fetch_impl.hh revision 8733:64a7bf8fa56c
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/utility.hh"
52#include "base/types.hh"
53#include "config/the_isa.hh"
54#include "config/use_checker.hh"
55#include "cpu/base.hh"
56#include "cpu/o3/fetch.hh"
57#include "cpu/exetrace.hh"
58#include "debug/Activity.hh"
59#include "debug/Fetch.hh"
60#include "mem/packet.hh"
61#include "mem/request.hh"
62#include "params/DerivO3CPU.hh"
63#include "sim/byteswap.hh"
64#include "sim/core.hh"
65#include "sim/eventq.hh"
66
67#if FULL_SYSTEM
68#include "arch/tlb.hh"
69#include "arch/vtophys.hh"
70#include "sim/system.hh"
71#endif // FULL_SYSTEM
72
73#if USE_CHECKER
74#include "cpu/checker/cpu.hh"
75#endif // USE_CHECKER
76
77using namespace std;
78
79template<class Impl>
80DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
81    : cpu(_cpu),
82      branchPred(params),
83      predecoder(NULL),
84      numInst(0),
85      decodeToFetchDelay(params->decodeToFetchDelay),
86      renameToFetchDelay(params->renameToFetchDelay),
87      iewToFetchDelay(params->iewToFetchDelay),
88      commitToFetchDelay(params->commitToFetchDelay),
89      fetchWidth(params->fetchWidth),
90      cacheBlocked(false),
91      retryPkt(NULL),
92      retryTid(InvalidThreadID),
93      numThreads(params->numThreads),
94      numFetchingThreads(params->smtNumFetchingThreads),
95      interruptPending(false),
96      drainPending(false),
97      switchedOut(false),
98      finishTranslationEvent(this)
99{
100    if (numThreads > Impl::MaxThreads)
101        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
102              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
103              numThreads, static_cast<int>(Impl::MaxThreads));
104
105    // Set fetch stage's status to inactive.
106    _status = Inactive;
107
108    std::string policy = params->smtFetchPolicy;
109
110    // Convert string to lowercase
111    std::transform(policy.begin(), policy.end(), policy.begin(),
112                   (int(*)(int)) tolower);
113
114    // Figure out fetch policy
115    if (policy == "singlethread") {
116        fetchPolicy = SingleThread;
117        if (numThreads > 1)
118            panic("Invalid Fetch Policy for a SMT workload.");
119    } else if (policy == "roundrobin") {
120        fetchPolicy = RoundRobin;
121        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
122    } else if (policy == "branch") {
123        fetchPolicy = Branch;
124        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
125    } else if (policy == "iqcount") {
126        fetchPolicy = IQ;
127        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
128    } else if (policy == "lsqcount") {
129        fetchPolicy = LSQ;
130        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
131    } else {
132        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
133              " RoundRobin,LSQcount,IQcount}\n");
134    }
135
136    // Get the size of an instruction.
137    instSize = sizeof(TheISA::MachInst);
138}
139
140template <class Impl>
141std::string
142DefaultFetch<Impl>::name() const
143{
144    return cpu->name() + ".fetch";
145}
146
147template <class Impl>
148void
149DefaultFetch<Impl>::regStats()
150{
151    icacheStallCycles
152        .name(name() + ".icacheStallCycles")
153        .desc("Number of cycles fetch is stalled on an Icache miss")
154        .prereq(icacheStallCycles);
155
156    fetchedInsts
157        .name(name() + ".Insts")
158        .desc("Number of instructions fetch has processed")
159        .prereq(fetchedInsts);
160
161    fetchedBranches
162        .name(name() + ".Branches")
163        .desc("Number of branches that fetch encountered")
164        .prereq(fetchedBranches);
165
166    predictedBranches
167        .name(name() + ".predictedBranches")
168        .desc("Number of branches that fetch has predicted taken")
169        .prereq(predictedBranches);
170
171    fetchCycles
172        .name(name() + ".Cycles")
173        .desc("Number of cycles fetch has run and was not squashing or"
174              " blocked")
175        .prereq(fetchCycles);
176
177    fetchSquashCycles
178        .name(name() + ".SquashCycles")
179        .desc("Number of cycles fetch has spent squashing")
180        .prereq(fetchSquashCycles);
181
182    fetchTlbCycles
183        .name(name() + ".TlbCycles")
184        .desc("Number of cycles fetch has spent waiting for tlb")
185        .prereq(fetchTlbCycles);
186
187    fetchIdleCycles
188        .name(name() + ".IdleCycles")
189        .desc("Number of cycles fetch was idle")
190        .prereq(fetchIdleCycles);
191
192    fetchBlockedCycles
193        .name(name() + ".BlockedCycles")
194        .desc("Number of cycles fetch has spent blocked")
195        .prereq(fetchBlockedCycles);
196
197    fetchedCacheLines
198        .name(name() + ".CacheLines")
199        .desc("Number of cache lines fetched")
200        .prereq(fetchedCacheLines);
201
202    fetchMiscStallCycles
203        .name(name() + ".MiscStallCycles")
204        .desc("Number of cycles fetch has spent waiting on interrupts, or "
205              "bad addresses, or out of MSHRs")
206        .prereq(fetchMiscStallCycles);
207
208    fetchPendingDrainCycles
209        .name(name() + ".PendingDrainCycles")
210        .desc("Number of cycles fetch has spent waiting on pipes to drain")
211        .prereq(fetchPendingDrainCycles);
212
213    fetchNoActiveThreadStallCycles
214        .name(name() + ".NoActiveThreadStallCycles")
215        .desc("Number of stall cycles due to no active thread to fetch from")
216        .prereq(fetchNoActiveThreadStallCycles);
217
218    fetchPendingTrapStallCycles
