fetch_impl.hh revision 5890:bdef71accd68
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include <algorithm>
33#include <cstring>
34
35#include "config/use_checker.hh"
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "cpu/checker/cpu.hh"
40#include "cpu/exetrace.hh"
41#include "cpu/o3/fetch.hh"
42#include "mem/packet.hh"
43#include "mem/request.hh"
44#include "sim/byteswap.hh"
45#include "sim/host.hh"
46#include "sim/core.hh"
47
48#if FULL_SYSTEM
49#include "arch/tlb.hh"
50#include "arch/vtophys.hh"
51#include "sim/system.hh"
52#endif // FULL_SYSTEM
53
54#include "params/DerivO3CPU.hh"
55
56template<class Impl>
57void
58DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
59{
60    Port::setPeer(port);
61
62    fetch->setIcache();
63}
64
65template<class Impl>
66Tick
67DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
68{
69    panic("DefaultFetch doesn't expect recvAtomic callback!");
70    return curTick;
71}
72
73template<class Impl>
74void
75DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
76{
77    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
78            "functional call.");
79}
80
81template<class Impl>
82void
83DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
84{
85    if (status == RangeChange) {
86        if (!snoopRangeSent) {
87            snoopRangeSent = true;
88            sendStatusChange(Port::RangeChange);
89        }
90        return;
91    }
92
93    panic("DefaultFetch doesn't expect recvStatusChange callback!");
94}
95
96template<class Impl>
97bool
98DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
99{
100    DPRINTF(Fetch, "Received timing\n");
101    if (pkt->isResponse()) {
102        fetch->processCacheCompletion(pkt);
103    }
104    //else Snooped a coherence request, just return
105    return true;
106}
107
108template<class Impl>
109void
110DefaultFetch<Impl>::IcachePort::recvRetry()
111{
112    fetch->recvRetry();
113}
114
115template<class Impl>
116DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
117    : cpu(_cpu),
118      branchPred(params),
119      predecoder(NULL),
120      decodeToFetchDelay(params->decodeToFetchDelay),
121      renameToFetchDelay(params->renameToFetchDelay),
122      iewToFetchDelay(params->iewToFetchDelay),
123      commitToFetchDelay(params->commitToFetchDelay),
124      fetchWidth(params->fetchWidth),
125      cacheBlocked(false),
126      retryPkt(NULL),
127      retryTid(-1),
128      numThreads(params->numThreads),
129      numFetchingThreads(params->smtNumFetchingThreads),
130      interruptPending(false),
131      drainPending(false),
132      switchedOut(false)
133{
134    if (numThreads > Impl::MaxThreads)
135        fatal("numThreads is not a valid value\n");
136
137    // Set fetch stage's status to inactive.
138    _status = Inactive;
139
140    std::string policy = params->smtFetchPolicy;
141
142    // Convert string to lowercase
143    std::transform(policy.begin(), policy.end(), policy.begin(),
144                   (int(*)(int)) tolower);
145
146    // Figure out fetch policy
147    if (policy == "singlethread") {
148        fetchPolicy = SingleThread;
149        if (numThreads > 1)
150            panic("Invalid Fetch Policy for a SMT workload.");
151    } else if (policy == "roundrobin") {
152        fetchPolicy = RoundRobin;
153        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
154    } else if (policy == "branch") {
155        fetchPolicy = Branch;
156        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
157    } else if (policy == "iqcount") {
158        fetchPolicy = IQ;
159        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
160    } else if (policy == "lsqcount") {
161        fetchPolicy = LSQ;
162        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
163    } else {
164        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
165              " RoundRobin,LSQcount,IQcount}\n");
166    }
167
168    // Get the size of an instruction.
169    instSize = sizeof(TheISA::MachInst);
170
171    // Name is finally available, so create the port.
