fetch_impl.hh revision 7847:0c6613ad8f18
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46
47#include "arch/isa_traits.hh"
48#include "arch/utility.hh"
49#include "base/types.hh"
50#include "config/the_isa.hh"
51#include "config/use_checker.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/exetrace.hh"
54#include "cpu/o3/fetch.hh"
55#include "mem/packet.hh"
56#include "mem/request.hh"
57#include "params/DerivO3CPU.hh"
58#include "sim/byteswap.hh"
59#include "sim/core.hh"
60
61#if FULL_SYSTEM
62#include "arch/tlb.hh"
63#include "arch/vtophys.hh"
64#include "sim/system.hh"
65#endif // FULL_SYSTEM
66
67using namespace std;
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
72{
73    Port::setPeer(port);
74
75    fetch->setIcache();
76}
77
78template<class Impl>
79Tick
80DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
81{
82    panic("DefaultFetch doesn't expect recvAtomic callback!");
83    return curTick();
84}
85
86template<class Impl>
87void
88DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
89{
90    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
91            "functional call.");
92}
93
94template<class Impl>
95void
96DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
97{
98    if (status == RangeChange) {
99        if (!snoopRangeSent) {
100            snoopRangeSent = true;
101            sendStatusChange(Port::RangeChange);
102        }
103        return;
104    }
105
106    panic("DefaultFetch doesn't expect recvStatusChange callback!");
107}
108
109template<class Impl>
110bool
111DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
112{
113    DPRINTF(Fetch, "Received timing\n");
114    if (pkt->isResponse()) {
115        fetch->processCacheCompletion(pkt);
116    }
117    //else Snooped a coherence request, just return
118    return true;
119}
120
121template<class Impl>
122void
123DefaultFetch<Impl>::IcachePort::recvRetry()
124{
125    fetch->recvRetry();
126}
127
128template<class Impl>
129DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
130    : cpu(_cpu),
131      branchPred(params),
132      predecoder(NULL),
133      decodeToFetchDelay(params->decodeToFetchDelay),
134      renameToFetchDelay(params->renameToFetchDelay),
135      iewToFetchDelay(params->iewToFetchDelay),
136      commitToFetchDelay(params->commitToFetchDelay),
137      fetchWidth(params->fetchWidth),
138      cacheBlocked(false),
139      retryPkt(NULL),
140      retryTid(InvalidThreadID),
141      numThreads(params->numThreads),
142      numFetchingThreads(params->smtNumFetchingThreads),
143      interruptPending(false),
144      drainPending(false),
145      switchedOut(false)
146{
147    if (numThreads > Impl::MaxThreads)
148        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
149              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
150              numThreads, static_cast<int>(Impl::MaxThreads));
151
152    // Set fetch stage's status to inactive.
153    _status = Inactive;
154
155    std::string policy = params->smtFetchPolicy;
156
157    // Convert string to lowercase
158    std::transform(policy.begin(), policy.end(), policy.begin(),
159                   (int(*)(int)) tolower);
160
161    // Figure out fetch policy
162    if (policy == "singlethread") {
163        fetchPolicy = SingleThread;
164        if (numThreads > 1)
165            panic("Invalid Fetch Policy for a SMT workload.");
166    } else if (policy == "roundrobin") {
167        fetchPolicy = RoundRobin;
168        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
169    } else if (policy == "branch") {
170        fetchPolicy = Branch;
171        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
172    } else if (policy == "iqcount") {
173        fetchPolicy = IQ;
174        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
175    } else if (policy == "lsqcount") {
176        fetchPolicy = LSQ;
177        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
178    } else {
179        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
180              " RoundRobin,LSQcount,IQcount}\n");
181    }
182
183    // Get the size of an instruction.
184    instSize = sizeof(TheISA::MachInst);
185
186    // Name is finally available, so create the port.
