fetch_impl.hh revision 4986:b7c82ad6b3ef
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include <algorithm>
33#include <cstring>
34
35#include "config/use_checker.hh"
36
37#include "arch/isa_traits.hh"
38#include "arch/utility.hh"
39#include "cpu/checker/cpu.hh"
40#include "cpu/exetrace.hh"
41#include "cpu/o3/fetch.hh"
42#include "mem/packet.hh"
43#include "mem/request.hh"
44#include "sim/byteswap.hh"
45#include "sim/host.hh"
46#include "sim/core.hh"
47
48#if FULL_SYSTEM
49#include "arch/tlb.hh"
50#include "arch/vtophys.hh"
51#include "sim/system.hh"
52#endif // FULL_SYSTEM
53
54template<class Impl>
55void
56DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
57{
58    Port::setPeer(port);
59
60    fetch->setIcache();
61}
62
63template<class Impl>
64Tick
65DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
66{
67    panic("DefaultFetch doesn't expect recvAtomic callback!");
68    return curTick;
69}
70
71template<class Impl>
72void
73DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
74{
75    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
76            "functional call.");
77}
78
79template<class Impl>
80void
81DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
82{
83    if (status == RangeChange) {
84        if (!snoopRangeSent) {
85            snoopRangeSent = true;
86            sendStatusChange(Port::RangeChange);
87        }
88        return;
89    }
90
91    panic("DefaultFetch doesn't expect recvStatusChange callback!");
92}
93
94template<class Impl>
95bool
96DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
97{
98    DPRINTF(Fetch, "Received timing\n");
99    if (pkt->isResponse()) {
100        fetch->processCacheCompletion(pkt);
101    }
102    //else Snooped a coherence request, just return
103    return true;
104}
105
106template<class Impl>
107void
108DefaultFetch<Impl>::IcachePort::recvRetry()
109{
110    fetch->recvRetry();
111}
112
113template<class Impl>
114DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, Params *params)
115    : cpu(_cpu),
116      branchPred(params),
117      predecoder(NULL),
118      decodeToFetchDelay(params->decodeToFetchDelay),
119      renameToFetchDelay(params->renameToFetchDelay),
120      iewToFetchDelay(params->iewToFetchDelay),
121      commitToFetchDelay(params->commitToFetchDelay),
122      fetchWidth(params->fetchWidth),
123      cacheBlocked(false),
124      retryPkt(NULL),
125      retryTid(-1),
126      numThreads(params->numberOfThreads),
127      numFetchingThreads(params->smtNumFetchingThreads),
128      interruptPending(false),
129      drainPending(false),
130      switchedOut(false)
131{
132    if (numThreads > Impl::MaxThreads)
133        fatal("numThreads is not a valid value\n");
134
135    // Set fetch stage's status to inactive.
136    _status = Inactive;
137
138    std::string policy = params->smtFetchPolicy;
139
140    // Convert string to lowercase
141    std::transform(policy.begin(), policy.end(), policy.begin(),
142                   (int(*)(int)) tolower);
143
144    // Figure out fetch policy
145    if (policy == "singlethread") {
146        fetchPolicy = SingleThread;
147        if (numThreads > 1)
148            panic("Invalid Fetch Policy for a SMT workload.");
149    } else if (policy == "roundrobin") {
150        fetchPolicy = RoundRobin;
151        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
152    } else if (policy == "branch") {
153        fetchPolicy = Branch;
154        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
155    } else if (policy == "iqcount") {
156        fetchPolicy = IQ;
157        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
158    } else if (policy == "lsqcount") {
159        fetchPolicy = LSQ;
160        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
161    } else {
162        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
163              " RoundRobin,LSQcount,IQcount}\n");
164    }
165
166    // Get the size of an instruction.
167    instSize = sizeof(TheISA::MachInst);
168
169    // Name is finally available, so create the port.