172    icachePort = new IcachePort(this);
173
174    icachePort->snoopRangeSent = false;
175
176#if USE_CHECKER
177    if (cpu->checker) {
178        cpu->checker->setIcachePort(icachePort);
179    }
180#endif
181}
182
183template <class Impl>
184std::string
185DefaultFetch<Impl>::name() const
186{
187    return cpu->name() + ".fetch";
188}
189
190template <class Impl>
191void
192DefaultFetch<Impl>::regStats()
193{
194    icacheStallCycles
195        .name(name() + ".icacheStallCycles")
196        .desc("Number of cycles fetch is stalled on an Icache miss")
197        .prereq(icacheStallCycles);
198
199    fetchedInsts
200        .name(name() + ".Insts")
201        .desc("Number of instructions fetch has processed")
202        .prereq(fetchedInsts);
203
204    fetchedBranches
205        .name(name() + ".Branches")
206        .desc("Number of branches that fetch encountered")
207        .prereq(fetchedBranches);
208
209    predictedBranches
210        .name(name() + ".predictedBranches")
211        .desc("Number of branches that fetch has predicted taken")
212        .prereq(predictedBranches);
213
214    fetchCycles
215        .name(name() + ".Cycles")
216        .desc("Number of cycles fetch has run and was not squashing or"
217              " blocked")
218        .prereq(fetchCycles);
219
220    fetchSquashCycles
221        .name(name() + ".SquashCycles")
222        .desc("Number of cycles fetch has spent squashing")
223        .prereq(fetchSquashCycles);
224
225    fetchIdleCycles
226        .name(name() + ".IdleCycles")
227        .desc("Number of cycles fetch was idle")
228        .prereq(fetchIdleCycles);
229
230    fetchBlockedCycles
231        .name(name() + ".BlockedCycles")
232        .desc("Number of cycles fetch has spent blocked")
233        .prereq(fetchBlockedCycles);
234
235    fetchedCacheLines
236        .name(name() + ".CacheLines")
237        .desc("Number of cache lines fetched")
238        .prereq(fetchedCacheLines);
239
240    fetchMiscStallCycles
241        .name(name() + ".MiscStallCycles")
242        .desc("Number of cycles fetch has spent waiting on interrupts, or "
243              "bad addresses, or out of MSHRs")
244        .prereq(fetchMiscStallCycles);
245
246    fetchIcacheSquashes
247        .name(name() + ".IcacheSquashes")
248        .desc("Number of outstanding Icache misses that were squashed")
249        .prereq(fetchIcacheSquashes);
250
251    fetchNisnDist
252        .init(/* base value */ 0,
253              /* last value */ fetchWidth,
254              /* bucket size */ 1)
255        .name(name() + ".rateDist")
256        .desc("Number of instructions fetched each cycle (Total)")
257        .flags(Stats::pdf);
258
259    idleRate
260        .name(name() + ".idleRate")
261        .desc("Percent of cycles fetch was idle")
262        .prereq(idleRate);
263    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
264
265    branchRate
266        .name(name() + ".branchRate")
267        .desc("Number of branch fetches per cycle")
268        .flags(Stats::total);
269    branchRate = fetchedBranches / cpu->numCycles;
270
271    fetchRate
272        .name(name() + ".rate")
273        .desc("Number of inst fetches per cycle")
274        .flags(Stats::total);
275    fetchRate = fetchedInsts / cpu->numCycles;
276
277    branchPred.regStats();
278}
279
280template<class Impl>
281void
282DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
283{
284    timeBuffer = time_buffer;
285
286    // Create wires to get information from proper places in time buffer.
287    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
288    fromRename = timeBuffer->getWire(-renameToFetchDelay);
289    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
290    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
291}
292
293template<class Impl>
294void
295DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
296{
297    activeThreads = at_ptr;
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
303{
304    fetchQueue = fq_ptr;
305
306    // Create wire to write information to proper place in fetch queue.
307    toDecode = fetchQueue->getWire(0);
308}
309
310template<class Impl>
311void
312DefaultFetch<Impl>::initStage()
313{
314    // Setup PC and nextPC with initial state.
315    for (int tid = 0; tid < numThreads; tid++) {
316        PC[tid] = cpu->readPC(tid);
317        nextPC[tid] = cpu->readNextPC(tid);
318        microPC[tid] = cpu->readMicroPC(tid);
319    }
320
321    for (int tid=0; tid < numThreads; tid++) {
322
323        fetchStatus[tid] = Running;
324
325        priorityList.push_back(tid);
326
327        memReq[tid] = NULL;
328
329        stalls[tid].decode = false;
330        stalls[tid].rename = false;
331        stalls[tid].iew = false;
332        stalls[tid].commit = false;
333    }
334
335    // Schedule fetch to get the correct PC from the CPU
336    // scheduleFetchStartupEvent(1);
337
338    // Fetch needs to start fetching instructions at the very beginning,
339    // so it must start up in active state.
340    switchToActive();
341}
342
343template<class Impl>
344void
345DefaultFetch<Impl>::setIcache()
346{
347    // Size of cache block.
348    cacheBlkSize = icachePort->peerBlockSize();
349
350    // Create mask to get rid of offset bits.
351    cacheBlkMask = (cacheBlkSize - 1);
352
353    for (int tid=0; tid < numThreads; tid++) {
354        // Create space to store a cache line.
355        cacheData[tid] = new uint8_t[cacheBlkSize];
356        cacheDataPC[tid] = 0;
357        cacheDataValid[tid] = false;
358    }
359}
360
361template<class Impl>
362void
363DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
364{
365    unsigned tid = pkt->req->threadId();
366
367    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
368
369    assert(!pkt->wasNacked());
370
371    // Only change the status if it's still waiting on the icache access
372    // to return.
373    if (fetchStatus[tid] != IcacheWaitResponse ||
374        pkt->req != memReq[tid] ||
375        isSwitchedOut()) {
376        ++fetchIcacheSquashes;
377        delete pkt->req;
378        delete pkt;
379        return;
380    }
381
382    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
383    cacheDataValid[tid] = true;
384
385    if (!drainPending) {
386        // Wake up the CPU (if it went to sleep and was waiting on
387        // this completion event).