187    icachePort = new IcachePort(this);
188
189    icachePort->snoopRangeSent = false;
190
191#if USE_CHECKER
192    if (cpu->checker) {
193        cpu->checker->setIcachePort(icachePort);
194    }
195#endif
196}
197
198template <class Impl>
199std::string
200DefaultFetch<Impl>::name() const
201{
202    return cpu->name() + ".fetch";
203}
204
205template <class Impl>
206void
207DefaultFetch<Impl>::regStats()
208{
209    icacheStallCycles
210        .name(name() + ".icacheStallCycles")
211        .desc("Number of cycles fetch is stalled on an Icache miss")
212        .prereq(icacheStallCycles);
213
214    fetchedInsts
215        .name(name() + ".Insts")
216        .desc("Number of instructions fetch has processed")
217        .prereq(fetchedInsts);
218
219    fetchedBranches
220        .name(name() + ".Branches")
221        .desc("Number of branches that fetch encountered")
222        .prereq(fetchedBranches);
223
224    predictedBranches
225        .name(name() + ".predictedBranches")
226        .desc("Number of branches that fetch has predicted taken")
227        .prereq(predictedBranches);
228
229    fetchCycles
230        .name(name() + ".Cycles")
231        .desc("Number of cycles fetch has run and was not squashing or"
232              " blocked")
233        .prereq(fetchCycles);
234
235    fetchSquashCycles
236        .name(name() + ".SquashCycles")
237        .desc("Number of cycles fetch has spent squashing")
238        .prereq(fetchSquashCycles);
239
240    fetchIdleCycles
241        .name(name() + ".IdleCycles")
242        .desc("Number of cycles fetch was idle")
243        .prereq(fetchIdleCycles);
244
245    fetchBlockedCycles
246        .name(name() + ".BlockedCycles")
247        .desc("Number of cycles fetch has spent blocked")
248        .prereq(fetchBlockedCycles);
249
250    fetchedCacheLines
251        .name(name() + ".CacheLines")
252        .desc("Number of cache lines fetched")
253        .prereq(fetchedCacheLines);
254
255    fetchMiscStallCycles
256        .name(name() + ".MiscStallCycles")
257        .desc("Number of cycles fetch has spent waiting on interrupts, or "
258              "bad addresses, or out of MSHRs")
259        .prereq(fetchMiscStallCycles);
260
261    fetchIcacheSquashes
262        .name(name() + ".IcacheSquashes")
263        .desc("Number of outstanding Icache misses that were squashed")
264        .prereq(fetchIcacheSquashes);
265
266    fetchNisnDist
267        .init(/* base value */ 0,
268              /* last value */ fetchWidth,
269              /* bucket size */ 1)
270        .name(name() + ".rateDist")
271        .desc("Number of instructions fetched each cycle (Total)")
272        .flags(Stats::pdf);
273
274    idleRate
275        .name(name() + ".idleRate")
276        .desc("Percent of cycles fetch was idle")
277        .prereq(idleRate);
278    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
279
280    branchRate
281        .name(name() + ".branchRate")
282        .desc("Number of branch fetches per cycle")
283        .flags(Stats::total);
284    branchRate = fetchedBranches / cpu->numCycles;
285
286    fetchRate
287        .name(name() + ".rate")
288        .desc("Number of inst fetches per cycle")
289        .flags(Stats::total);
290    fetchRate = fetchedInsts / cpu->numCycles;
291
292    branchPred.regStats();
293}
294
295template<class Impl>
296void
297DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
298{
299    timeBuffer = time_buffer;
300
301    // Create wires to get information from proper places in time buffer.
302    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
303    fromRename = timeBuffer->getWire(-renameToFetchDelay);
304    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
305    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
306}
307
308template<class Impl>
309void
310DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
311{
312    activeThreads = at_ptr;
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
318{
319    fetchQueue = fq_ptr;
320
321    // Create wire to write information to proper place in fetch queue.
322    toDecode = fetchQueue->getWire(0);
323}
324
325template<class Impl>
326void
327DefaultFetch<Impl>::initStage()
328{
329    // Setup PC and nextPC with initial state.
330    for (ThreadID tid = 0; tid < numThreads; tid++) {
331        pc[tid] = cpu->pcState(tid);
332        fetchOffset[tid] = 0;
333        macroop[tid] = NULL;
334    }
335
336    for (ThreadID tid = 0; tid < numThreads; tid++) {
337
338        fetchStatus[tid] = Running;
339
340        priorityList.push_back(tid);
341
342        memReq[tid] = NULL;
343
344        stalls[tid].decode = false;
345        stalls[tid].rename = false;
346        stalls[tid].iew = false;
347        stalls[tid].commit = false;
348    }
349
350    // Schedule fetch to get the correct PC from the CPU
351    // scheduleFetchStartupEvent(1);
352
353    // Fetch needs to start fetching instructions at the very beginning,
354    // so it must start up in active state.
355    switchToActive();
356}
357
358template<class Impl>
359void
360DefaultFetch<Impl>::setIcache()
361{
362    // Size of cache block.
363    cacheBlkSize = icachePort->peerBlockSize();
364
365    // Create mask to get rid of offset bits.
366    cacheBlkMask = (cacheBlkSize - 1);
367
368    for (ThreadID tid = 0; tid < numThreads; tid++) {
369        // Create space to store a cache line.
370        cacheData[tid] = new uint8_t[cacheBlkSize];
371        cacheDataPC[tid] = 0;
372        cacheDataValid[tid] = false;
373    }
374}
375
376template<class Impl>
377void
378DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
379{
380    ThreadID tid = pkt->req->threadId();
381
382    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
383
384    assert(!pkt->wasNacked());
385
386    // Only change the status if it's still waiting on the icache access
387    // to return.
388    if (fetchStatus[tid] != IcacheWaitResponse ||
389        pkt->req != memReq[tid] ||
390        isSwitchedOut()) {
391        ++fetchIcacheSquashes;
392        delete pkt->req;
393        delete pkt;
394        return;
395    }
396
397    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
398    cacheDataValid[tid] = true;
399
400    if (!drainPending) {
401        // Wake up the CPU (if it went to sleep and was waiting on
402        // this completion event).