219        .name(name() + ".PendingTrapStallCycles")
220        .desc("Number of stall cycles due to pending traps")
221        .prereq(fetchPendingTrapStallCycles);
222
223    fetchPendingQuiesceStallCycles
224        .name(name() + ".PendingQuiesceStallCycles")
225        .desc("Number of stall cycles due to pending quiesce instructions")
226        .prereq(fetchPendingQuiesceStallCycles);
227
228    fetchIcacheWaitRetryStallCycles
229        .name(name() + ".IcacheWaitRetryStallCycles")
230        .desc("Number of stall cycles due to full MSHR")
231        .prereq(fetchIcacheWaitRetryStallCycles);
232
233    fetchIcacheSquashes
234        .name(name() + ".IcacheSquashes")
235        .desc("Number of outstanding Icache misses that were squashed")
236        .prereq(fetchIcacheSquashes);
237
238    fetchTlbSquashes
239        .name(name() + ".ItlbSquashes")
240        .desc("Number of outstanding ITLB misses that were squashed")
241        .prereq(fetchTlbSquashes);
242
243    fetchNisnDist
244        .init(/* base value */ 0,
245              /* last value */ fetchWidth,
246              /* bucket size */ 1)
247        .name(name() + ".rateDist")
248        .desc("Number of instructions fetched each cycle (Total)")
249        .flags(Stats::pdf);
250
251    idleRate
252        .name(name() + ".idleRate")
253        .desc("Percent of cycles fetch was idle")
254        .prereq(idleRate);
255    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
256
257    branchRate
258        .name(name() + ".branchRate")
259        .desc("Number of branch fetches per cycle")
260        .flags(Stats::total);
261    branchRate = fetchedBranches / cpu->numCycles;
262
263    fetchRate
264        .name(name() + ".rate")
265        .desc("Number of inst fetches per cycle")
266        .flags(Stats::total);
267    fetchRate = fetchedInsts / cpu->numCycles;
268
269    branchPred.regStats();
270}
271
272template<class Impl>
273void
274DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
275{
276    timeBuffer = time_buffer;
277
278    // Create wires to get information from proper places in time buffer.
279    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
280    fromRename = timeBuffer->getWire(-renameToFetchDelay);
281    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
282    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
283}
284
285template<class Impl>
286void
287DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
288{
289    activeThreads = at_ptr;
290}
291
292template<class Impl>
293void
294DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
295{
296    fetchQueue = fq_ptr;
297
298    // Create wire to write information to proper place in fetch queue.
299    toDecode = fetchQueue->getWire(0);
300}
301
302template<class Impl>
303void
304DefaultFetch<Impl>::initStage()
305{
306    // Setup PC and nextPC with initial state.
307    for (ThreadID tid = 0; tid < numThreads; tid++) {
308        pc[tid] = cpu->pcState(tid);
309        fetchOffset[tid] = 0;
310        macroop[tid] = NULL;
311        delayedCommit[tid] = false;
312    }
313
314    for (ThreadID tid = 0; tid < numThreads; tid++) {
315
316        fetchStatus[tid] = Running;
317
318        priorityList.push_back(tid);
319
320        memReq[tid] = NULL;
321
322        stalls[tid].decode = false;
323        stalls[tid].rename = false;
324        stalls[tid].iew = false;
325        stalls[tid].commit = false;
326    }
327
328    // Schedule fetch to get the correct PC from the CPU
329    // scheduleFetchStartupEvent(1);
330
331    // Fetch needs to start fetching instructions at the very beginning,
332    // so it must start up in active state.
333    switchToActive();
334}
335
336template<class Impl>
337void
338DefaultFetch<Impl>::setIcache()
339{
340    assert(cpu->getIcachePort()->isConnected());
341
342    // Size of cache block.
343    cacheBlkSize = cpu->getIcachePort()->peerBlockSize();
344
345    // Create mask to get rid of offset bits.
346    cacheBlkMask = (cacheBlkSize - 1);
347
348    for (ThreadID tid = 0; tid < numThreads; tid++) {
349        // Create space to store a cache line.
350        cacheData[tid] = new uint8_t[cacheBlkSize];
351        cacheDataPC[tid] = 0;
352        cacheDataValid[tid] = false;
353    }
354}
355
356template<class Impl>
357void
358DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
359{
360    ThreadID tid = pkt->req->threadId();
361
362    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
363
364    assert(!pkt->wasNacked());
365
366    // Only change the status if it's still waiting on the icache access
367    // to return.
368    if (fetchStatus[tid] != IcacheWaitResponse ||
369        pkt->req != memReq[tid] ||
370        isSwitchedOut()) {
371        ++fetchIcacheSquashes;
372        delete pkt->req;
373        delete pkt;
374        return;
375    }
376
377    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
378    cacheDataValid[tid] = true;
379
380    if (!drainPending) {
381        // Wake up the CPU (if it went to sleep and was waiting on
382        // this completion event).
383        cpu->wakeCPU();
384
385        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
386                tid);
387
388        switchToActive();
389    }
390
391    // Only switch to IcacheAccessComplete if we're not stalled as well.
392    if (checkStall(tid)) {
393        fetchStatus[tid] = Blocked;
394    } else {
395        fetchStatus[tid] = IcacheAccessComplete;
396    }
397
398    // Reset the mem req to NULL.
399    delete pkt->req;
400    delete pkt;
401    memReq[tid] = NULL;
402}
403
404template <class Impl>
405bool
406DefaultFetch<Impl>::drain()
407{
408    // Fetch is ready to drain at any time.