388        cpu->wakeCPU();
389
390        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
391                tid);
392
393        switchToActive();
394    }
395
396    // Only switch to IcacheAccessComplete if we're not stalled as well.
397    if (checkStall(tid)) {
398        fetchStatus[tid] = Blocked;
399    } else {
400        fetchStatus[tid] = IcacheAccessComplete;
401    }
402
403    // Reset the mem req to NULL.
404    delete pkt->req;
405    delete pkt;
406    memReq[tid] = NULL;
407}
408
409template <class Impl>
410bool
411DefaultFetch<Impl>::drain()
412{
413    // Fetch is ready to drain at any time.
414    cpu->signalDrained();
415    drainPending = true;
416    return true;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::resume()
422{
423    drainPending = false;
424}
425
426template <class Impl>
427void
428DefaultFetch<Impl>::switchOut()
429{
430    switchedOut = true;
431    // Branch predictor needs to have its state cleared.
432    branchPred.switchOut();
433}
434
435template <class Impl>
436void
437DefaultFetch<Impl>::takeOverFrom()
438{
439    // Reset all state
440    for (int i = 0; i < Impl::MaxThreads; ++i) {
441        stalls[i].decode = 0;
442        stalls[i].rename = 0;
443        stalls[i].iew = 0;
444        stalls[i].commit = 0;
445        PC[i] = cpu->readPC(i);
446        nextPC[i] = cpu->readNextPC(i);
447        microPC[i] = cpu->readMicroPC(i);
448        fetchStatus[i] = Running;
449    }
450    numInst = 0;
451    wroteToTimeBuffer = false;
452    _status = Inactive;
453    switchedOut = false;
454    interruptPending = false;
455    branchPred.takeOverFrom();
456}
457
458template <class Impl>
459void
460DefaultFetch<Impl>::wakeFromQuiesce()
461{
462    DPRINTF(Fetch, "Waking up from quiesce\n");
463    // Hopefully this is safe
464    // @todo: Allow other threads to wake from quiesce.
465    fetchStatus[0] = Running;
466}
467
468template <class Impl>
469inline void
470DefaultFetch<Impl>::switchToActive()
471{
472    if (_status == Inactive) {
473        DPRINTF(Activity, "Activating stage.\n");
474
475        cpu->activateStage(O3CPU::FetchIdx);
476
477        _status = Active;
478    }
479}
480
481template <class Impl>
482inline void
483DefaultFetch<Impl>::switchToInactive()
484{
485    if (_status == Active) {
486        DPRINTF(Activity, "Deactivating stage.\n");
487
488        cpu->deactivateStage(O3CPU::FetchIdx);
489
490        _status = Inactive;
491    }
492}
493
494template <class Impl>
495bool
496DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
497                                          Addr &next_NPC, Addr &next_MicroPC)
498{
499    // Do branch prediction check here.
500    // A bit of a misnomer...next_PC is actually the current PC until
501    // this function updates it.
502    bool predict_taken;
503
504    if (!inst->isControl()) {
505        if (inst->isMicroop() && !inst->isLastMicroop()) {
506            next_MicroPC++;
507        } else {
508            next_PC  = next_NPC;
509            next_NPC = next_NPC + instSize;
510            next_MicroPC = 0;
511        }
512        inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
513        inst->setPredTaken(false);
514        return false;
515    }
516
517    //Assume for now that all control flow is to a different macroop which
518    //would reset the micro pc to 0.
519    next_MicroPC = 0;
520
521    int tid = inst->threadNumber;
522    Addr pred_PC = next_PC;
523    predict_taken = branchPred.predict(inst, pred_PC, tid);
524
525/*    if (predict_taken) {
526        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
527                tid, pred_PC);
528    } else {
529        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
530    }*/
531
532#if ISA_HAS_DELAY_SLOT
533    next_PC = next_NPC;
534    if (predict_taken)
535        next_NPC = pred_PC;
536    else
537        next_NPC += instSize;
538#else
539    if (predict_taken)
540        next_PC = pred_PC;
541    else
542        next_PC += instSize;
543    next_NPC = next_PC + instSize;
544#endif
545/*    DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
546            tid, next_PC, next_NPC);*/
547    inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
548    inst->setPredTaken(predict_taken);
549
550    ++fetchedBranches;
551
552    if (predict_taken) {
553        ++predictedBranches;
554    }
555
556    return predict_taken;
557}
558
559template <class Impl>
560bool
561DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
562{
563    Fault fault = NoFault;
564
565    //AlphaDep
566    if (cacheBlocked) {
567        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
568                tid);
569        return false;
570    } else if (isSwitchedOut()) {
571        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
572                tid);
573        return false;
574    } else if (interruptPending && !(fetch_PC & 0x3)) {
575        // Hold off fetch from getting new instructions when:
576        // Cache is blocked, or
577        // while an interrupt is pending and we're not in PAL mode, or
578        // fetch is switched out.
579        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
580                tid);
581        return false;
582    }
583
584    // Align the fetch PC so it's at the start of a cache block.