403        cpu->wakeCPU();
404
405        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
406                tid);
407
408        switchToActive();
409    }
410
411    // Only switch to IcacheAccessComplete if we're not stalled as well.
412    if (checkStall(tid)) {
413        fetchStatus[tid] = Blocked;
414    } else {
415        fetchStatus[tid] = IcacheAccessComplete;
416    }
417
418    // Reset the mem req to NULL.
419    delete pkt->req;
420    delete pkt;
421    memReq[tid] = NULL;
422}
423
424template <class Impl>
425bool
426DefaultFetch<Impl>::drain()
427{
428    // Fetch is ready to drain at any time.
429    cpu->signalDrained();
430    drainPending = true;
431    return true;
432}
433
434template <class Impl>
435void
436DefaultFetch<Impl>::resume()
437{
438    drainPending = false;
439}
440
441template <class Impl>
442void
443DefaultFetch<Impl>::switchOut()
444{
445    switchedOut = true;
446    // Branch predictor needs to have its state cleared.
447    branchPred.switchOut();
448}
449
450template <class Impl>
451void
452DefaultFetch<Impl>::takeOverFrom()
453{
454    // Reset all state
455    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
456        stalls[i].decode = 0;
457        stalls[i].rename = 0;
458        stalls[i].iew = 0;
459        stalls[i].commit = 0;
460        pc[i] = cpu->pcState(i);
461        fetchStatus[i] = Running;
462    }
463    numInst = 0;
464    wroteToTimeBuffer = false;
465    _status = Inactive;
466    switchedOut = false;
467    interruptPending = false;
468    branchPred.takeOverFrom();
469}
470
471template <class Impl>
472void
473DefaultFetch<Impl>::wakeFromQuiesce()
474{
475    DPRINTF(Fetch, "Waking up from quiesce\n");
476    // Hopefully this is safe
477    // @todo: Allow other threads to wake from quiesce.
478    fetchStatus[0] = Running;
479}
480
481template <class Impl>
482inline void
483DefaultFetch<Impl>::switchToActive()
484{
485    if (_status == Inactive) {
486        DPRINTF(Activity, "Activating stage.\n");
487
488        cpu->activateStage(O3CPU::FetchIdx);
489
490        _status = Active;
491    }
492}
493
494template <class Impl>
495inline void
496DefaultFetch<Impl>::switchToInactive()
497{
498    if (_status == Active) {
499        DPRINTF(Activity, "Deactivating stage.\n");
500
501        cpu->deactivateStage(O3CPU::FetchIdx);
502
503        _status = Inactive;
504    }
505}
506
507template <class Impl>
508bool
509DefaultFetch<Impl>::lookupAndUpdateNextPC(
510        DynInstPtr &inst, TheISA::PCState &nextPC)
511{
512    // Do branch prediction check here.
513    // A bit of a misnomer...next_PC is actually the current PC until
514    // this function updates it.
515    bool predict_taken;
516
517    if (!inst->isControl()) {
518        TheISA::advancePC(nextPC, inst->staticInst);
519        inst->setPredTarg(nextPC);
520        inst->setPredTaken(false);
521        return false;
522    }
523
524    ThreadID tid = inst->threadNumber;
525    predict_taken = branchPred.predict(inst, nextPC, tid);
526
527    if (predict_taken) {
528        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
529                tid, inst->seqNum, nextPC);
530    } else {
531        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
532                tid, inst->seqNum);
533    }
534
535    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
536            tid, inst->seqNum, nextPC);
537    inst->setPredTarg(nextPC);
538    inst->setPredTaken(predict_taken);
539
540    ++fetchedBranches;
541
542    if (predict_taken) {
543        ++predictedBranches;
544    }
545
546    return predict_taken;
547}
548
549template <class Impl>
550bool
551DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, Fault &ret_fault, ThreadID tid,
552                                   Addr pc)
553{
554    Fault fault = NoFault;
555
556    //AlphaDep
557    if (cacheBlocked) {
558        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
559                tid);
560        return false;
561    } else if (isSwitchedOut()) {
562        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
563                tid);
564        return false;
565    } else if (checkInterrupt(pc)) {
566        // Hold off fetch from getting new instructions when:
567        // Cache is blocked, or
568        // while an interrupt is pending and we're not in PAL mode, or
569        // fetch is switched out.
570        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
571                tid);
572        return false;
573    }
574
575    // Align the fetch address so it's at the start of a cache block.
576    Addr block_PC = icacheBlockAlignPC(vaddr);
577
578    // If we've already got the block, no need to try to fetch it again.
579    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
580        return true;
581    }
582
583    // Setup the memReq to do a read of the first instruction's address.
584    // Set the appropriate read size and flags as well.
585    // Build request here.
586    RequestPtr mem_req =
587        new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
588                    pc, cpu->thread[tid]->contextId(), tid);
589
590    memReq[tid] = mem_req;
591
592    // Translate the instruction request.