170    icachePort = new IcachePort(this);
171
172    icachePort->snoopRangeSent = false;
173
174#if USE_CHECKER
175    if (cpu->checker) {
176        cpu->checker->setIcachePort(icachePort);
177    }
178#endif
179}
180
181template <class Impl>
182std::string
183DefaultFetch<Impl>::name() const
184{
185    return cpu->name() + ".fetch";
186}
187
188template <class Impl>
189void
190DefaultFetch<Impl>::regStats()
191{
192    icacheStallCycles
193        .name(name() + ".icacheStallCycles")
194        .desc("Number of cycles fetch is stalled on an Icache miss")
195        .prereq(icacheStallCycles);
196
197    fetchedInsts
198        .name(name() + ".Insts")
199        .desc("Number of instructions fetch has processed")
200        .prereq(fetchedInsts);
201
202    fetchedBranches
203        .name(name() + ".Branches")
204        .desc("Number of branches that fetch encountered")
205        .prereq(fetchedBranches);
206
207    predictedBranches
208        .name(name() + ".predictedBranches")
209        .desc("Number of branches that fetch has predicted taken")
210        .prereq(predictedBranches);
211
212    fetchCycles
213        .name(name() + ".Cycles")
214        .desc("Number of cycles fetch has run and was not squashing or"
215              " blocked")
216        .prereq(fetchCycles);
217
218    fetchSquashCycles
219        .name(name() + ".SquashCycles")
220        .desc("Number of cycles fetch has spent squashing")
221        .prereq(fetchSquashCycles);
222
223    fetchIdleCycles
224        .name(name() + ".IdleCycles")
225        .desc("Number of cycles fetch was idle")
226        .prereq(fetchIdleCycles);
227
228    fetchBlockedCycles
229        .name(name() + ".BlockedCycles")
230        .desc("Number of cycles fetch has spent blocked")
231        .prereq(fetchBlockedCycles);
232
233    fetchedCacheLines
234        .name(name() + ".CacheLines")
235        .desc("Number of cache lines fetched")
236        .prereq(fetchedCacheLines);
237
238    fetchMiscStallCycles
239        .name(name() + ".MiscStallCycles")
240        .desc("Number of cycles fetch has spent waiting on interrupts, or "
241              "bad addresses, or out of MSHRs")
242        .prereq(fetchMiscStallCycles);
243
244    fetchIcacheSquashes
245        .name(name() + ".IcacheSquashes")
246        .desc("Number of outstanding Icache misses that were squashed")
247        .prereq(fetchIcacheSquashes);
248
249    fetchNisnDist
250        .init(/* base value */ 0,
251              /* last value */ fetchWidth,
252              /* bucket size */ 1)
253        .name(name() + ".rateDist")
254        .desc("Number of instructions fetched each cycle (Total)")
255        .flags(Stats::pdf);
256
257    idleRate
258        .name(name() + ".idleRate")
259        .desc("Percent of cycles fetch was idle")
260        .prereq(idleRate);
261    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
262
263    branchRate
264        .name(name() + ".branchRate")
265        .desc("Number of branch fetches per cycle")
266        .flags(Stats::total);
267    branchRate = fetchedBranches / cpu->numCycles;
268
269    fetchRate
270        .name(name() + ".rate")
271        .desc("Number of inst fetches per cycle")
272        .flags(Stats::total);
273    fetchRate = fetchedInsts / cpu->numCycles;
274
275    branchPred.regStats();
276}
277
278template<class Impl>
279void
280DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
281{
282    timeBuffer = time_buffer;
283
284    // Create wires to get information from proper places in time buffer.
285    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
286    fromRename = timeBuffer->getWire(-renameToFetchDelay);
287    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
288    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
289}
290
291template<class Impl>
292void
293DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
294{
295    activeThreads = at_ptr;
296}
297
298template<class Impl>
299void
300DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
301{
302    fetchQueue = fq_ptr;
303
304    // Create wire to write information to proper place in fetch queue.
305    toDecode = fetchQueue->getWire(0);
306}
307
308template<class Impl>
309void
310DefaultFetch<Impl>::initStage()
311{
312    // Setup PC and nextPC with initial state.
313    for (int tid = 0; tid < numThreads; tid++) {
314        PC[tid] = cpu->readPC(tid);
315        nextPC[tid] = cpu->readNextPC(tid);
316        microPC[tid] = cpu->readMicroPC(tid);
317    }
318
319    for (int tid=0; tid < numThreads; tid++) {
320
321        fetchStatus[tid] = Running;
322
323        priorityList.push_back(tid);
324
325        memReq[tid] = NULL;
326
327        stalls[tid].decode = false;
328        stalls[tid].rename = false;
329        stalls[tid].iew = false;
330        stalls[tid].commit = false;
331    }
332
333    // Schedule fetch to get the correct PC from the CPU
334    // scheduleFetchStartupEvent(1);
335
336    // Fetch needs to start fetching instructions at the very beginning,
337    // so it must start up in active state.
338    switchToActive();
339}
340
341template<class Impl>
342void
343DefaultFetch<Impl>::setIcache()
344{
345    // Size of cache block.
346    cacheBlkSize = icachePort->peerBlockSize();
347
348    // Create mask to get rid of offset bits.
349    cacheBlkMask = (cacheBlkSize - 1);
350
351    for (int tid=0; tid < numThreads; tid++) {
352        // Create space to store a cache line.
353        cacheData[tid] = new uint8_t[cacheBlkSize];
354        cacheDataPC[tid] = 0;
355        cacheDataValid[tid] = false;
356    }
357}
358
359template<class Impl>
360void
361DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
362{
363    unsigned tid = pkt->req->getThreadNum();
364
365    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
366
367    assert(!pkt->wasNacked());
368
369    // Only change the status if it's still waiting on the icache access
370    // to return.
371    if (fetchStatus[tid] != IcacheWaitResponse ||
372        pkt->req != memReq[tid] ||
373        isSwitchedOut()) {
374        ++fetchIcacheSquashes;
375        delete pkt->req;
376        delete pkt;
377        return;
378    }
379
380    memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
381    cacheDataValid[tid] = true;
382
383    if (!drainPending) {
384        // Wake up the CPU (if it went to sleep and was waiting on
385        // this completion event).