585    Addr block_PC = icacheBlockAlignPC(fetch_PC);
586
587    // If we've already got the block, no need to try to fetch it again.
588    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
589        return true;
590    }
591
592    // Setup the memReq to do a read of the first instruction's address.
593    // Set the appropriate read size and flags as well.
594    // Build request here.
595    RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
596                                     fetch_PC, cpu->thread[tid]->contextId(),
597                                     tid);
598
599    memReq[tid] = mem_req;
600
601    // Translate the instruction request.
602    fault = cpu->itb->translate(mem_req, cpu->thread[tid]->getTC());
603
604    // In the case of faults, the fetch stage may need to stall and wait
605    // for the ITB miss to be handled.
606
607    // If translation was successful, attempt to read the first
608    // instruction.
609    if (fault == NoFault) {
610#if 0
611        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
612            memReq[tid]->isUncacheable()) {
613            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
614                    "misspeculating path)!",
615                    memReq[tid]->paddr);
616            ret_fault = TheISA::genMachineCheckFault();
617            return false;
618        }
619#endif
620
621        // Build packet here.
622        PacketPtr data_pkt = new Packet(mem_req,
623                                        MemCmd::ReadReq, Packet::Broadcast);
624        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
625
626        cacheDataPC[tid] = block_PC;
627        cacheDataValid[tid] = false;
628
629        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
630
631        fetchedCacheLines++;
632
633        // Now do the timing access to see whether or not the instruction
634        // exists within the cache.
635        if (!icachePort->sendTiming(data_pkt)) {
636            assert(retryPkt == NULL);
637            assert(retryTid == -1);
638            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
639            fetchStatus[tid] = IcacheWaitRetry;
640            retryPkt = data_pkt;
641            retryTid = tid;
642            cacheBlocked = true;
643            return false;
644        }
645
646        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
647
648        lastIcacheStall[tid] = curTick;
649
650        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
651                "response.\n", tid);
652
653        fetchStatus[tid] = IcacheWaitResponse;
654    } else {
655        delete mem_req;
656        memReq[tid] = NULL;
657    }
658
659    ret_fault = fault;
660    return true;
661}
662
663template <class Impl>
664inline void
665DefaultFetch<Impl>::doSquash(const Addr &new_PC,
666        const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
667{
668    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
669            tid, new_PC, new_NPC);
670
671    PC[tid] = new_PC;
672    nextPC[tid] = new_NPC;
673    microPC[tid] = new_microPC;
674
675    // Clear the icache miss if it's outstanding.
676    if (fetchStatus[tid] == IcacheWaitResponse) {
677        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
678                tid);
679        memReq[tid] = NULL;
680    }
681
682    // Get rid of the retrying packet if it was from this thread.
683    if (retryTid == tid) {
684        assert(cacheBlocked);
685        if (retryPkt) {
686            delete retryPkt->req;
687            delete retryPkt;
688        }
689        retryPkt = NULL;
690        retryTid = -1;
691    }
692
693    fetchStatus[tid] = Squashing;
694
695    ++fetchSquashCycles;
696}
697
698template<class Impl>
699void
700DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
701                                     const Addr &new_MicroPC,
702                                     const InstSeqNum &seq_num, unsigned tid)
703{
704    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
705
706    doSquash(new_PC, new_NPC, new_MicroPC, tid);
707
708    // Tell the CPU to remove any instructions that are in flight between
709    // fetch and decode.
710    cpu->removeInstsUntil(seq_num, tid);
711}
712
713template<class Impl>
714bool
715DefaultFetch<Impl>::checkStall(unsigned tid) const
716{
717    bool ret_val = false;
718
719    if (cpu->contextSwitch) {
720        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
721        ret_val = true;
722    } else if (stalls[tid].decode) {
723        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
724        ret_val = true;
725    } else if (stalls[tid].rename) {
726        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
727        ret_val = true;
728    } else if (stalls[tid].iew) {
729        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
730        ret_val = true;
731    } else if (stalls[tid].commit) {
732        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
733        ret_val = true;
734    }
735
736    return ret_val;
737}
738
739template<class Impl>
740typename DefaultFetch<Impl>::FetchStatus
741DefaultFetch<Impl>::updateFetchStatus()
742{
743    //Check Running
744    std::list<unsigned>::iterator threads = activeThreads->begin();
745    std::list<unsigned>::iterator end = activeThreads->end();
746
747    while (threads != end) {
748        unsigned tid = *threads++;
749
750        if (fetchStatus[tid] == Running ||
751            fetchStatus[tid] == Squashing ||
752            fetchStatus[tid] == IcacheAccessComplete) {
753
754            if (_status == Inactive) {
755                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
756
757                if (fetchStatus[tid] == IcacheAccessComplete) {
758                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
759                            "completion\n",tid);
760                }
761
762                cpu->activateStage(O3CPU::FetchIdx);
763            }
764
765            return Active;
766        }
767    }
768
769    // Stage is switching from active to inactive, notify CPU of it.