593    fault = cpu->itb->translateAtomic(mem_req, cpu->thread[tid]->getTC(),
594                                      BaseTLB::Execute);
595
596    // In the case of faults, the fetch stage may need to stall and wait
597    // for the ITB miss to be handled.
598
599    // If translation was successful, attempt to read the first
600    // instruction.
601    if (fault == NoFault) {
602#if 0
603        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
604            memReq[tid]->isUncacheable()) {
605            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
606                    "misspeculating path)!",
607                    memReq[tid]->paddr);
608            ret_fault = TheISA::genMachineCheckFault();
609            return false;
610        }
611#endif
612
613        // Build packet here.
614        PacketPtr data_pkt = new Packet(mem_req,
615                                        MemCmd::ReadReq, Packet::Broadcast);
616        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
617
618        cacheDataPC[tid] = block_PC;
619        cacheDataValid[tid] = false;
620
621        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
622
623        fetchedCacheLines++;
624
625        // Now do the timing access to see whether or not the instruction
626        // exists within the cache.
627        if (!icachePort->sendTiming(data_pkt)) {
628            assert(retryPkt == NULL);
629            assert(retryTid == InvalidThreadID);
630            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
631            fetchStatus[tid] = IcacheWaitRetry;
632            retryPkt = data_pkt;
633            retryTid = tid;
634            cacheBlocked = true;
635            return false;
636        }
637
638        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
639
640        lastIcacheStall[tid] = curTick();
641
642        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
643                "response.\n", tid);
644
645        fetchStatus[tid] = IcacheWaitResponse;
646    } else {
647        delete mem_req;
648        memReq[tid] = NULL;
649    }
650
651    ret_fault = fault;
652    return true;
653}
654
655template <class Impl>
656inline void
657DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC, ThreadID tid)
658{
659    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
660            tid, newPC);
661
662    pc[tid] = newPC;
663    fetchOffset[tid] = 0;
664    macroop[tid] = NULL;
665    predecoder.reset();
666
667    // Clear the icache miss if it's outstanding.
668    if (fetchStatus[tid] == IcacheWaitResponse) {
669        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
670                tid);
671        memReq[tid] = NULL;
672    }
673
674    // Get rid of the retrying packet if it was from this thread.
675    if (retryTid == tid) {
676        assert(cacheBlocked);
677        if (retryPkt) {
678            delete retryPkt->req;
679            delete retryPkt;
680        }
681        retryPkt = NULL;
682        retryTid = InvalidThreadID;
683    }
684
685    fetchStatus[tid] = Squashing;
686
687    ++fetchSquashCycles;
688}
689
690template<class Impl>
691void
692DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
693                                     const InstSeqNum &seq_num, ThreadID tid)
694{
695    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
696
697    doSquash(newPC, tid);
698
699    // Tell the CPU to remove any instructions that are in flight between
700    // fetch and decode.
701    cpu->removeInstsUntil(seq_num, tid);
702}
703
704template<class Impl>
705bool
706DefaultFetch<Impl>::checkStall(ThreadID tid) const
707{
708    bool ret_val = false;
709
710    if (cpu->contextSwitch) {
711        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
712        ret_val = true;
713    } else if (stalls[tid].decode) {
714        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
715        ret_val = true;
716    } else if (stalls[tid].rename) {
717        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
718        ret_val = true;
719    } else if (stalls[tid].iew) {
720        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
721        ret_val = true;
722    } else if (stalls[tid].commit) {
723        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
724        ret_val = true;
725    }
726
727    return ret_val;
728}
729
730template<class Impl>
731typename DefaultFetch<Impl>::FetchStatus
732DefaultFetch<Impl>::updateFetchStatus()
733{
734    //Check Running
735    list<ThreadID>::iterator threads = activeThreads->begin();
736    list<ThreadID>::iterator end = activeThreads->end();
737
738    while (threads != end) {
739        ThreadID tid = *threads++;
740
741        if (fetchStatus[tid] == Running ||
742            fetchStatus[tid] == Squashing ||
743            fetchStatus[tid] == IcacheAccessComplete) {
744
745            if (_status == Inactive) {
746                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
747
748                if (fetchStatus[tid] == IcacheAccessComplete) {
749                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
750                            "completion\n",tid);
751                }
752
753                cpu->activateStage(O3CPU::FetchIdx);
754            }
755
756            return Active;
757        }
758    }
759
760    // Stage is switching from active to inactive, notify CPU of it.
761    if (_status == Active) {
762        DPRINTF(Activity, "Deactivating stage.\n");
763
764        cpu->deactivateStage(O3CPU::FetchIdx);
765    }
766
767    return Inactive;
768}
769
770template <class Impl>
771void
772DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
773                           const InstSeqNum &seq_num, ThreadID tid)
774{
775    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
776
777    doSquash(newPC, tid);
778
779    // Tell the CPU to remove any instructions that are not in the ROB.
