return InvalidThreadID; 1448} 1449 1450template<class Impl> 1451ThreadID 1452DefaultFetch<Impl>::iqCount() 1453{ 1454 std::priority_queue<unsigned> PQ; 1455 std::map<unsigned, ThreadID> threadMap; 1456 1457 list<ThreadID>::iterator threads = activeThreads->begin(); 1458 list<ThreadID>::iterator end = activeThreads->end(); 1459 1460 while (threads != end) { 1461 ThreadID tid = *threads++; 1462 unsigned iqCount = fromIEW->iewInfo[tid].iqCount; 1463 1464 PQ.push(iqCount); 1465 threadMap[iqCount] = tid; 1466 } 1467 1468 while (!PQ.empty()) { 1469 ThreadID high_pri = threadMap[PQ.top()]; 1470 1471 if (fetchStatus[high_pri] == Running || 1472 fetchStatus[high_pri] == IcacheAccessComplete || 1473 fetchStatus[high_pri] == Idle) 1474 return high_pri; 1475 else 1476 PQ.pop(); 1477 1478 } 1479 1480 return InvalidThreadID; 1481} 1482 1483template<class Impl> 1484ThreadID 1485DefaultFetch<Impl>::lsqCount() 1486{ 1487 std::priority_queue<unsigned> PQ; 1488 std::map<unsigned, ThreadID> threadMap; 1489 1490 list<ThreadID>::iterator threads = activeThreads->begin(); 1491 list<ThreadID>::iterator end = activeThreads->end(); 1492 1493 while (threads != end) { 1494 ThreadID tid = *threads++; 1495 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount; 1496 1497 PQ.push(ldstqCount); 1498 threadMap[ldstqCount] = tid; 1499 } 1500 1501 while (!PQ.empty()) { 1502 ThreadID high_pri = threadMap[PQ.top()]; 1503 1504 if (fetchStatus[high_pri] == Running || 1505 fetchStatus[high_pri] == IcacheAccessComplete || 1506 fetchStatus[high_pri] == Idle) 1507 return high_pri; 1508 else 1509 PQ.pop(); 1510 } 1511 1512 return InvalidThreadID; 1513} 1514 1515template<class Impl> 1516ThreadID 1517DefaultFetch<Impl>::branchCount() 1518{ 1519#if 0 1520 list<ThreadID>::iterator thread = activeThreads->begin(); 1521 assert(thread != activeThreads->end()); 1522 ThreadID tid = *thread; 1523#endif 1524 1525 panic("Branch Count Fetch policy unimplemented\n"); 1526 return InvalidThreadID; 1527} 1528 1529template<class Impl> 1530void 1531DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid) 1532{ 1533 if (!issuePipelinedIfetch[tid]) { 1534 return; 1535 } 1536 1537 // The next PC to access. 1538 TheISA::PCState thisPC = pc[tid]; 1539 1540 if (isRomMicroPC(thisPC.microPC())) { 1541 return; 1542 } 1543 1544 Addr pcOffset = fetchOffset[tid]; 1545 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask; 1546 1547 // Align the fetch PC so its at the start of a cache block. 1548 Addr block_PC = icacheBlockAlignPC(fetchAddr); 1549 1550 // Unless buffer already got the block, fetch it from icache. 1551 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) { 1552 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, " 1553 "starting at PC %s.\n", tid, thisPC); 1554 1555 fetchCacheLine(fetchAddr, tid, thisPC.instAddr()); 1556 } 1557} 1558 1559template<class Impl> 1560void 1561DefaultFetch<Impl>::profileStall(ThreadID tid) { 1562 DPRINTF(Fetch,"There are no more threads available to fetch from.\n"); 1563 1564 // @todo Per-thread stats 1565 1566 if (drainPending) { 1567 ++fetchPendingDrainCycles; 1568 DPRINTF(Fetch, "Fetch is waiting for a drain!\n"); 1569 } else if (activeThreads->empty()) { 1570 ++fetchNoActiveThreadStallCycles; 1571 DPRINTF(Fetch, "Fetch has no active thread!\n"); 1572 } else if (fetchStatus[tid] == Blocked) { 1573 ++fetchBlockedCycles; 1574 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid); 1575 } else if (fetchStatus[tid] == Squashing) { 1576 ++fetchSquashCycles; 1577 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid); 1578 } else if (fetchStatus[tid] == IcacheWaitResponse) { 1579 ++icacheStallCycles; 1580 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", 1581 tid); 1582 } else if (fetchStatus[tid] == ItlbWait) { 1583 ++fetchTlbCycles; 1584 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to " 1585 "finish!\n", tid); 1586 } else if (fetchStatus[tid] == TrapPending) { 1587 ++fetchPendingTrapStallCycles; 1588 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n", 1589 tid); 1590 } else if (fetchStatus[tid] == QuiescePending) { 1591 ++fetchPendingQuiesceStallCycles; 1592 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce " 1593 "instruction!\n", tid); 1594 } else if (fetchStatus[tid] == IcacheWaitRetry) { 1595 ++fetchIcacheWaitRetryStallCycles; 1596 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n", 1597 tid); 1598 } else if (fetchStatus[tid] == NoGoodAddr) { 1599 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n", 1600 tid); 1601 } else { 1602 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n", 1603 tid, fetchStatus[tid]); 1604 } 1605} 1606