386        cpu->wakeCPU();
387
388        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
389                tid);
390
391        switchToActive();
392    }
393
394    // Only switch to IcacheAccessComplete if we're not stalled as well.
395    if (checkStall(tid)) {
396        fetchStatus[tid] = Blocked;
397    } else {
398        fetchStatus[tid] = IcacheAccessComplete;
399    }
400
401    // Reset the mem req to NULL.
402    delete pkt->req;
403    delete pkt;
404    memReq[tid] = NULL;
405}
406
407template <class Impl>
408bool
409DefaultFetch<Impl>::drain()
410{
411    // Fetch is ready to drain at any time.
412    cpu->signalDrained();
413    drainPending = true;
414    return true;
415}
416
417template <class Impl>
418void
419DefaultFetch<Impl>::resume()
420{
421    drainPending = false;
422}
423
424template <class Impl>
425void
426DefaultFetch<Impl>::switchOut()
427{
428    switchedOut = true;
429    // Branch predictor needs to have its state cleared.
430    branchPred.switchOut();
431}
432
433template <class Impl>
434void
435DefaultFetch<Impl>::takeOverFrom()
436{
437    // Reset all state
438    for (int i = 0; i < Impl::MaxThreads; ++i) {
439        stalls[i].decode = 0;
440        stalls[i].rename = 0;
441        stalls[i].iew = 0;
442        stalls[i].commit = 0;
443        PC[i] = cpu->readPC(i);
444        nextPC[i] = cpu->readNextPC(i);
445        microPC[i] = cpu->readMicroPC(i);
446        fetchStatus[i] = Running;
447    }
448    numInst = 0;
449    wroteToTimeBuffer = false;
450    _status = Inactive;
451    switchedOut = false;
452    interruptPending = false;
453    branchPred.takeOverFrom();
454}
455
456template <class Impl>
457void
458DefaultFetch<Impl>::wakeFromQuiesce()
459{
460    DPRINTF(Fetch, "Waking up from quiesce\n");
461    // Hopefully this is safe
462    // @todo: Allow other threads to wake from quiesce.
463    fetchStatus[0] = Running;
464}
465
466template <class Impl>
467inline void
468DefaultFetch<Impl>::switchToActive()
469{
470    if (_status == Inactive) {
471        DPRINTF(Activity, "Activating stage.\n");
472
473        cpu->activateStage(O3CPU::FetchIdx);
474
475        _status = Active;
476    }
477}
478
479template <class Impl>
480inline void
481DefaultFetch<Impl>::switchToInactive()
482{
483    if (_status == Active) {
484        DPRINTF(Activity, "Deactivating stage.\n");
485
486        cpu->deactivateStage(O3CPU::FetchIdx);
487
488        _status = Inactive;
489    }
490}
491
492template <class Impl>
493bool
494DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
495                                          Addr &next_NPC, Addr &next_MicroPC)
496{
497    // Do branch prediction check here.
498    // A bit of a misnomer...next_PC is actually the current PC until
499    // this function updates it.
500    bool predict_taken;
501
502    if (!inst->isControl()) {
503        if (inst->isMicroop() && !inst->isLastMicroop()) {
504            next_MicroPC++;
505        } else {
506            next_PC  = next_NPC;
507            next_NPC = next_NPC + instSize;
508            next_MicroPC = 0;
509        }
510        inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
511        inst->setPredTaken(false);
512        return false;
513    }
514
515    //Assume for now that all control flow is to a different macroop which
516    //would reset the micro pc to 0.
517    next_MicroPC = 0;
518
519    int tid = inst->threadNumber;
520    Addr pred_PC = next_PC;
521    predict_taken = branchPred.predict(inst, pred_PC, tid);
522
523/*    if (predict_taken) {
524        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
525                tid, pred_PC);
526    } else {
527        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
528    }*/
529
530#if ISA_HAS_DELAY_SLOT
531    next_PC = next_NPC;
532    if (predict_taken)
533        next_NPC = pred_PC;
534    else
535        next_NPC += instSize;
536#else
537    if (predict_taken)
538        next_PC = pred_PC;
539    else
540        next_PC += instSize;
541    next_NPC = next_PC + instSize;
542#endif
543/*    DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
544            tid, next_PC, next_NPC);*/
545    inst->setPredTarg(next_PC, next_NPC, next_MicroPC);
546    inst->setPredTaken(predict_taken);
547
548    ++fetchedBranches;
549
550    if (predict_taken) {
551        ++predictedBranches;
552    }
553
554    return predict_taken;
555}
556
557template <class Impl>
558bool
559DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
560{
561    Fault fault = NoFault;
562
563    //AlphaDep
564    if (cacheBlocked) {
565        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
566                tid);
567        return false;
568    } else if (isSwitchedOut()) {
569        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
570                tid);
571        return false;
572    } else if (interruptPending && !(fetch_PC & 0x3)) {
573        // Hold off fetch from getting new instructions when:
574        // Cache is blocked, or
575        // while an interrupt is pending and we're not in PAL mode, or
576        // fetch is switched out.