780    cpu->removeInstsNotInROB(tid);
781}
782
783template <class Impl>
784void
785DefaultFetch<Impl>::tick()
786{
787    list<ThreadID>::iterator threads = activeThreads->begin();
788    list<ThreadID>::iterator end = activeThreads->end();
789    bool status_change = false;
790
791    wroteToTimeBuffer = false;
792
793    while (threads != end) {
794        ThreadID tid = *threads++;
795
796        // Check the signals for each thread to determine the proper status
797        // for each thread.
798        bool updated_status = checkSignalsAndUpdate(tid);
799        status_change =  status_change || updated_status;
800    }
801
802    DPRINTF(Fetch, "Running stage.\n");
803
804    // Reset the number of the instruction we're fetching.
805    numInst = 0;
806
807#if FULL_SYSTEM
808    if (fromCommit->commitInfo[0].interruptPending) {
809        interruptPending = true;
810    }
811
812    if (fromCommit->commitInfo[0].clearInterrupt) {
813        interruptPending = false;
814    }
815#endif
816
817    for (threadFetched = 0; threadFetched < numFetchingThreads;
818         threadFetched++) {
819        // Fetch each of the actively fetching threads.
820        fetch(status_change);
821    }
822
823    // Record number of instructions fetched this cycle for distribution.
824    fetchNisnDist.sample(numInst);
825
826    if (status_change) {
827        // Change the fetch stage status if there was a status change.
828        _status = updateFetchStatus();
829    }
830
831    // If there was activity this cycle, inform the CPU of it.
832    if (wroteToTimeBuffer || cpu->contextSwitch) {
833        DPRINTF(Activity, "Activity this cycle.\n");
834
835        cpu->activityThisCycle();
836    }
837}
838
839template <class Impl>
840bool
841DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
842{
843    // Update the per thread stall statuses.
844    if (fromDecode->decodeBlock[tid]) {
845        stalls[tid].decode = true;
846    }
847
848    if (fromDecode->decodeUnblock[tid]) {
849        assert(stalls[tid].decode);
850        assert(!fromDecode->decodeBlock[tid]);
851        stalls[tid].decode = false;
852    }
853
854    if (fromRename->renameBlock[tid]) {
855        stalls[tid].rename = true;
856    }
857
858    if (fromRename->renameUnblock[tid]) {
859        assert(stalls[tid].rename);
860        assert(!fromRename->renameBlock[tid]);
861        stalls[tid].rename = false;
862    }
863
864    if (fromIEW->iewBlock[tid]) {
865        stalls[tid].iew = true;
866    }
867
868    if (fromIEW->iewUnblock[tid]) {
869        assert(stalls[tid].iew);
870        assert(!fromIEW->iewBlock[tid]);
871        stalls[tid].iew = false;
872    }
873
874    if (fromCommit->commitBlock[tid]) {
875        stalls[tid].commit = true;
876    }
877
878    if (fromCommit->commitUnblock[tid]) {
879        assert(stalls[tid].commit);
880        assert(!fromCommit->commitBlock[tid]);
881        stalls[tid].commit = false;
882    }
883
884    // Check squash signals from commit.
885    if (fromCommit->commitInfo[tid].squash) {
886
887        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
888                "from commit.\n",tid);
889        // In any case, squash.
890        squash(fromCommit->commitInfo[tid].pc,
891               fromCommit->commitInfo[tid].doneSeqNum,
892               tid);
893
894        // Also check if there's a mispredict that happened.
895        if (fromCommit->commitInfo[tid].branchMispredict) {
896            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
897                              fromCommit->commitInfo[tid].pc,
898                              fromCommit->commitInfo[tid].branchTaken,
899                              tid);
900        } else {
901            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
902                              tid);
903        }
904
905        return true;
906    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
907        // Update the branch predictor if it wasn't a squashed instruction
908        // that was broadcasted.
909        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
910    }
911
912    // Check ROB squash signals from commit.
913    if (fromCommit->commitInfo[tid].robSquashing) {
914        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
915
916        // Continue to squash.
917        fetchStatus[tid] = Squashing;
918
919        return true;
920    }
921
922    // Check squash signals from decode.
923    if (fromDecode->decodeInfo[tid].squash) {
924        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
925                "from decode.\n",tid);
926
927        // Update the branch predictor.
928        if (fromDecode->decodeInfo[tid].branchMispredict) {
929            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
930                              fromDecode->decodeInfo[tid].nextPC,
931                              fromDecode->decodeInfo[tid].branchTaken,
932                              tid);
933        } else {
934            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
935                              tid);
936        }
937
938        if (fetchStatus[tid] != Squashing) {
939
940            TheISA::PCState nextPC = fromDecode->decodeInfo[tid].nextPC;
941            DPRINTF(Fetch, "Squashing from decode with PC = %s\n", nextPC);
942            // Squash unless we're already squashing
943            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
944                             fromDecode->decodeInfo[tid].doneSeqNum,
945                             tid);
946
947            return true;
948        }
949    }
950
951    if (checkStall(tid) &&
952        fetchStatus[tid] != IcacheWaitResponse &&
953        fetchStatus[tid] != IcacheWaitRetry) {
954        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
955
956        fetchStatus[tid] = Blocked;
957
958        return true;
959    }
960
961    if (fetchStatus[tid] == Blocked ||
962        fetchStatus[tid] == Squashing) {
963        // Switch status to running if fetch isn't being told to block or
964        // squash this cycle.