770    if (_status == Active) {
771        DPRINTF(Activity, "Deactivating stage.\n");
772
773        cpu->deactivateStage(O3CPU::FetchIdx);
774    }
775
776    return Inactive;
777}
778
779template <class Impl>
780void
781DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
782                           const Addr &new_MicroPC,
783                           const InstSeqNum &seq_num, unsigned tid)
784{
785    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
786
787    doSquash(new_PC, new_NPC, new_MicroPC, tid);
788
789    // Tell the CPU to remove any instructions that are not in the ROB.
790    cpu->removeInstsNotInROB(tid);
791}
792
793template <class Impl>
794void
795DefaultFetch<Impl>::tick()
796{
797    std::list<unsigned>::iterator threads = activeThreads->begin();
798    std::list<unsigned>::iterator end = activeThreads->end();
799    bool status_change = false;
800
801    wroteToTimeBuffer = false;
802
803    while (threads != end) {
804        unsigned tid = *threads++;
805
806        // Check the signals for each thread to determine the proper status
807        // for each thread.
808        bool updated_status = checkSignalsAndUpdate(tid);
809        status_change =  status_change || updated_status;
810    }
811
812    DPRINTF(Fetch, "Running stage.\n");
813
814    // Reset the number of the instruction we're fetching.
815    numInst = 0;
816
817#if FULL_SYSTEM
818    if (fromCommit->commitInfo[0].interruptPending) {
819        interruptPending = true;
820    }
821
822    if (fromCommit->commitInfo[0].clearInterrupt) {
823        interruptPending = false;
824    }
825#endif
826
827    for (threadFetched = 0; threadFetched < numFetchingThreads;
828         threadFetched++) {
829        // Fetch each of the actively fetching threads.
830        fetch(status_change);
831    }
832
833    // Record number of instructions fetched this cycle for distribution.
834    fetchNisnDist.sample(numInst);
835
836    if (status_change) {
837        // Change the fetch stage status if there was a status change.
838        _status = updateFetchStatus();
839    }
840
841    // If there was activity this cycle, inform the CPU of it.
842    if (wroteToTimeBuffer || cpu->contextSwitch) {
843        DPRINTF(Activity, "Activity this cycle.\n");
844
845        cpu->activityThisCycle();
846    }
847}
848
849template <class Impl>
850bool
851DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
852{
853    // Update the per thread stall statuses.
854    if (fromDecode->decodeBlock[tid]) {
855        stalls[tid].decode = true;
856    }
857
858    if (fromDecode->decodeUnblock[tid]) {
859        assert(stalls[tid].decode);
860        assert(!fromDecode->decodeBlock[tid]);
861        stalls[tid].decode = false;
862    }
863
864    if (fromRename->renameBlock[tid]) {
865        stalls[tid].rename = true;
866    }
867
868    if (fromRename->renameUnblock[tid]) {
869        assert(stalls[tid].rename);
870        assert(!fromRename->renameBlock[tid]);
871        stalls[tid].rename = false;
872    }
873
874    if (fromIEW->iewBlock[tid]) {
875        stalls[tid].iew = true;
876    }
877
878    if (fromIEW->iewUnblock[tid]) {
879        assert(stalls[tid].iew);
880        assert(!fromIEW->iewBlock[tid]);
881        stalls[tid].iew = false;
882    }
883
884    if (fromCommit->commitBlock[tid]) {
885        stalls[tid].commit = true;
886    }
887
888    if (fromCommit->commitUnblock[tid]) {
889        assert(stalls[tid].commit);
890        assert(!fromCommit->commitBlock[tid]);
891        stalls[tid].commit = false;
892    }
893
894    // Check squash signals from commit.
895    if (fromCommit->commitInfo[tid].squash) {
896
897        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
898                "from commit.\n",tid);
899        // In any case, squash.
900        squash(fromCommit->commitInfo[tid].nextPC,
901               fromCommit->commitInfo[tid].nextNPC,
902               fromCommit->commitInfo[tid].nextMicroPC,
903               fromCommit->commitInfo[tid].doneSeqNum,
904               tid);
905
906        // Also check if there's a mispredict that happened.
907        if (fromCommit->commitInfo[tid].branchMispredict) {
908            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
909                              fromCommit->commitInfo[tid].nextPC,
910                              fromCommit->commitInfo[tid].branchTaken,
911                              tid);
912        } else {
913            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
914                              tid);
915        }
916
917        return true;
918    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
919        // Update the branch predictor if it wasn't a squashed instruction
920        // that was broadcasted.
921        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
922    }
923
924    // Check ROB squash signals from commit.
925    if (fromCommit->commitInfo[tid].robSquashing) {
926        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
927
928        // Continue to squash.
929        fetchStatus[tid] = Squashing;
930
931        return true;
932    }
933
934    // Check squash signals from decode.
935    if (fromDecode->decodeInfo[tid].squash) {
936        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
937                "from decode.\n",tid);
938
939        // Update the branch predictor.