577        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
578                tid);
579        return false;
580    }
581
582    // Align the fetch PC so it's at the start of a cache block.
583    Addr block_PC = icacheBlockAlignPC(fetch_PC);
584
585    // If we've already got the block, no need to try to fetch it again.
586    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
587        return true;
588    }
589
590    // Setup the memReq to do a read of the first instruction's address.
591    // Set the appropriate read size and flags as well.
592    // Build request here.
593    RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
594                                     fetch_PC, cpu->readCpuId(), tid);
595
596    memReq[tid] = mem_req;
597
598    // Translate the instruction request.
599    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
600
601    // In the case of faults, the fetch stage may need to stall and wait
602    // for the ITB miss to be handled.
603
604    // If translation was successful, attempt to read the first
605    // instruction.
606    if (fault == NoFault) {
607#if 0
608        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
609            memReq[tid]->isUncacheable()) {
610            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
611                    "misspeculating path)!",
612                    memReq[tid]->paddr);
613            ret_fault = TheISA::genMachineCheckFault();
614            return false;
615        }
616#endif
617
618        // Build packet here.
619        PacketPtr data_pkt = new Packet(mem_req,
620                                        MemCmd::ReadReq, Packet::Broadcast);
621        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
622
623        cacheDataPC[tid] = block_PC;
624        cacheDataValid[tid] = false;
625
626        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
627
628        fetchedCacheLines++;
629
630        // Now do the timing access to see whether or not the instruction
631        // exists within the cache.
632        if (!icachePort->sendTiming(data_pkt)) {
633            assert(retryPkt == NULL);
634            assert(retryTid == -1);
635            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
636            fetchStatus[tid] = IcacheWaitRetry;
637            retryPkt = data_pkt;
638            retryTid = tid;
639            cacheBlocked = true;
640            return false;
641        }
642
643        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
644
645        lastIcacheStall[tid] = curTick;
646
647        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
648                "response.\n", tid);
649
650        fetchStatus[tid] = IcacheWaitResponse;
651    } else {
652        delete mem_req;
653        memReq[tid] = NULL;
654    }
655
656    ret_fault = fault;
657    return true;
658}
659
660template <class Impl>
661inline void
662DefaultFetch<Impl>::doSquash(const Addr &new_PC,
663        const Addr &new_NPC, const Addr &new_microPC, unsigned tid)
664{
665    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
666            tid, new_PC, new_NPC);
667
668    PC[tid] = new_PC;
669    nextPC[tid] = new_NPC;
670    microPC[tid] = new_microPC;
671
672    // Clear the icache miss if it's outstanding.
673    if (fetchStatus[tid] == IcacheWaitResponse) {
674        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
675                tid);
676        memReq[tid] = NULL;
677    }
678
679    // Get rid of the retrying packet if it was from this thread.
680    if (retryTid == tid) {
681        assert(cacheBlocked);
682        if (retryPkt) {
683            delete retryPkt->req;
684            delete retryPkt;
685        }
686        retryPkt = NULL;
687        retryTid = -1;
688    }
689
690    fetchStatus[tid] = Squashing;
691
692    ++fetchSquashCycles;
693}
694
695template<class Impl>
696void
697DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
698                                     const Addr &new_MicroPC,
699                                     const InstSeqNum &seq_num, unsigned tid)
700{
701    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
702
703    doSquash(new_PC, new_NPC, new_MicroPC, tid);
704
705    // Tell the CPU to remove any instructions that are in flight between
706    // fetch and decode.
707    cpu->removeInstsUntil(seq_num, tid);
708}
709
710template<class Impl>
711bool
712DefaultFetch<Impl>::checkStall(unsigned tid) const
713{
714    bool ret_val = false;
715
716    if (cpu->contextSwitch) {
717        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
718        ret_val = true;
719    } else if (stalls[tid].decode) {
720        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
721        ret_val = true;
722    } else if (stalls[tid].rename) {
723        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
724        ret_val = true;
725    } else if (stalls[tid].iew) {
726        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
727        ret_val = true;
728    } else if (stalls[tid].commit) {
729        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
730        ret_val = true;
731    }
732
733    return ret_val;
734}
735
736template<class Impl>
737typename DefaultFetch<Impl>::FetchStatus
738DefaultFetch<Impl>::updateFetchStatus()
739{
740    //Check Running
741    std::list<unsigned>::iterator threads = activeThreads->begin();
742    std::list<unsigned>::iterator end = activeThreads->end();
743
744    while (threads != end) {
745        unsigned tid = *threads++;
746
747        if (fetchStatus[tid] == Running ||
748            fetchStatus[tid] == Squashing ||
749            fetchStatus[tid] == IcacheAccessComplete) {
750
751            if (_status == Inactive) {
752                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
753
754                if (fetchStatus[tid] == IcacheAccessComplete) {
755                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
756                            "completion\n",tid);
757                }
758
759                cpu->activateStage(O3CPU::FetchIdx);
760            }
761
762            return Active;
763        }
764    }
765
766    // Stage is switching from active to inactive, notify CPU of it.