965        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
966                tid);
967
968        fetchStatus[tid] = Running;
969
970        return true;
971    }
972
973    // If we've reached this point, we have not gotten any signals that
974    // cause fetch to change its status.  Fetch remains the same as before.
975    return false;
976}
977
978template<class Impl>
979typename Impl::DynInstPtr
980DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
981                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
982                              TheISA::PCState nextPC, bool trace)
983{
984    // Get a sequence number.
985    InstSeqNum seq = cpu->getAndIncrementInstSeq();
986
987    // Create a new DynInst from the instruction fetched.
988    DynInstPtr instruction =
989        new DynInst(staticInst, thisPC, nextPC, seq, cpu);
990    instruction->setTid(tid);
991
992    instruction->setASID(tid);
993
994    instruction->setThreadState(cpu->thread[tid]);
995
996    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
997            "[sn:%lli]\n", tid, thisPC.instAddr(),
998            thisPC.microPC(), seq);
999
1000    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1001            instruction->staticInst->
1002            disassemble(thisPC.instAddr()));
1003
1004#if TRACING_ON
1005    if (trace) {
1006        instruction->traceData =
1007            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1008                    instruction->staticInst, thisPC, curMacroop);
1009    }
1010#else
1011    instruction->traceData = NULL;
1012#endif
1013
1014    // Add instruction to the CPU's list of instructions.
1015    instruction->setInstListIt(cpu->addInst(instruction));
1016
1017    // Write the instruction to the first slot in the queue
1018    // that heads to decode.
1019    assert(numInst < fetchWidth);
1020    toDecode->insts[toDecode->size++] = instruction;
1021
1022    return instruction;
1023}
1024
1025template<class Impl>
1026void
1027DefaultFetch<Impl>::fetch(bool &status_change)
1028{
1029    //////////////////////////////////////////
1030    // Start actual fetch
1031    //////////////////////////////////////////
1032    ThreadID tid = getFetchingThread(fetchPolicy);
1033
1034    if (tid == InvalidThreadID || drainPending) {
1035        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1036
1037        // Breaks looping condition in tick()
1038        threadFetched = numFetchingThreads;
1039        return;
1040    }
1041
1042    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1043
1044    // The current PC.
1045    TheISA::PCState thisPC = pc[tid];
1046
1047    // Fault code for memory access.
1048    Fault fault = NoFault;
1049
1050    Addr pcOffset = fetchOffset[tid];
1051    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1052
1053    // If returning from the delay of a cache miss, then update the status
1054    // to running, otherwise do the cache access.  Possibly move this up
1055    // to tick() function.
1056    if (fetchStatus[tid] == IcacheAccessComplete) {
1057        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",tid);
1058
1059        fetchStatus[tid] = Running;
1060        status_change = true;
1061    } else if (fetchStatus[tid] == Running) {
1062        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1063                "instruction, starting at PC %#x.\n", tid, fetchAddr);
1064
1065        bool fetch_success = fetchCacheLine(fetchAddr, fault, tid,
1066                                            thisPC.instAddr());
1067        if (!fetch_success) {
1068            if (cacheBlocked) {
1069                ++icacheStallCycles;
1070            } else {
1071                ++fetchMiscStallCycles;
1072            }
1073            return;
1074        }
1075    } else {
1076        if (fetchStatus[tid] == Idle) {
1077            ++fetchIdleCycles;
1078            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1079        } else if (fetchStatus[tid] == Blocked) {
1080            ++fetchBlockedCycles;
1081            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1082        } else if (fetchStatus[tid] == Squashing) {
1083            ++fetchSquashCycles;
1084            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1085        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1086            ++icacheStallCycles;
1087            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1088        }
1089
1090        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1091        // fetch should do nothing.
1092        return;
1093    }
1094
1095    ++fetchCycles;
1096
1097    // If we had a stall due to an icache miss, then return.
1098    if (fetchStatus[tid] == IcacheWaitResponse) {
1099        ++icacheStallCycles;
1100        status_change = true;
1101        return;
1102    }
1103
1104    TheISA::PCState nextPC = thisPC;
1105
1106    StaticInstPtr staticInst = NULL;
1107    StaticInstPtr curMacroop = macroop[tid];
1108
1109    if (fault == NoFault) {
1110
1111        // If the read of the first instruction was successful, then grab the
1112        // instructions from the rest of the cache line and put them into the
1113        // queue heading to decode.
1114
1115        DPRINTF(Fetch,
1116                "[tid:%i]: Adding instructions to queue to decode.\n", tid);
1117
1118        // Need to keep track of whether or not a predicted branch
1119        // ended this fetch block.