409    cpu->signalDrained();
410    drainPending = true;
411    return true;
412}
413
414template <class Impl>
415void
416DefaultFetch<Impl>::resume()
417{
418    drainPending = false;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::switchOut()
424{
425    switchedOut = true;
426    // Branch predictor needs to have its state cleared.
427    branchPred.switchOut();
428}
429
430template <class Impl>
431void
432DefaultFetch<Impl>::takeOverFrom()
433{
434    // the instruction port is now connected so we can get the block
435    // size
436    setIcache();
437
438    // Reset all state
439    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
440        stalls[i].decode = 0;
441        stalls[i].rename = 0;
442        stalls[i].iew = 0;
443        stalls[i].commit = 0;
444        pc[i] = cpu->pcState(i);
445        fetchStatus[i] = Running;
446    }
447    numInst = 0;
448    wroteToTimeBuffer = false;
449    _status = Inactive;
450    switchedOut = false;
451    interruptPending = false;
452    branchPred.takeOverFrom();
453}
454
455template <class Impl>
456void
457DefaultFetch<Impl>::wakeFromQuiesce()
458{
459    DPRINTF(Fetch, "Waking up from quiesce\n");
460    // Hopefully this is safe
461    // @todo: Allow other threads to wake from quiesce.
462    fetchStatus[0] = Running;
463}
464
465template <class Impl>
466inline void
467DefaultFetch<Impl>::switchToActive()
468{
469    if (_status == Inactive) {
470        DPRINTF(Activity, "Activating stage.\n");
471
472        cpu->activateStage(O3CPU::FetchIdx);
473
474        _status = Active;
475    }
476}
477
478template <class Impl>
479inline void
480DefaultFetch<Impl>::switchToInactive()
481{
482    if (_status == Active) {
483        DPRINTF(Activity, "Deactivating stage.\n");
484
485        cpu->deactivateStage(O3CPU::FetchIdx);
486
487        _status = Inactive;
488    }
489}
490
491template <class Impl>
492bool
493DefaultFetch<Impl>::lookupAndUpdateNextPC(
494        DynInstPtr &inst, TheISA::PCState &nextPC)
495{
496    // Do branch prediction check here.
497    // A bit of a misnomer...next_PC is actually the current PC until
498    // this function updates it.
499    bool predict_taken;
500
501    if (!inst->isControl()) {
502        TheISA::advancePC(nextPC, inst->staticInst);
503        inst->setPredTarg(nextPC);
504        inst->setPredTaken(false);
505        return false;
506    }
507
508    ThreadID tid = inst->threadNumber;
509    predict_taken = branchPred.predict(inst, nextPC, tid);
510
511    if (predict_taken) {
512        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
513                tid, inst->seqNum, nextPC);
514    } else {
515        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
516                tid, inst->seqNum);
517    }
518
519    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
520            tid, inst->seqNum, nextPC);
521    inst->setPredTarg(nextPC);
522    inst->setPredTaken(predict_taken);
523
524    ++fetchedBranches;
525
526    if (predict_taken) {
527        ++predictedBranches;
528    }
529
530    return predict_taken;
531}
532
533template <class Impl>
534bool
535DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
536{
537    Fault fault = NoFault;
538
539    // @todo: not sure if these should block translation.
540    //AlphaDep
541    if (cacheBlocked) {
542        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
543                tid);
544        return false;
545    } else if (isSwitchedOut()) {
546        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
547                tid);
548        return false;
549    } else if (checkInterrupt(pc)) {
550        // Hold off fetch from getting new instructions when:
551        // Cache is blocked, or
552        // while an interrupt is pending and we're not in PAL mode, or
553        // fetch is switched out.
554        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
555                tid);
556        return false;
557    }
558
559    // Align the fetch address so it's at the start of a cache block.
560    Addr block_PC = icacheBlockAlignPC(vaddr);
561
562    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
563            tid, block_PC, vaddr);
564
565    // Setup the memReq to do a read of the first instruction's address.
566    // Set the appropriate read size and flags as well.
567    // Build request here.
568    RequestPtr mem_req =
569        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
570                    pc, cpu->thread[tid]->contextId(), tid);
571
572    memReq[tid] = mem_req;
573
574    // Initiate translation of the icache block
575    fetchStatus[tid] = ItlbWait;
576    FetchTranslation *trans = new FetchTranslation(this);
577    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
578                              trans, BaseTLB::Execute);
579    return true;
580}
581
582template <class Impl>
583void
584DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
585{
586    ThreadID tid = mem_req->threadId();
587    Addr block_PC = mem_req->getVaddr();
588
589    // Wake up CPU if it was idle
590    cpu->wakeCPU();
591
592    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
593        mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
594        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
595                tid);
596        ++fetchTlbSquashes;
597        delete mem_req;
598        return;
599    }
600
601
602    // If translation was successful, attempt to read the icache block.
603    if (fault == NoFault) {
604        // Check that we're not going off into random memory
605        // If we have, just wait around for commit to squash something and put
606        // us on the right track
607        if (!cpu->system->isMemory(mem_req->getPaddr())) {
608            warn("Address %#x is outside of physical memory, stopping fetch\n",
609                    mem_req->getPaddr());
610            fetchStatus[tid] = NoGoodAddr;
611            delete mem_req;
612            memReq[tid] = NULL;
613            return;
614        }
615
616        // Build packet here.
617        PacketPtr data_pkt = new Packet(mem_req,
618                                        MemCmd::ReadReq, Packet::Broadcast);
619        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
620
621        cacheDataPC[tid] = block_PC;
622        cacheDataValid[tid] = false;
623        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
624
625        fetchedCacheLines++;
626
627        // Access the cache.