767    if (_status == Active) {
768        DPRINTF(Activity, "Deactivating stage.\n");
769
770        cpu->deactivateStage(O3CPU::FetchIdx);
771    }
772
773    return Inactive;
774}
775
776template <class Impl>
777void
778DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
779                           const Addr &new_MicroPC,
780                           const InstSeqNum &seq_num, unsigned tid)
781{
782    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
783
784    doSquash(new_PC, new_NPC, new_MicroPC, tid);
785
786    // Tell the CPU to remove any instructions that are not in the ROB.
787    cpu->removeInstsNotInROB(tid);
788}
789
790template <class Impl>
791void
792DefaultFetch<Impl>::tick()
793{
794    std::list<unsigned>::iterator threads = activeThreads->begin();
795    std::list<unsigned>::iterator end = activeThreads->end();
796    bool status_change = false;
797
798    wroteToTimeBuffer = false;
799
800    while (threads != end) {
801        unsigned tid = *threads++;
802
803        // Check the signals for each thread to determine the proper status
804        // for each thread.
805        bool updated_status = checkSignalsAndUpdate(tid);
806        status_change =  status_change || updated_status;
807    }
808
809    DPRINTF(Fetch, "Running stage.\n");
810
811    // Reset the number of the instruction we're fetching.
812    numInst = 0;
813
814#if FULL_SYSTEM
815    if (fromCommit->commitInfo[0].interruptPending) {
816        interruptPending = true;
817    }
818
819    if (fromCommit->commitInfo[0].clearInterrupt) {
820        interruptPending = false;
821    }
822#endif
823
824    for (threadFetched = 0; threadFetched < numFetchingThreads;
825         threadFetched++) {
826        // Fetch each of the actively fetching threads.
827        fetch(status_change);
828    }
829
830    // Record number of instructions fetched this cycle for distribution.
831    fetchNisnDist.sample(numInst);
832
833    if (status_change) {
834        // Change the fetch stage status if there was a status change.
835        _status = updateFetchStatus();
836    }
837
838    // If there was activity this cycle, inform the CPU of it.
839    if (wroteToTimeBuffer || cpu->contextSwitch) {
840        DPRINTF(Activity, "Activity this cycle.\n");
841
842        cpu->activityThisCycle();
843    }
844}
845
846template <class Impl>
847bool
848DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
849{
850    // Update the per thread stall statuses.
851    if (fromDecode->decodeBlock[tid]) {
852        stalls[tid].decode = true;
853    }
854
855    if (fromDecode->decodeUnblock[tid]) {
856        assert(stalls[tid].decode);
857        assert(!fromDecode->decodeBlock[tid]);
858        stalls[tid].decode = false;
859    }
860
861    if (fromRename->renameBlock[tid]) {
862        stalls[tid].rename = true;
863    }
864
865    if (fromRename->renameUnblock[tid]) {
866        assert(stalls[tid].rename);
867        assert(!fromRename->renameBlock[tid]);
868        stalls[tid].rename = false;
869    }
870
871    if (fromIEW->iewBlock[tid]) {
872        stalls[tid].iew = true;
873    }
874
875    if (fromIEW->iewUnblock[tid]) {
876        assert(stalls[tid].iew);
877        assert(!fromIEW->iewBlock[tid]);
878        stalls[tid].iew = false;
879    }
880
881    if (fromCommit->commitBlock[tid]) {
882        stalls[tid].commit = true;
883    }
884
885    if (fromCommit->commitUnblock[tid]) {
886        assert(stalls[tid].commit);
887        assert(!fromCommit->commitBlock[tid]);
888        stalls[tid].commit = false;
889    }
890
891    // Check squash signals from commit.
892    if (fromCommit->commitInfo[tid].squash) {
893
894        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
895                "from commit.\n",tid);
896        // In any case, squash.
897        squash(fromCommit->commitInfo[tid].nextPC,
898               fromCommit->commitInfo[tid].nextNPC,
899               fromCommit->commitInfo[tid].nextMicroPC,
900               fromCommit->commitInfo[tid].doneSeqNum,
901               tid);
902
903        // Also check if there's a mispredict that happened.
904        if (fromCommit->commitInfo[tid].branchMispredict) {
905            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
906                              fromCommit->commitInfo[tid].nextPC,
907                              fromCommit->commitInfo[tid].branchTaken,
908                              tid);
909        } else {
910            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
911                              tid);
912        }
913
914        return true;
915    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
916        // Update the branch predictor if it wasn't a squashed instruction
917        // that was broadcasted.
918        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
919    }
920
921    // Check ROB squash signals from commit.
922    if (fromCommit->commitInfo[tid].robSquashing) {
923        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
924
925        // Continue to squash.
926        fetchStatus[tid] = Squashing;
927
928        return true;
929    }
930
931    // Check squash signals from decode.
932    if (fromDecode->decodeInfo[tid].squash) {
933        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
934                "from decode.\n",tid);
935
936        // Update the branch predictor.