940        if (fromDecode->decodeInfo[tid].branchMispredict) {
941            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
942                              fromDecode->decodeInfo[tid].nextPC,
943                              fromDecode->decodeInfo[tid].branchTaken,
944                              tid);
945        } else {
946            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
947                              tid);
948        }
949
950        if (fetchStatus[tid] != Squashing) {
951
952            DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
953                    fromDecode->decodeInfo[tid].nextPC,
954                    fromDecode->decodeInfo[tid].nextNPC);
955            // Squash unless we're already squashing
956            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
957                             fromDecode->decodeInfo[tid].nextNPC,
958                             fromDecode->decodeInfo[tid].nextMicroPC,
959                             fromDecode->decodeInfo[tid].doneSeqNum,
960                             tid);
961
962            return true;
963        }
964    }
965
966    if (checkStall(tid) &&
967        fetchStatus[tid] != IcacheWaitResponse &&
968        fetchStatus[tid] != IcacheWaitRetry) {
969        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
970
971        fetchStatus[tid] = Blocked;
972
973        return true;
974    }
975
976    if (fetchStatus[tid] == Blocked ||
977        fetchStatus[tid] == Squashing) {
978        // Switch status to running if fetch isn't being told to block or
979        // squash this cycle.
980        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
981                tid);
982
983        fetchStatus[tid] = Running;
984
985        return true;
986    }
987
988    // If we've reached this point, we have not gotten any signals that
989    // cause fetch to change its status.  Fetch remains the same as before.
990    return false;
991}
992
993template<class Impl>
994void
995DefaultFetch<Impl>::fetch(bool &status_change)
996{
997    //////////////////////////////////////////
998    // Start actual fetch
999    //////////////////////////////////////////
1000    int tid = getFetchingThread(fetchPolicy);
1001
1002    if (tid == -1 || drainPending) {
1003        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1004
1005        // Breaks looping condition in tick()
1006        threadFetched = numFetchingThreads;
1007        return;
1008    }
1009
1010    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1011
1012    // The current PC.
1013    Addr fetch_PC = PC[tid];
1014    Addr fetch_NPC = nextPC[tid];
1015    Addr fetch_MicroPC = microPC[tid];
1016
1017    // Fault code for memory access.
1018    Fault fault = NoFault;
1019
1020    // If returning from the delay of a cache miss, then update the status
1021    // to running, otherwise do the cache access.  Possibly move this up
1022    // to tick() function.
1023    if (fetchStatus[tid] == IcacheAccessComplete) {
1024        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1025                tid);
1026
1027        fetchStatus[tid] = Running;
1028        status_change = true;
1029    } else if (fetchStatus[tid] == Running) {
1030        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1031                "instruction, starting at PC %08p.\n",
1032                tid, fetch_PC);
1033
1034        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1035        if (!fetch_success) {
1036            if (cacheBlocked) {
1037                ++icacheStallCycles;
1038            } else {
1039                ++fetchMiscStallCycles;
1040            }
1041            return;
1042        }
1043    } else {
1044        if (fetchStatus[tid] == Idle) {
1045            ++fetchIdleCycles;
1046            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1047        } else if (fetchStatus[tid] == Blocked) {
1048            ++fetchBlockedCycles;
1049            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1050        } else if (fetchStatus[tid] == Squashing) {
1051            ++fetchSquashCycles;
1052            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1053        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1054            ++icacheStallCycles;
1055            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1056        }
1057
1058        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1059        // fetch should do nothing.
1060        return;
1061    }
1062
1063    ++fetchCycles;
1064
1065    // If we had a stall due to an icache miss, then return.
1066    if (fetchStatus[tid] == IcacheWaitResponse) {
1067        ++icacheStallCycles;
1068        status_change = true;
1069        return;
1070    }
1071
1072    Addr next_PC = fetch_PC;
1073    Addr next_NPC = fetch_NPC;
1074    Addr next_MicroPC = fetch_MicroPC;
1075
1076    InstSeqNum inst_seq;
1077    MachInst inst;
1078    ExtMachInst ext_inst;
1079    // @todo: Fix this hack.
1080    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1081
1082    StaticInstPtr staticInst = NULL;
1083    StaticInstPtr macroop = NULL;
1084
1085    if (fault == NoFault) {
1086        // If the read of the first instruction was successful, then grab the
1087        // instructions from the rest of the cache line and put them into the
1088        // queue heading to decode.
1089
1090        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1091                "decode.\n",tid);
1092
1093        // Need to keep track of whether or not a predicted branch
1094        // ended this fetch block.
1095        bool predicted_branch = false;
1096
1097        while (offset < cacheBlkSize &&
1098               numInst < fetchWidth &&
1099               !predicted_branch) {
1100
1101            // If we're branching after this instruction, quite fetching
1102            // from the same block then.
1103            predicted_branch =
1104                (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1105            if (predicted_branch) {
1106                DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1107                        fetch_PC, fetch_NPC);
1108            }
1109
1110            // Make sure this is a valid index.