628        if (!cpu->getIcachePort()->sendTiming(data_pkt)) {
629            assert(retryPkt == NULL);
630            assert(retryTid == InvalidThreadID);
631            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
632
633            fetchStatus[tid] = IcacheWaitRetry;
634            retryPkt = data_pkt;
635            retryTid = tid;
636            cacheBlocked = true;
637        } else {
638            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
639            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
640                    "response.\n", tid);
641
642            lastIcacheStall[tid] = curTick();
643            fetchStatus[tid] = IcacheWaitResponse;
644        }
645    } else {
646        if (!(numInst < fetchWidth)) {
647            assert(!finishTranslationEvent.scheduled());
648            finishTranslationEvent.setFault(fault);
649            finishTranslationEvent.setReq(mem_req);
650            cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
651            return;
652        }
653        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
654                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
655        // Translation faulted, icache request won't be sent.
656        delete mem_req;
657        memReq[tid] = NULL;
658
659        // Send the fault to commit.  This thread will not do anything
660        // until commit handles the fault.  The only other way it can
661        // wake up is if a squash comes along and changes the PC.
662        TheISA::PCState fetchPC = pc[tid];
663
664        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
665        // We will use a nop in ordier to carry the fault.
666        DynInstPtr instruction = buildInst(tid,
667                decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
668                NULL, fetchPC, fetchPC, false);
669
670        instruction->setPredTarg(fetchPC);
671        instruction->fault = fault;
672        wroteToTimeBuffer = true;
673
674        DPRINTF(Activity, "Activity this cycle.\n");
675        cpu->activityThisCycle();
676
677        fetchStatus[tid] = TrapPending;
678
679        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
680        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
681                tid, fault->name(), pc[tid]);
682    }
683    _status = updateFetchStatus();
684}
685
686template <class Impl>
687inline void
688DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
689                             const DynInstPtr squashInst, ThreadID tid)
690{
691    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
692            tid, newPC);
693
694    pc[tid] = newPC;
695    fetchOffset[tid] = 0;
696    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
697        macroop[tid] = squashInst->macroop;
698    else
699        macroop[tid] = NULL;
700    predecoder.reset();
701
702    // Clear the icache miss if it's outstanding.
703    if (fetchStatus[tid] == IcacheWaitResponse) {
704        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
705                tid);
706        memReq[tid] = NULL;
707    } else if (fetchStatus[tid] == ItlbWait) {
708        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
709                tid);
710        memReq[tid] = NULL;
711    }
712
713    // Get rid of the retrying packet if it was from this thread.
714    if (retryTid == tid) {
715        assert(cacheBlocked);
716        if (retryPkt) {
717            delete retryPkt->req;
718            delete retryPkt;
719        }
720        retryPkt = NULL;
721        retryTid = InvalidThreadID;
722    }
723
724    fetchStatus[tid] = Squashing;
725
726    ++fetchSquashCycles;
727}
728
729template<class Impl>
730void
731DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
732                                     const DynInstPtr squashInst,
733                                     const InstSeqNum seq_num, ThreadID tid)
734{
735    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
736
737    doSquash(newPC, squashInst, tid);
738
739    // Tell the CPU to remove any instructions that are in flight between
740    // fetch and decode.
741    cpu->removeInstsUntil(seq_num, tid);
742}
743
744template<class Impl>
745bool
746DefaultFetch<Impl>::checkStall(ThreadID tid) const
747{
748    bool ret_val = false;
749
750    if (cpu->contextSwitch) {
751        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
752        ret_val = true;
753    } else if (stalls[tid].decode) {
754        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
755        ret_val = true;
756    } else if (stalls[tid].rename) {
757        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
758        ret_val = true;
759    } else if (stalls[tid].iew) {
760        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
761        ret_val = true;
762    } else if (stalls[tid].commit) {
763        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
764        ret_val = true;
765    }
766
767    return ret_val;
768}
769
770template<class Impl>
771typename DefaultFetch<Impl>::FetchStatus
772DefaultFetch<Impl>::updateFetchStatus()
773{
774    //Check Running
775    list<ThreadID>::iterator threads = activeThreads->begin();
776    list<ThreadID>::iterator end = activeThreads->end();
777
778    while (threads != end) {
779        ThreadID tid = *threads++;
780
781        if (fetchStatus[tid] == Running ||
782            fetchStatus[tid] == Squashing ||
783            fetchStatus[tid] == IcacheAccessComplete) {
784
785            if (_status == Inactive) {
786                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
787
788                if (fetchStatus[tid] == IcacheAccessComplete) {
789                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
790                            "completion\n",tid);
791                }
792
793                cpu->activateStage(O3CPU::FetchIdx);
794            }
795
796            return Active;
797        }
798    }
799
800    // Stage is switching from active to inactive, notify CPU of it.
801    if (_status == Active) {
802        DPRINTF(Activity, "Deactivating stage.\n");
803
804        cpu->deactivateStage(O3CPU::FetchIdx);
805    }
806
807    return Inactive;
808}
809
810template <class Impl>
811void
812DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
813                           const InstSeqNum seq_num, DynInstPtr squashInst,
814                           ThreadID tid)
815{
816    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
817
818    doSquash(newPC, squashInst, tid);
819
820    // Tell the CPU to remove any instructions that are not in the ROB.
821    cpu->removeInstsNotInROB(tid);
822}
823
824template <class Impl>
825void
826DefaultFetch<Impl>::tick()
827{
828    list<ThreadID>::iterator threads = activeThreads->begin();
829    list<ThreadID>::iterator end = activeThreads->end();
830    bool status_change = false;
831
832    wroteToTimeBuffer = false;
833
834    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
835        issuePipelinedIfetch[i] = false;
836    }
837
838    while (threads != end) {
839        ThreadID tid = *threads++;
840
841        // Check the signals for each thread to determine the proper status
842        // for each thread.