937        if (fromDecode->decodeInfo[tid].branchMispredict) {
938            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
939                              fromDecode->decodeInfo[tid].nextPC,
940                              fromDecode->decodeInfo[tid].branchTaken,
941                              tid);
942        } else {
943            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
944                              tid);
945        }
946
947        if (fetchStatus[tid] != Squashing) {
948
949            DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
950                    fromDecode->decodeInfo[tid].nextPC,
951                    fromDecode->decodeInfo[tid].nextNPC);
952            // Squash unless we're already squashing
953            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
954                             fromDecode->decodeInfo[tid].nextNPC,
955                             fromDecode->decodeInfo[tid].nextMicroPC,
956                             fromDecode->decodeInfo[tid].doneSeqNum,
957                             tid);
958
959            return true;
960        }
961    }
962
963    if (checkStall(tid) &&
964        fetchStatus[tid] != IcacheWaitResponse &&
965        fetchStatus[tid] != IcacheWaitRetry) {
966        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
967
968        fetchStatus[tid] = Blocked;
969
970        return true;
971    }
972
973    if (fetchStatus[tid] == Blocked ||
974        fetchStatus[tid] == Squashing) {
975        // Switch status to running if fetch isn't being told to block or
976        // squash this cycle.
977        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
978                tid);
979
980        fetchStatus[tid] = Running;
981
982        return true;
983    }
984
985    // If we've reached this point, we have not gotten any signals that
986    // cause fetch to change its status.  Fetch remains the same as before.
987    return false;
988}
989
990template<class Impl>
991void
992DefaultFetch<Impl>::fetch(bool &status_change)
993{
994    //////////////////////////////////////////
995    // Start actual fetch
996    //////////////////////////////////////////
997    int tid = getFetchingThread(fetchPolicy);
998
999    if (tid == -1 || drainPending) {
1000        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1001
1002        // Breaks looping condition in tick()
1003        threadFetched = numFetchingThreads;
1004        return;
1005    }
1006
1007    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1008
1009    // The current PC.
1010    Addr fetch_PC = PC[tid];
1011    Addr fetch_NPC = nextPC[tid];
1012    Addr fetch_MicroPC = microPC[tid];
1013
1014    // Fault code for memory access.
1015    Fault fault = NoFault;
1016
1017    // If returning from the delay of a cache miss, then update the status
1018    // to running, otherwise do the cache access.  Possibly move this up
1019    // to tick() function.
1020    if (fetchStatus[tid] == IcacheAccessComplete) {
1021        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1022                tid);
1023
1024        fetchStatus[tid] = Running;
1025        status_change = true;
1026    } else if (fetchStatus[tid] == Running) {
1027        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1028                "instruction, starting at PC %08p.\n",
1029                tid, fetch_PC);
1030
1031        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1032        if (!fetch_success) {
1033            if (cacheBlocked) {
1034                ++icacheStallCycles;
1035            } else {
1036                ++fetchMiscStallCycles;
1037            }
1038            return;
1039        }
1040    } else {
1041        if (fetchStatus[tid] == Idle) {
1042            ++fetchIdleCycles;
1043            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1044        } else if (fetchStatus[tid] == Blocked) {
1045            ++fetchBlockedCycles;
1046            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1047        } else if (fetchStatus[tid] == Squashing) {
1048            ++fetchSquashCycles;
1049            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1050        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1051            ++icacheStallCycles;
1052            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1053        }
1054
1055        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1056        // fetch should do nothing.
1057        return;
1058    }
1059
1060    ++fetchCycles;
1061
1062    // If we had a stall due to an icache miss, then return.
1063    if (fetchStatus[tid] == IcacheWaitResponse) {
1064        ++icacheStallCycles;
1065        status_change = true;
1066        return;
1067    }
1068
1069    Addr next_PC = fetch_PC;
1070    Addr next_NPC = fetch_NPC;
1071    Addr next_MicroPC = fetch_MicroPC;
1072
1073    InstSeqNum inst_seq;
1074    MachInst inst;
1075    ExtMachInst ext_inst;
1076    // @todo: Fix this hack.
1077    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1078
1079    StaticInstPtr staticInst = NULL;
1080    StaticInstPtr macroop = NULL;
1081
1082    if (fault == NoFault) {
1083        // If the read of the first instruction was successful, then grab the
1084        // instructions from the rest of the cache line and put them into the
1085        // queue heading to decode.
1086
1087        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1088                "decode.\n",tid);
1089
1090        // Need to keep track of whether or not a predicted branch
1091        // ended this fetch block.
1092        bool predicted_branch = false;
1093
1094        while (offset < cacheBlkSize &&
1095               numInst < fetchWidth &&
1096               !predicted_branch) {
1097
1098            // If we're branching after this instruction, quite fetching
1099            // from the same block then.
1100            predicted_branch =
1101                (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1102            if (predicted_branch) {
1103                DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1104                        fetch_PC, fetch_NPC);
1105            }
1106
1107            // Make sure this is a valid index.
1108            assert(offset <= cacheBlkSize - instSize);
1109
1110            if (!macroop) {
1111                // Get the instruction from the array of the cache line.