1111            assert(offset <= cacheBlkSize - instSize);
1112
1113            if (!macroop) {
1114                // Get the instruction from the array of the cache line.
1115                inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1116                            (&cacheData[tid][offset]));
1117
1118                predecoder.setTC(cpu->thread[tid]->getTC());
1119                predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1120
1121                ext_inst = predecoder.getExtMachInst();
1122                staticInst = StaticInstPtr(ext_inst, fetch_PC);
1123                if (staticInst->isMacroop())
1124                    macroop = staticInst;
1125            }
1126            do {
1127                if (macroop) {
1128                    staticInst = macroop->fetchMicroop(fetch_MicroPC);
1129                    if (staticInst->isLastMicroop())
1130                        macroop = NULL;
1131                }
1132
1133                // Get a sequence number.
1134                inst_seq = cpu->getAndIncrementInstSeq();
1135
1136                // Create a new DynInst from the instruction fetched.
1137                DynInstPtr instruction = new DynInst(staticInst,
1138                                                     fetch_PC, fetch_NPC, fetch_MicroPC,
1139                                                     next_PC, next_NPC, next_MicroPC,
1140                                                     inst_seq, cpu);
1141                instruction->setTid(tid);
1142
1143                instruction->setASID(tid);
1144
1145                instruction->setThreadState(cpu->thread[tid]);
1146
1147                DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1148                        "[sn:%lli]\n",
1149                        tid, instruction->readPC(), inst_seq);
1150
1151                //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1152
1153                DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1154                        tid, instruction->staticInst->disassemble(fetch_PC));
1155
1156#if TRACING_ON
1157                instruction->traceData =
1158                    cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
1159                            instruction->staticInst, instruction->readPC());
1160#else
1161                instruction->traceData = NULL;
1162#endif
1163
1164                ///FIXME This needs to be more robust in dealing with delay slots
1165                predicted_branch |=
1166                    lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1167
1168                // Add instruction to the CPU's list of instructions.
1169                instruction->setInstListIt(cpu->addInst(instruction));
1170
1171                // Write the instruction to the first slot in the queue
1172                // that heads to decode.
1173                toDecode->insts[numInst] = instruction;
1174
1175                toDecode->size++;
1176
1177                // Increment stat of fetched instructions.
1178                ++fetchedInsts;
1179
1180                // Move to the next instruction, unless we have a branch.
1181                fetch_PC = next_PC;
1182                fetch_NPC = next_NPC;
1183                fetch_MicroPC = next_MicroPC;
1184
1185                if (instruction->isQuiesce()) {
1186                    DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1187                            curTick);
1188                    fetchStatus[tid] = QuiescePending;
1189                    ++numInst;
1190                    status_change = true;
1191                    break;
1192                }
1193
1194                ++numInst;
1195            } while (staticInst->isMicroop() &&
1196                     !staticInst->isLastMicroop() &&
1197                     numInst < fetchWidth);
1198            offset += instSize;
1199        }
1200
1201        if (predicted_branch) {
1202            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1203                    "instruction encountered.\n", tid);
1204        } else if (numInst >= fetchWidth) {
1205            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1206                    "for this cycle.\n", tid);
1207        } else if (offset >= cacheBlkSize) {
1208            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1209                    "block.\n", tid);
1210        }
1211    }
1212
1213    if (numInst > 0) {
1214        wroteToTimeBuffer = true;
1215    }
1216
1217    // Now that fetching is completed, update the PC to signify what the next
1218    // cycle will be.
1219    if (fault == NoFault) {
1220        PC[tid] = next_PC;
1221        nextPC[tid] = next_NPC;
1222        microPC[tid] = next_MicroPC;
1223        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1224    } else {
1225        // We shouldn't be in an icache miss and also have a fault (an ITB
1226        // miss)
1227        if (fetchStatus[tid] == IcacheWaitResponse) {
1228            panic("Fetch should have exited prior to this!");
1229        }
1230
1231        // Send the fault to commit.  This thread will not do anything
1232        // until commit handles the fault.  The only other way it can
1233        // wake up is if a squash comes along and changes the PC.
1234        assert(numInst < fetchWidth);
1235        // Get a sequence number.
1236        inst_seq = cpu->getAndIncrementInstSeq();
1237        // We will use a nop in order to carry the fault.
1238        ext_inst = TheISA::NoopMachInst;
1239
1240        // Create a new DynInst from the dummy nop.