843        bool updated_status = checkSignalsAndUpdate(tid);
844        status_change =  status_change || updated_status;
845    }
846
847    DPRINTF(Fetch, "Running stage.\n");
848
849    #if FULL_SYSTEM
850    if (fromCommit->commitInfo[0].interruptPending) {
851        interruptPending = true;
852    }
853
854    if (fromCommit->commitInfo[0].clearInterrupt) {
855        interruptPending = false;
856    }
857#endif
858
859    for (threadFetched = 0; threadFetched < numFetchingThreads;
860         threadFetched++) {
861        // Fetch each of the actively fetching threads.
862        fetch(status_change);
863    }
864
865    // Record number of instructions fetched this cycle for distribution.
866    fetchNisnDist.sample(numInst);
867
868    if (status_change) {
869        // Change the fetch stage status if there was a status change.
870        _status = updateFetchStatus();
871    }
872
873    // If there was activity this cycle, inform the CPU of it.
874    if (wroteToTimeBuffer || cpu->contextSwitch) {
875        DPRINTF(Activity, "Activity this cycle.\n");
876
877        cpu->activityThisCycle();
878    }
879
880    // Issue the next I-cache request if possible.
881    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
882        if (issuePipelinedIfetch[i]) {
883            pipelineIcacheAccesses(i);
884        }
885    }
886
887    // Reset the number of the instruction we've fetched.
888    numInst = 0;
889}
890
891template <class Impl>
892bool
893DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
894{
895    // Update the per thread stall statuses.
896    if (fromDecode->decodeBlock[tid]) {
897        stalls[tid].decode = true;
898    }
899
900    if (fromDecode->decodeUnblock[tid]) {
901        assert(stalls[tid].decode);
902        assert(!fromDecode->decodeBlock[tid]);
903        stalls[tid].decode = false;
904    }
905
906    if (fromRename->renameBlock[tid]) {
907        stalls[tid].rename = true;
908    }
909
910    if (fromRename->renameUnblock[tid]) {
911        assert(stalls[tid].rename);
912        assert(!fromRename->renameBlock[tid]);
913        stalls[tid].rename = false;
914    }
915
916    if (fromIEW->iewBlock[tid]) {
917        stalls[tid].iew = true;
918    }
919
920    if (fromIEW->iewUnblock[tid]) {
921        assert(stalls[tid].iew);
922        assert(!fromIEW->iewBlock[tid]);
923        stalls[tid].iew = false;
924    }
925
926    if (fromCommit->commitBlock[tid]) {
927        stalls[tid].commit = true;
928    }
929
930    if (fromCommit->commitUnblock[tid]) {
931        assert(stalls[tid].commit);
932        assert(!fromCommit->commitBlock[tid]);
933        stalls[tid].commit = false;
934    }
935
936    // Check squash signals from commit.
937    if (fromCommit->commitInfo[tid].squash) {
938
939        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
940                "from commit.\n",tid);
941        // In any case, squash.
942        squash(fromCommit->commitInfo[tid].pc,
943               fromCommit->commitInfo[tid].doneSeqNum,
944               fromCommit->commitInfo[tid].squashInst, tid);
945
946        // If it was a branch mispredict on a control instruction, update the
947        // branch predictor with that instruction, otherwise just kill the
948        // invalid state we generated in after sequence number
949        if (fromCommit->commitInfo[tid].mispredictInst &&
950            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
951            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
952                              fromCommit->commitInfo[tid].pc,
953                              fromCommit->commitInfo[tid].branchTaken,
954                              tid);
955        } else {
956            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
957                              tid);
958        }
959
960        return true;
961    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
962        // Update the branch predictor if it wasn't a squashed instruction
963        // that was broadcasted.
964        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
965    }
966
967    // Check ROB squash signals from commit.
968    if (fromCommit->commitInfo[tid].robSquashing) {
969        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
970
971        // Continue to squash.
972        fetchStatus[tid] = Squashing;
973
974        return true;
975    }
976
977    // Check squash signals from decode.
978    if (fromDecode->decodeInfo[tid].squash) {
979        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
980                "from decode.\n",tid);
981
982        // Update the branch predictor.
983        if (fromDecode->decodeInfo[tid].branchMispredict) {
984            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
985                              fromDecode->decodeInfo[tid].nextPC,
986                              fromDecode->decodeInfo[tid].branchTaken,
987                              tid);
988        } else {
989            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
990                              tid);
991        }
992
993        if (fetchStatus[tid] != Squashing) {
994
995            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
996                fromDecode->decodeInfo[tid].nextPC);
997            // Squash unless we're already squashing
998            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
999                             fromDecode->decodeInfo[tid].squashInst,
1000                             fromDecode->decodeInfo[tid].doneSeqNum,
1001                             tid);
1002
1003            return true;
1004        }
1005    }
1006
1007    if (checkStall(tid) &&
1008        fetchStatus[tid] != IcacheWaitResponse &&
1009        fetchStatus[tid] != IcacheWaitRetry) {
1010        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1011
1012        fetchStatus[tid] = Blocked;
1013
1014        return true;
1015    }
1016
1017    if (fetchStatus[tid] == Blocked ||
1018        fetchStatus[tid] == Squashing) {
1019        // Switch status to running if fetch isn't being told to block or
1020        // squash this cycle.
1021        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1022                tid);
1023
1024        fetchStatus[tid] = Running;
1025
1026        return true;
1027    }
1028
1029    // If we've reached this point, we have not gotten any signals that
1030    // cause fetch to change its status.  Fetch remains the same as before.