1112                inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1113                            (&cacheData[tid][offset]));
1114
1115                predecoder.setTC(cpu->thread[tid]->getTC());
1116                predecoder.moreBytes(fetch_PC, fetch_PC, inst);
1117
1118                ext_inst = predecoder.getExtMachInst();
1119                staticInst = StaticInstPtr(ext_inst, fetch_PC);
1120                if (staticInst->isMacroop())
1121                    macroop = staticInst;
1122            }
1123            do {
1124                if (macroop) {
1125                    staticInst = macroop->fetchMicroop(fetch_MicroPC);
1126                    if (staticInst->isLastMicroop())
1127                        macroop = NULL;
1128                }
1129
1130                // Get a sequence number.
1131                inst_seq = cpu->getAndIncrementInstSeq();
1132
1133                // Create a new DynInst from the instruction fetched.
1134                DynInstPtr instruction = new DynInst(staticInst,
1135                                                     fetch_PC, fetch_NPC, fetch_MicroPC,
1136                                                     next_PC, next_NPC, next_MicroPC,
1137                                                     inst_seq, cpu);
1138                instruction->setTid(tid);
1139
1140                instruction->setASID(tid);
1141
1142                instruction->setThreadState(cpu->thread[tid]);
1143
1144                DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1145                        "[sn:%lli]\n",
1146                        tid, instruction->readPC(), inst_seq);
1147
1148                //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1149
1150                DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1151                        tid, instruction->staticInst->disassemble(fetch_PC));
1152
1153#if TRACING_ON
1154                instruction->traceData =
1155                    cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
1156                            instruction->staticInst, instruction->readPC());
1157#else
1158                instruction->traceData = NULL;
1159#endif
1160
1161                ///FIXME This needs to be more robust in dealing with delay slots
1162                predicted_branch |=
1163                    lookupAndUpdateNextPC(instruction, next_PC, next_NPC, next_MicroPC);
1164
1165                // Add instruction to the CPU's list of instructions.
1166                instruction->setInstListIt(cpu->addInst(instruction));
1167
1168                // Write the instruction to the first slot in the queue
1169                // that heads to decode.
1170                toDecode->insts[numInst] = instruction;
1171
1172                toDecode->size++;
1173
1174                // Increment stat of fetched instructions.
1175                ++fetchedInsts;
1176
1177                // Move to the next instruction, unless we have a branch.
1178                fetch_PC = next_PC;
1179                fetch_NPC = next_NPC;
1180                fetch_MicroPC = next_MicroPC;
1181
1182                if (instruction->isQuiesce()) {
1183                    DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1184                            curTick);
1185                    fetchStatus[tid] = QuiescePending;
1186                    ++numInst;
1187                    status_change = true;
1188                    break;
1189                }
1190
1191                ++numInst;
1192            } while (staticInst->isMicroop() &&
1193                     !staticInst->isLastMicroop() &&
1194                     numInst < fetchWidth);
1195            offset += instSize;
1196        }
1197
1198        if (predicted_branch) {
1199            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1200                    "instruction encountered.\n", tid);
1201        } else if (numInst >= fetchWidth) {
1202            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1203                    "for this cycle.\n", tid);
1204        } else if (offset >= cacheBlkSize) {
1205            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1206                    "block.\n", tid);
1207        }
1208    }
1209
1210    if (numInst > 0) {
1211        wroteToTimeBuffer = true;
1212    }
1213
1214    // Now that fetching is completed, update the PC to signify what the next
1215    // cycle will be.
1216    if (fault == NoFault) {
1217        PC[tid] = next_PC;
1218        nextPC[tid] = next_NPC;
1219        microPC[tid] = next_MicroPC;
1220        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1221    } else {
1222        // We shouldn't be in an icache miss and also have a fault (an ITB
1223        // miss)
1224        if (fetchStatus[tid] == IcacheWaitResponse) {
1225            panic("Fetch should have exited prior to this!");
1226        }
1227
1228        // Send the fault to commit.  This thread will not do anything
1229        // until commit handles the fault.  The only other way it can
1230        // wake up is if a squash comes along and changes the PC.
1231#if FULL_SYSTEM
1232        assert(numInst < fetchWidth);
1233        // Get a sequence number.
1234        inst_seq = cpu->getAndIncrementInstSeq();
1235        // We will use a nop in order to carry the fault.
1236        ext_inst = TheISA::NoopMachInst;
1237
1238        // Create a new DynInst from the dummy nop.