1120        bool predictedBranch = false;
1121
1122        TheISA::MachInst *cacheInsts =
1123            reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1124
1125        const unsigned numInsts = cacheBlkSize / instSize;
1126        unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1127
1128        // Loop through instruction memory from the cache.
1129        while (blkOffset < numInsts &&
1130               numInst < fetchWidth &&
1131               !predictedBranch) {
1132
1133            // If we need to process more memory, do it now.
1134            if (!curMacroop && !predecoder.extMachInstReady()) {
1135                if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1136                    // Walk past any annulled delay slot instructions.
1137                    Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1138                    while (fetchAddr != pcAddr && blkOffset < numInsts) {
1139                        blkOffset++;
1140                        fetchAddr += instSize;
1141                    }
1142                    if (blkOffset >= numInsts)
1143                        break;
1144                }
1145                MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1146
1147                predecoder.setTC(cpu->thread[tid]->getTC());
1148                predecoder.moreBytes(thisPC, fetchAddr, inst);
1149
1150                if (predecoder.needMoreBytes()) {
1151                    blkOffset++;
1152                    fetchAddr += instSize;
1153                    pcOffset += instSize;
1154                }
1155            }
1156
1157            // Extract as many instructions and/or microops as we can from
1158            // the memory we've processed so far.
1159            do {
1160                if (!curMacroop) {
1161                    if (predecoder.extMachInstReady()) {
1162                        ExtMachInst extMachInst;
1163
1164                        extMachInst = predecoder.getExtMachInst(thisPC);
1165                        pcOffset = 0;
1166                        staticInst = StaticInstPtr(extMachInst,
1167                                                   thisPC.instAddr());
1168
1169                        // Increment stat of fetched instructions.
1170                        ++fetchedInsts;
1171
1172                        if (staticInst->isMacroop())
1173                            curMacroop = staticInst;
1174                    } else {
1175                        // We need more bytes for this instruction.
1176                        break;
1177                    }
1178                }
1179                if (curMacroop) {
1180                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1181                    if (staticInst->isLastMicroop())
1182                        curMacroop = NULL;
1183                }
1184
1185                DynInstPtr instruction =
1186                    buildInst(tid, staticInst, curMacroop,
1187                              thisPC, nextPC, true);
1188
1189                numInst++;
1190
1191                nextPC = thisPC;
1192
1193                // If we're branching after this instruction, quite fetching
1194                // from the same block then.
1195                predictedBranch |= thisPC.branching();
1196                predictedBranch |=
1197                    lookupAndUpdateNextPC(instruction, nextPC);
1198                if (predictedBranch) {
1199                    DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1200                }
1201
1202                // Move to the next instruction, unless we have a branch.
1203                thisPC = nextPC;
1204
1205                if (instruction->isQuiesce()) {
1206                    DPRINTF(Fetch,
1207                            "Quiesce instruction encountered, halting fetch!");
1208                    fetchStatus[tid] = QuiescePending;
1209                    status_change = true;
1210                    break;
1211                }
1212            } while ((curMacroop || predecoder.extMachInstReady()) &&
1213                     numInst < fetchWidth);
1214        }
1215
1216        if (predictedBranch) {
1217            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1218                    "instruction encountered.\n", tid);
1219        } else if (numInst >= fetchWidth) {
1220            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1221                    "for this cycle.\n", tid);
1222        } else if (blkOffset >= cacheBlkSize) {
1223            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1224                    "block.\n", tid);
1225        }
1226    }
1227
1228    macroop[tid] = curMacroop;
1229    fetchOffset[tid] = pcOffset;
1230
1231    if (numInst > 0) {
1232        wroteToTimeBuffer = true;
1233    }
1234
1235    // Now that fetching is completed, update the PC to signify what the next
1236    // cycle will be.
1237    if (fault == NoFault) {
1238        pc[tid] = nextPC;
1239        DPRINTF(Fetch, "[tid:%i]: Setting PC to %s.\n", tid, nextPC);
1240    } else {
1241        // We shouldn't be in an icache miss and also have a fault (an ITB
1242        // miss)
1243        if (fetchStatus[tid] == IcacheWaitResponse) {
1244            panic("Fetch should have exited prior to this!");
1245        }
1246
1247        // Send the fault to commit.  This thread will not do anything
1248        // until commit handles the fault.  The only other way it can
1249        // wake up is if a squash comes along and changes the PC.  Send the
1250        // fault on a dummy nop.