1031    return false;
1032}
1033
1034template<class Impl>
1035typename Impl::DynInstPtr
1036DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1037                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1038                              TheISA::PCState nextPC, bool trace)
1039{
1040    // Get a sequence number.
1041    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1042
1043    // Create a new DynInst from the instruction fetched.
1044    DynInstPtr instruction =
1045        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1046    instruction->setTid(tid);
1047
1048    instruction->setASID(tid);
1049
1050    instruction->setThreadState(cpu->thread[tid]);
1051
1052    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1053            "[sn:%lli].\n", tid, thisPC.instAddr(),
1054            thisPC.microPC(), seq);
1055
1056    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1057            instruction->staticInst->
1058            disassemble(thisPC.instAddr()));
1059
1060#if TRACING_ON
1061    if (trace) {
1062        instruction->traceData =
1063            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1064                    instruction->staticInst, thisPC, curMacroop);
1065    }
1066#else
1067    instruction->traceData = NULL;
1068#endif
1069
1070    // Add instruction to the CPU's list of instructions.
1071    instruction->setInstListIt(cpu->addInst(instruction));
1072
1073    // Write the instruction to the first slot in the queue
1074    // that heads to decode.
1075    assert(numInst < fetchWidth);
1076    toDecode->insts[toDecode->size++] = instruction;
1077
1078    // Keep track of if we can take an interrupt at this boundary
1079    delayedCommit[tid] = instruction->isDelayedCommit();
1080
1081    return instruction;
1082}
1083
1084template<class Impl>
1085void
1086DefaultFetch<Impl>::fetch(bool &status_change)
1087{
1088    //////////////////////////////////////////
1089    // Start actual fetch
1090    //////////////////////////////////////////
1091    ThreadID tid = getFetchingThread(fetchPolicy);
1092
1093    if (tid == InvalidThreadID || drainPending) {
1094        // Breaks looping condition in tick()
1095        threadFetched = numFetchingThreads;
1096
1097        if (numThreads == 1) {  // @todo Per-thread stats
1098            profileStall(0);
1099        }
1100
1101        return;
1102    }
1103
1104    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1105
1106    // The current PC.
1107    TheISA::PCState thisPC = pc[tid];
1108
1109    Addr pcOffset = fetchOffset[tid];
1110    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1111
1112    bool inRom = isRomMicroPC(thisPC.microPC());
1113
1114    // If returning from the delay of a cache miss, then update the status
1115    // to running, otherwise do the cache access.  Possibly move this up
1116    // to tick() function.
1117    if (fetchStatus[tid] == IcacheAccessComplete) {
1118        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1119
1120        fetchStatus[tid] = Running;
1121        status_change = true;
1122    } else if (fetchStatus[tid] == Running) {
1123        // Align the fetch PC so its at the start of a cache block.
1124        Addr block_PC = icacheBlockAlignPC(fetchAddr);
1125
1126        // If buffer is no longer valid or fetchAddr has moved to point
1127        // to the next cache block, AND we have no remaining ucode
1128        // from a macro-op, then start fetch from icache.
1129        if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1130            && !inRom && !macroop[tid]) {
1131            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1132                    "instruction, starting at PC %s.\n", tid, thisPC);
1133
1134            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1135
1136            if (fetchStatus[tid] == IcacheWaitResponse)
1137                ++icacheStallCycles;
1138            else if (fetchStatus[tid] == ItlbWait)
1139                ++fetchTlbCycles;
1140            else
1141                ++fetchMiscStallCycles;
1142            return;
1143        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1144                   || isSwitchedOut()) {
1145            // Stall CPU if an interrupt is posted and we're not issuing
1146            // an delayed commit micro-op currently (delayed commit instructions
1147            // are not interruptable by interrupts, only faults)
1148            ++fetchMiscStallCycles;
1149            return;
1150        }
1151    } else {
1152        if (fetchStatus[tid] == Idle) {
1153            ++fetchIdleCycles;
1154            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1155        }
1156
1157        // Status is Idle, so fetch should do nothing.
1158        return;
1159    }
1160
1161    ++fetchCycles;
1162
1163    TheISA::PCState nextPC = thisPC;
1164
1165    StaticInstPtr staticInst = NULL;
1166    StaticInstPtr curMacroop = macroop[tid];
1167
1168    // If the read of the first instruction was successful, then grab the
1169    // instructions from the rest of the cache line and put them into the
1170    // queue heading to decode.
1171
1172    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1173            "decode.\n", tid);
1174
1175    // Need to keep track of whether or not a predicted branch
1176    // ended this fetch block.
1177    bool predictedBranch = false;
1178
1179    TheISA::MachInst *cacheInsts =
1180        reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1181
1182    const unsigned numInsts = cacheBlkSize / instSize;
1183    unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1184
1185    // Loop through instruction memory from the cache.
1186    // Keep issuing while fetchWidth is available and branch is not
1187    // predicted taken
1188    while (numInst < fetchWidth && !predictedBranch) {
1189
1190        // We need to process more memory if we aren't going to get a
1191        // StaticInst from the rom, the current macroop, or what's already
1192        // in the predecoder.
1193        bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1194
1195        if (needMem) {
1196            if (blkOffset >= numInsts) {
1197                // We need to process more memory, but we've run out of the
1198                // current block.
1199                break;
1200            }
1201
1202            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1203                // Walk past any annulled delay slot instructions.
1204                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1205                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1206                    blkOffset++;
1207                    fetchAddr += instSize;
1208                }
1209                if (blkOffset >= numInsts)
1210                    break;
1211            }
1212            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1213
1214            predecoder.setTC(cpu->thread[tid]->getTC());
1215            predecoder.moreBytes(thisPC, fetchAddr, inst);
1216
1217            if (predecoder.needMoreBytes()) {
1218                blkOffset++;
1219                fetchAddr += instSize;
1220                pcOffset += instSize;
1221            }
1222        }
1223
1224        // Extract as many instructions and/or microops as we can from
1225        // the memory we've processed so far.