1239        DynInstPtr instruction = new DynInst(ext_inst,
1240                                             fetch_PC, fetch_NPC, fetch_MicroPC,
1241                                             next_PC, next_NPC, next_MicroPC,
1242                                             inst_seq, cpu);
1243        instruction->setPredTarg(next_PC, next_NPC, 1);
1244        instruction->setTid(tid);
1245
1246        instruction->setASID(tid);
1247
1248        instruction->setThreadState(cpu->thread[tid]);
1249
1250        instruction->traceData = NULL;
1251
1252        instruction->setInstListIt(cpu->addInst(instruction));
1253
1254        instruction->fault = fault;
1255
1256        toDecode->insts[numInst] = instruction;
1257        toDecode->size++;
1258
1259        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1260
1261        fetchStatus[tid] = TrapPending;
1262        status_change = true;
1263#else // !FULL_SYSTEM
1264        fetchStatus[tid] = TrapPending;
1265        status_change = true;
1266
1267#endif // FULL_SYSTEM
1268        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1269                tid, fault->name(), PC[tid]);
1270    }
1271}
1272
1273template<class Impl>
1274void
1275DefaultFetch<Impl>::recvRetry()
1276{
1277    if (retryPkt != NULL) {
1278        assert(cacheBlocked);
1279        assert(retryTid != -1);
1280        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1281
1282        if (icachePort->sendTiming(retryPkt)) {
1283            fetchStatus[retryTid] = IcacheWaitResponse;
1284            retryPkt = NULL;
1285            retryTid = -1;
1286            cacheBlocked = false;
1287        }
1288    } else {
1289        assert(retryTid == -1);
1290        // Access has been squashed since it was sent out.  Just clear
1291        // the cache being blocked.
1292        cacheBlocked = false;
1293    }
1294}
1295
1296///////////////////////////////////////
1297//                                   //
1298//  SMT FETCH POLICY MAINTAINED HERE //
1299//                                   //
1300///////////////////////////////////////
1301template<class Impl>
1302int
1303DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1304{
1305    if (numThreads > 1) {
1306        switch (fetch_priority) {
1307
1308          case SingleThread:
1309            return 0;
1310
1311          case RoundRobin:
1312            return roundRobin();
1313
1314          case IQ:
1315            return iqCount();
1316
1317          case LSQ:
1318            return lsqCount();
1319
1320          case Branch:
1321            return branchCount();
1322
1323          default:
1324            return -1;
1325        }
1326    } else {
1327        std::list<unsigned>::iterator thread = activeThreads->begin();
1328        assert(thread != activeThreads->end());
1329        int tid = *thread;
1330
1331        if (fetchStatus[tid] == Running ||
1332            fetchStatus[tid] == IcacheAccessComplete ||
1333            fetchStatus[tid] == Idle) {
1334            return tid;
1335        } else {
1336            return -1;
1337        }
1338    }
1339
1340}
1341
1342
1343template<class Impl>
1344int
1345DefaultFetch<Impl>::roundRobin()
1346{
1347    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1348    std::list<unsigned>::iterator end      = priorityList.end();
1349
1350    int high_pri;
1351
1352    while (pri_iter != end) {
1353        high_pri = *pri_iter;
1354
1355        assert(high_pri <= numThreads);
1356
1357        if (fetchStatus[high_pri] == Running ||
1358            fetchStatus[high_pri] == IcacheAccessComplete ||
1359            fetchStatus[high_pri] == Idle) {
1360
1361            priorityList.erase(pri_iter);
1362            priorityList.push_back(high_pri);
1363
1364            return high_pri;
1365        }
1366
1367        pri_iter++;
1368    }
1369
1370    return -1;
1371}
1372
1373template<class Impl>
1374int
1375DefaultFetch<Impl>::iqCount()
1376{
1377    std::priority_queue<unsigned> PQ;
1378
1379    std::list<unsigned>::iterator threads = activeThreads->begin();
1380    std::list<unsigned>::iterator end = activeThreads->end();
1381
1382    while (threads != end) {
1383        unsigned tid = *threads++;
1384
1385        PQ.push(fromIEW->iewInfo[tid].iqCount);
1386    }
1387
1388    while (!PQ.empty()) {
1389
1390        unsigned high_pri = PQ.top();
1391
1392        if (fetchStatus[high_pri] == Running ||
1393            fetchStatus[high_pri] == IcacheAccessComplete ||
1394            fetchStatus[high_pri] == Idle)
1395            return high_pri;
1396        else
1397            PQ.pop();
1398
1399    }
1400
1401    return -1;
1402}
1403
1404template<class Impl>
1405int
1406DefaultFetch<Impl>::lsqCount()
1407{
1408    std::priority_queue<unsigned> PQ;
1409
1410    std::list<unsigned>::iterator threads = activeThreads->begin();
1411    std::list<unsigned>::iterator end = activeThreads->end();
1412
1413    while (threads != end) {
1414        unsigned tid = *threads++;
1415
1416        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1417    }
1418
1419    while (!PQ.empty()) {
1420
1421        unsigned high_pri = PQ.top();
1422
1423        if (fetchStatus[high_pri] == Running ||
1424            fetchStatus[high_pri] == IcacheAccessComplete ||
1425            fetchStatus[high_pri] == Idle)
1426            return high_pri;
1427        else
1428            PQ.pop();
1429
1430    }
1431
1432    return -1;
1433}
1434
1435template<class Impl>
1436int
1437DefaultFetch<Impl>::branchCount()
1438{
1439    std::list<unsigned>::iterator thread = activeThreads->begin();
1440    assert(thread != activeThreads->end());
1441    unsigned tid = *thread;
1442
1443    panic("Branch Count Fetch policy unimplemented\n");
1444    return 0 * tid;
1445}
1446