1241        DynInstPtr instruction = new DynInst(ext_inst,
1242                                             fetch_PC, fetch_NPC, fetch_MicroPC,
1243                                             next_PC, next_NPC, next_MicroPC,
1244                                             inst_seq, cpu);
1245        instruction->setPredTarg(next_NPC, next_NPC + instSize, 0);
1246        instruction->setTid(tid);
1247
1248        instruction->setASID(tid);
1249
1250        instruction->setThreadState(cpu->thread[tid]);
1251
1252        instruction->traceData = NULL;
1253
1254        instruction->setInstListIt(cpu->addInst(instruction));
1255
1256        instruction->fault = fault;
1257
1258        toDecode->insts[numInst] = instruction;
1259        toDecode->size++;
1260
1261        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1262
1263        fetchStatus[tid] = TrapPending;
1264        status_change = true;
1265
1266        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1267                tid, fault->name(), PC[tid]);
1268    }
1269}
1270
1271template<class Impl>
1272void
1273DefaultFetch<Impl>::recvRetry()
1274{
1275    if (retryPkt != NULL) {
1276        assert(cacheBlocked);
1277        assert(retryTid != -1);
1278        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1279
1280        if (icachePort->sendTiming(retryPkt)) {
1281            fetchStatus[retryTid] = IcacheWaitResponse;
1282            retryPkt = NULL;
1283            retryTid = -1;
1284            cacheBlocked = false;
1285        }
1286    } else {
1287        assert(retryTid == -1);
1288        // Access has been squashed since it was sent out.  Just clear
1289        // the cache being blocked.
1290        cacheBlocked = false;
1291    }
1292}
1293
1294///////////////////////////////////////
1295//                                   //
1296//  SMT FETCH POLICY MAINTAINED HERE //
1297//                                   //
1298///////////////////////////////////////
1299template<class Impl>
1300int
1301DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1302{
1303    if (numThreads > 1) {
1304        switch (fetch_priority) {
1305
1306          case SingleThread:
1307            return 0;
1308
1309          case RoundRobin:
1310            return roundRobin();
1311
1312          case IQ:
1313            return iqCount();
1314
1315          case LSQ:
1316            return lsqCount();
1317
1318          case Branch:
1319            return branchCount();
1320
1321          default:
1322            return -1;
1323        }
1324    } else {
1325        std::list<unsigned>::iterator thread = activeThreads->begin();
1326        assert(thread != activeThreads->end());
1327        int tid = *thread;
1328
1329        if (fetchStatus[tid] == Running ||
1330            fetchStatus[tid] == IcacheAccessComplete ||
1331            fetchStatus[tid] == Idle) {
1332            return tid;
1333        } else {
1334            return -1;
1335        }
1336    }
1337
1338}
1339
1340
1341template<class Impl>
1342int
1343DefaultFetch<Impl>::roundRobin()
1344{
1345    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1346    std::list<unsigned>::iterator end      = priorityList.end();
1347
1348    int high_pri;
1349
1350    while (pri_iter != end) {
1351        high_pri = *pri_iter;
1352
1353        assert(high_pri <= numThreads);
1354
1355        if (fetchStatus[high_pri] == Running ||
1356            fetchStatus[high_pri] == IcacheAccessComplete ||
1357            fetchStatus[high_pri] == Idle) {
1358
1359            priorityList.erase(pri_iter);
1360            priorityList.push_back(high_pri);
1361
1362            return high_pri;
1363        }
1364
1365        pri_iter++;
1366    }
1367
1368    return -1;
1369}
1370
1371template<class Impl>
1372int
1373DefaultFetch<Impl>::iqCount()
1374{
1375    std::priority_queue<unsigned> PQ;
1376
1377    std::list<unsigned>::iterator threads = activeThreads->begin();
1378    std::list<unsigned>::iterator end = activeThreads->end();
1379
1380    while (threads != end) {
1381        unsigned tid = *threads++;
1382
1383        PQ.push(fromIEW->iewInfo[tid].iqCount);
1384    }
1385
1386    while (!PQ.empty()) {
1387
1388        unsigned high_pri = PQ.top();
1389
1390        if (fetchStatus[high_pri] == Running ||
1391            fetchStatus[high_pri] == IcacheAccessComplete ||
1392            fetchStatus[high_pri] == Idle)
1393            return high_pri;
1394        else
1395            PQ.pop();
1396
1397    }
1398
1399    return -1;
1400}
1401
1402template<class Impl>
1403int
1404DefaultFetch<Impl>::lsqCount()
1405{
1406    std::priority_queue<unsigned> PQ;
1407
1408    std::list<unsigned>::iterator threads = activeThreads->begin();
1409    std::list<unsigned>::iterator end = activeThreads->end();
1410
1411    while (threads != end) {
1412        unsigned tid = *threads++;
1413
1414        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1415    }
1416
1417    while (!PQ.empty()) {
1418
1419        unsigned high_pri = PQ.top();
1420
1421        if (fetchStatus[high_pri] == Running ||
1422            fetchStatus[high_pri] == IcacheAccessComplete ||
1423            fetchStatus[high_pri] == Idle)
1424            return high_pri;
1425        else
1426            PQ.pop();
1427
1428    }
1429
1430    return -1;
1431}
1432
1433template<class Impl>
1434int
1435DefaultFetch<Impl>::branchCount()
1436{
1437    std::list<unsigned>::iterator thread = activeThreads->begin();
1438    assert(thread != activeThreads->end());
1439    unsigned tid = *thread;
1440
1441    panic("Branch Count Fetch policy unimplemented\n");
1442    return 0 * tid;
1443}
1444