1226        do {
1227            if (!(curMacroop || inRom)) {
1228                if (predecoder.extMachInstReady()) {
1229                    ExtMachInst extMachInst =
1230                        predecoder.getExtMachInst(thisPC);
1231                    staticInst =
1232                        decoder.decode(extMachInst, thisPC.instAddr());
1233
1234                    // Increment stat of fetched instructions.
1235                    ++fetchedInsts;
1236
1237                    if (staticInst->isMacroop()) {
1238                        curMacroop = staticInst;
1239                    } else {
1240                        pcOffset = 0;
1241                    }
1242                } else {
1243                    // We need more bytes for this instruction so blkOffset and
1244                    // pcOffset will be updated
1245                    break;
1246                }
1247            }
1248            // Whether we're moving to a new macroop because we're at the
1249            // end of the current one, or the branch predictor incorrectly
1250            // thinks we are...
1251            bool newMacro = false;
1252            if (curMacroop || inRom) {
1253                if (inRom) {
1254                    staticInst = cpu->microcodeRom.fetchMicroop(
1255                            thisPC.microPC(), curMacroop);
1256                } else {
1257                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1258                }
1259                newMacro |= staticInst->isLastMicroop();
1260            }
1261
1262            DynInstPtr instruction =
1263                buildInst(tid, staticInst, curMacroop,
1264                          thisPC, nextPC, true);
1265
1266            numInst++;
1267
1268#if TRACING_ON
1269            instruction->fetchTick = curTick();
1270#endif
1271
1272            nextPC = thisPC;
1273
1274            // If we're branching after this instruction, quite fetching
1275            // from the same block then.
1276            predictedBranch |= thisPC.branching();
1277            predictedBranch |=
1278                lookupAndUpdateNextPC(instruction, nextPC);
1279            if (predictedBranch) {
1280                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1281            }
1282
1283            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1284
1285            // Move to the next instruction, unless we have a branch.
1286            thisPC = nextPC;
1287
1288            if (newMacro) {
1289                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1290                blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1291                pcOffset = 0;
1292                curMacroop = NULL;
1293            }
1294
1295            if (instruction->isQuiesce()) {
1296                DPRINTF(Fetch,
1297                        "Quiesce instruction encountered, halting fetch!");
1298                fetchStatus[tid] = QuiescePending;
1299                status_change = true;
1300                break;
1301            }
1302        } while ((curMacroop || predecoder.extMachInstReady()) &&
1303                 numInst < fetchWidth);
1304    }
1305
1306    if (predictedBranch) {
1307        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1308                "instruction encountered.\n", tid);
1309    } else if (numInst >= fetchWidth) {
1310        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1311                "for this cycle.\n", tid);
1312    } else if (blkOffset >= cacheBlkSize) {
1313        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1314                "block.\n", tid);
1315    }
1316
1317    macroop[tid] = curMacroop;
1318    fetchOffset[tid] = pcOffset;
1319
1320    if (numInst > 0) {
1321        wroteToTimeBuffer = true;
1322    }
1323
1324    pc[tid] = thisPC;
1325
1326    // pipeline a fetch if we're crossing a cache boundary and not in
1327    // a state that would preclude fetching
1328    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1329    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1330    issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1331        fetchStatus[tid] != IcacheWaitResponse &&
1332        fetchStatus[tid] != ItlbWait &&
1333        fetchStatus[tid] != IcacheWaitRetry &&
1334        fetchStatus[tid] != QuiescePending &&
1335        !curMacroop;
1336}
1337
1338template<class Impl>
1339void
1340DefaultFetch<Impl>::recvRetry()
1341{
1342    if (retryPkt != NULL) {
1343        assert(cacheBlocked);
1344        assert(retryTid != InvalidThreadID);
1345        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1346
1347        if (cpu->getIcachePort()->sendTiming(retryPkt)) {
1348            fetchStatus[retryTid] = IcacheWaitResponse;
1349            retryPkt = NULL;
1350            retryTid = InvalidThreadID;
1351            cacheBlocked = false;
1352        }
1353    } else {
1354        assert(retryTid == InvalidThreadID);
1355        // Access has been squashed since it was sent out.  Just clear
1356        // the cache being blocked.