1251        staticInst = StaticInstPtr(TheISA::NoopMachInst, thisPC.instAddr());
1252
1253        DynInstPtr instruction =
1254            buildInst(tid, staticInst, NULL, thisPC, nextPC, false);
1255
1256        TheISA::advancePC(nextPC, staticInst);
1257        instruction->setPredTarg(nextPC);
1258        instruction->fault = fault;
1259
1260        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1261
1262        fetchStatus[tid] = TrapPending;
1263        status_change = true;
1264
1265        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s, sending nop "
1266                       "[sn:%lli]\n", tid, fault->name(), thisPC, inst_seq);
1267    }
1268}
1269
1270template<class Impl>
1271void
1272DefaultFetch<Impl>::recvRetry()
1273{
1274    if (retryPkt != NULL) {
1275        assert(cacheBlocked);
1276        assert(retryTid != InvalidThreadID);
1277        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1278
1279        if (icachePort->sendTiming(retryPkt)) {
1280            fetchStatus[retryTid] = IcacheWaitResponse;
1281            retryPkt = NULL;
1282            retryTid = InvalidThreadID;
1283            cacheBlocked = false;
1284        }
1285    } else {
1286        assert(retryTid == InvalidThreadID);
1287        // Access has been squashed since it was sent out.  Just clear
1288        // the cache being blocked.
1289        cacheBlocked = false;
1290    }
1291}
1292
1293///////////////////////////////////////
1294//                                   //
1295//  SMT FETCH POLICY MAINTAINED HERE //
1296//                                   //
1297///////////////////////////////////////
1298template<class Impl>
1299ThreadID
1300DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1301{
1302    if (numThreads > 1) {
1303        switch (fetch_priority) {
1304
1305          case SingleThread:
1306            return 0;
1307
1308          case RoundRobin:
1309            return roundRobin();
1310
1311          case IQ:
1312            return iqCount();
1313
1314          case LSQ:
1315            return lsqCount();
1316
1317          case Branch:
1318            return branchCount();
1319
1320          default:
1321            return InvalidThreadID;
1322        }
1323    } else {
1324        list<ThreadID>::iterator thread = activeThreads->begin();
1325        if (thread == activeThreads->end()) {
1326            return InvalidThreadID;
1327        }
1328
1329        ThreadID tid = *thread;
1330
1331        if (fetchStatus[tid] == Running ||
1332            fetchStatus[tid] == IcacheAccessComplete ||
1333            fetchStatus[tid] == Idle) {
1334            return tid;
1335        } else {
1336            return InvalidThreadID;
1337        }
1338    }
1339}
1340
1341
1342template<class Impl>
1343ThreadID
1344DefaultFetch<Impl>::roundRobin()
1345{
1346    list<ThreadID>::iterator pri_iter = priorityList.begin();
1347    list<ThreadID>::iterator end      = priorityList.end();
1348
1349    ThreadID high_pri;
1350
1351    while (pri_iter != end) {
1352        high_pri = *pri_iter;
1353
1354        assert(high_pri <= numThreads);
1355
1356        if (fetchStatus[high_pri] == Running ||
1357            fetchStatus[high_pri] == IcacheAccessComplete ||
1358            fetchStatus[high_pri] == Idle) {
1359
1360            priorityList.erase(pri_iter);
1361            priorityList.push_back(high_pri);
1362
1363            return high_pri;
1364        }
1365
1366        pri_iter++;
1367    }
1368
1369    return InvalidThreadID;
1370}
1371
1372template<class Impl>
1373ThreadID
1374DefaultFetch<Impl>::iqCount()
1375{
1376    std::priority_queue<ThreadID> PQ;
1377
1378    list<ThreadID>::iterator threads = activeThreads->begin();
1379    list<ThreadID>::iterator end = activeThreads->end();
1380
1381    while (threads != end) {
1382        ThreadID tid = *threads++;
1383
1384        PQ.push(fromIEW->iewInfo[tid].iqCount);
1385    }
1386
1387    while (!PQ.empty()) {
1388        ThreadID high_pri = PQ.top();
1389
1390        if (fetchStatus[high_pri] == Running ||
1391            fetchStatus[high_pri] == IcacheAccessComplete ||
1392            fetchStatus[high_pri] == Idle)
1393            return high_pri;
1394        else
1395            PQ.pop();
1396
1397    }
1398
1399    return InvalidThreadID;
1400}
1401
1402template<class Impl>
1403ThreadID
1404DefaultFetch<Impl>::lsqCount()
1405{
1406    std::priority_queue<ThreadID> PQ;
1407
1408    list<ThreadID>::iterator threads = activeThreads->begin();
1409    list<ThreadID>::iterator end = activeThreads->end();
1410
1411    while (threads != end) {
1412        ThreadID tid = *threads++;
1413
1414        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1415    }
1416
1417    while (!PQ.empty()) {
1418        ThreadID high_pri = PQ.top();
1419
1420        if (fetchStatus[high_pri] == Running ||
1421            fetchStatus[high_pri] == IcacheAccessComplete ||
1422            fetchStatus[high_pri] == Idle)
1423            return high_pri;
1424        else
1425            PQ.pop();
1426    }
1427
1428    return InvalidThreadID;
1429}
1430
1431template<class Impl>
1432ThreadID
1433DefaultFetch<Impl>::branchCount()
1434{
1435#if 0
1436    list<ThreadID>::iterator thread = activeThreads->begin();
1437    assert(thread != activeThreads->end());
1438    ThreadID tid = *thread;
1439#endif
1440
1441    panic("Branch Count Fetch policy unimplemented\n");
1442    return InvalidThreadID;
1443}
1444