1357        cacheBlocked = false;
1358    }
1359}
1360
1361///////////////////////////////////////
1362//                                   //
1363//  SMT FETCH POLICY MAINTAINED HERE //
1364//                                   //
1365///////////////////////////////////////
1366template<class Impl>
1367ThreadID
1368DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1369{
1370    if (numThreads > 1) {
1371        switch (fetch_priority) {
1372
1373          case SingleThread:
1374            return 0;
1375
1376          case RoundRobin:
1377            return roundRobin();
1378
1379          case IQ:
1380            return iqCount();
1381
1382          case LSQ:
1383            return lsqCount();
1384
1385          case Branch:
1386            return branchCount();
1387
1388          default:
1389            return InvalidThreadID;
1390        }
1391    } else {
1392        list<ThreadID>::iterator thread = activeThreads->begin();
1393        if (thread == activeThreads->end()) {
1394            return InvalidThreadID;
1395        }
1396
1397        ThreadID tid = *thread;
1398
1399        if (fetchStatus[tid] == Running ||
1400            fetchStatus[tid] == IcacheAccessComplete ||
1401            fetchStatus[tid] == Idle) {
1402            return tid;
1403        } else {
1404            return InvalidThreadID;
1405        }
1406    }
1407}
1408
1409
1410template<class Impl>
1411ThreadID
1412DefaultFetch<Impl>::roundRobin()
1413{
1414    list<ThreadID>::iterator pri_iter = priorityList.begin();
1415    list<ThreadID>::iterator end      = priorityList.end();
1416
1417    ThreadID high_pri;
1418
1419    while (pri_iter != end) {
1420        high_pri = *pri_iter;
1421
1422        assert(high_pri <= numThreads);
1423
1424        if (fetchStatus[high_pri] == Running ||
1425            fetchStatus[high_pri] == IcacheAccessComplete ||
1426            fetchStatus[high_pri] == Idle) {
1427
1428            priorityList.erase(pri_iter);
1429            priorityList.push_back(high_pri);
1430
1431            return high_pri;
1432        }
1433
1434        pri_iter++;
1435    }
1436
1437    return InvalidThreadID;
1438}
1439
1440template<class Impl>
1441ThreadID
1442DefaultFetch<Impl>::iqCount()
1443{
1444    std::priority_queue<unsigned> PQ;
1445    std::map<unsigned, ThreadID> threadMap;
1446
1447    list<ThreadID>::iterator threads = activeThreads->begin();
1448    list<ThreadID>::iterator end = activeThreads->end();
1449
1450    while (threads != end) {
1451        ThreadID tid = *threads++;
1452        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1453
1454        PQ.push(iqCount);
1455        threadMap[iqCount] = tid;
1456    }
1457
1458    while (!PQ.empty()) {
1459        ThreadID high_pri = threadMap[PQ.top()];
1460
1461        if (fetchStatus[high_pri] == Running ||
1462            fetchStatus[high_pri] == IcacheAccessComplete ||
1463            fetchStatus[high_pri] == Idle)
1464            return high_pri;
1465        else
1466            PQ.pop();
1467
1468    }
1469
1470    return InvalidThreadID;
1471}
1472
1473template<class Impl>
1474ThreadID
1475DefaultFetch<Impl>::lsqCount()
1476{
1477    std::priority_queue<unsigned> PQ;
1478    std::map<unsigned, ThreadID> threadMap;
1479
1480    list<ThreadID>::iterator threads = activeThreads->begin();
1481    list<ThreadID>::iterator end = activeThreads->end();
1482
1483    while (threads != end) {
1484        ThreadID tid = *threads++;
1485        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1486
1487        PQ.push(ldstqCount);
1488        threadMap[ldstqCount] = tid;
1489    }
1490
1491    while (!PQ.empty()) {
1492        ThreadID high_pri = threadMap[PQ.top()];
1493
1494        if (fetchStatus[high_pri] == Running ||
1495            fetchStatus[high_pri] == IcacheAccessComplete ||
1496            fetchStatus[high_pri] == Idle)
1497            return high_pri;
1498        else
1499            PQ.pop();
1500    }
1501
1502    return InvalidThreadID;
1503}
1504
1505template<class Impl>
1506ThreadID
1507DefaultFetch<Impl>::branchCount()
1508{
1509#if 0
1510    list<ThreadID>::iterator thread = activeThreads->begin();
1511    assert(thread != activeThreads->end());
1512    ThreadID tid = *thread;
1513#endif
1514
1515    panic("Branch Count Fetch policy unimplemented\n");
1516    return InvalidThreadID;
1517}
1518
1519template<class Impl>
1520void
1521DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1522{
1523    if (!issuePipelinedIfetch[tid]) {
1524        return;
1525    }
1526
1527    // The next PC to access.
1528    TheISA::PCState thisPC = pc[tid];
1529
1530    if (isRomMicroPC(thisPC.microPC())) {
1531        return;
1532    }
1533
1534    Addr pcOffset = fetchOffset[tid];
1535    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1536
1537    // Align the fetch PC so its at the start of a cache block.
1538    Addr block_PC = icacheBlockAlignPC(fetchAddr);
1539
1540    // Unless buffer already got the block, fetch it from icache.
1541    if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1542        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1543                "starting at PC %s.\n", tid, thisPC);
1544
1545        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1546    }
1547}
1548
1549template<class Impl>
1550void
1551DefaultFetch<Impl>::profileStall(ThreadID tid) {
1552    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1553
1554    // @todo Per-thread stats
1555
1556    if (drainPending) {
1557        ++fetchPendingDrainCycles;
1558        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1559    } else if (activeThreads->empty()) {
1560        ++fetchNoActiveThreadStallCycles;
1561        DPRINTF(Fetch, "Fetch has no active thread!\n");
1562    } else if (fetchStatus[tid] == Blocked) {
1563        ++fetchBlockedCycles;
1564        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1565    } else if (fetchStatus[tid] == Squashing) {
1566        ++fetchSquashCycles;
1567        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1568    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1569        ++icacheStallCycles;
1570        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1571                tid);
1572    } else if (fetchStatus[tid] == ItlbWait) {
1573        ++fetchTlbCycles;
1574        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1575                "finish!\n", tid);
1576    } else if (fetchStatus[tid] == TrapPending) {
1577        ++fetchPendingTrapStallCycles;
1578        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1579                tid);
1580    } else if (fetchStatus[tid] == QuiescePending) {
1581        ++fetchPendingQuiesceStallCycles;
1582        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1583                "instruction!\n", tid);
1584    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1585        ++fetchIcacheWaitRetryStallCycles;
1586        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1587                tid);
1588    } else if (fetchStatus[tid] == NoGoodAddr) {
1589            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1590                    tid);
1591    } else {
1592        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1593             tid, fetchStatus[tid]);
1594    }
1595}
1596