fetch_impl.hh revision 4182:5b2c0d266107
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/core.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "sim/system.hh"
49#endif // FULL_SYSTEM
50
51#include <algorithm>
52
53template<class Impl>
54Tick
55DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
56{
57    panic("DefaultFetch doesn't expect recvAtomic callback!");
58    return curTick;
59}
60
61template<class Impl>
62void
63DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
64{
65    DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
66            "functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73    if (status == RangeChange) {
74        if (!snoopRangeSent) {
75            snoopRangeSent = true;
76            sendStatusChange(Port::RangeChange);
77        }
78        return;
79    }
80
81    panic("DefaultFetch doesn't expect recvStatusChange callback!");
82}
83
84template<class Impl>
85bool
86DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
87{
88    DPRINTF(Fetch, "Received timing\n");
89    if (pkt->isResponse()) {
90        fetch->processCacheCompletion(pkt);
91    }
92    //else Snooped a coherence request, just return
93    return true;
94}
95
96template<class Impl>
97void
98DefaultFetch<Impl>::IcachePort::recvRetry()
99{
100    fetch->recvRetry();
101}
102
103template<class Impl>
104DefaultFetch<Impl>::DefaultFetch(Params *params)
105    : branchPred(params),
106      predecoder(NULL),
107      decodeToFetchDelay(params->decodeToFetchDelay),
108      renameToFetchDelay(params->renameToFetchDelay),
109      iewToFetchDelay(params->iewToFetchDelay),
110      commitToFetchDelay(params->commitToFetchDelay),
111      fetchWidth(params->fetchWidth),
112      cacheBlocked(false),
113      retryPkt(NULL),
114      retryTid(-1),
115      numThreads(params->numberOfThreads),
116      numFetchingThreads(params->smtNumFetchingThreads),
117      interruptPending(false),
118      drainPending(false),
119      switchedOut(false)
120{
121    if (numThreads > Impl::MaxThreads)
122        fatal("numThreads is not a valid value\n");
123
124    // Set fetch stage's status to inactive.
125    _status = Inactive;
126
127    std::string policy = params->smtFetchPolicy;
128
129    // Convert string to lowercase
130    std::transform(policy.begin(), policy.end(), policy.begin(),
131                   (int(*)(int)) tolower);
132
133    // Figure out fetch policy
134    if (policy == "singlethread") {
135        fetchPolicy = SingleThread;
136        if (numThreads > 1)
137            panic("Invalid Fetch Policy for a SMT workload.");
138    } else if (policy == "roundrobin") {
139        fetchPolicy = RoundRobin;
140        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
141    } else if (policy == "branch") {
142        fetchPolicy = Branch;
143        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
144    } else if (policy == "iqcount") {
145        fetchPolicy = IQ;
146        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
147    } else if (policy == "lsqcount") {
148        fetchPolicy = LSQ;
149        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
150    } else {
151        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
152              " RoundRobin,LSQcount,IQcount}\n");
153    }
154
155    // Get the size of an instruction.
156    instSize = sizeof(TheISA::MachInst);
157}
158
159template <class Impl>
160std::string
161DefaultFetch<Impl>::name() const
162{
163    return cpu->name() + ".fetch";
164}
165
166template <class Impl>
167void
168DefaultFetch<Impl>::regStats()
169{
170    icacheStallCycles
171        .name(name() + ".icacheStallCycles")
172        .desc("Number of cycles fetch is stalled on an Icache miss")
173        .prereq(icacheStallCycles);
174
175    fetchedInsts
176        .name(name() + ".Insts")
177        .desc("Number of instructions fetch has processed")
178        .prereq(fetchedInsts);
179
180    fetchedBranches
181        .name(name() + ".Branches")
182        .desc("Number of branches that fetch encountered")
183        .prereq(fetchedBranches);
184
185    predictedBranches
186        .name(name() + ".predictedBranches")
187        .desc("Number of branches that fetch has predicted taken")
188        .prereq(predictedBranches);
189
190    fetchCycles
191        .name(name() + ".Cycles")
192        .desc("Number of cycles fetch has run and was not squashing or"
193              " blocked")
194        .prereq(fetchCycles);
195
196    fetchSquashCycles
197        .name(name() + ".SquashCycles")
198        .desc("Number of cycles fetch has spent squashing")
199        .prereq(fetchSquashCycles);
200
201    fetchIdleCycles
202        .name(name() + ".IdleCycles")
203        .desc("Number of cycles fetch was idle")
204        .prereq(fetchIdleCycles);
205
206    fetchBlockedCycles
207        .name(name() + ".BlockedCycles")
208        .desc("Number of cycles fetch has spent blocked")
209        .prereq(fetchBlockedCycles);
210
211    fetchedCacheLines
212        .name(name() + ".CacheLines")
213        .desc("Number of cache lines fetched")
214        .prereq(fetchedCacheLines);
215
216    fetchMiscStallCycles
217        .name(name() + ".MiscStallCycles")
218        .desc("Number of cycles fetch has spent waiting on interrupts, or "
219              "bad addresses, or out of MSHRs")
220        .prereq(fetchMiscStallCycles);
221
222    fetchIcacheSquashes
223        .name(name() + ".IcacheSquashes")
224        .desc("Number of outstanding Icache misses that were squashed")
225        .prereq(fetchIcacheSquashes);
226
227    fetchNisnDist
228        .init(/* base value */ 0,
229              /* last value */ fetchWidth,
230              /* bucket size */ 1)
231        .name(name() + ".rateDist")
232        .desc("Number of instructions fetched each cycle (Total)")
233        .flags(Stats::pdf);
234
235    idleRate
236        .name(name() + ".idleRate")
237        .desc("Percent of cycles fetch was idle")
238        .prereq(idleRate);
239    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
240
241    branchRate
242        .name(name() + ".branchRate")
243        .desc("Number of branch fetches per cycle")
244        .flags(Stats::total);
245    branchRate = fetchedBranches / cpu->numCycles;
246
247    fetchRate
248        .name(name() + ".rate")
249        .desc("Number of inst fetches per cycle")
250        .flags(Stats::total);
251    fetchRate = fetchedInsts / cpu->numCycles;
252
253    branchPred.regStats();
254}
255
256template<class Impl>
257void
258DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
259{
260    DPRINTF(Fetch, "Setting the CPU pointer.\n");
261    cpu = cpu_ptr;
262
263    // Name is finally available, so create the port.
264    icachePort = new IcachePort(this);
265
266    icachePort->snoopRangeSent = false;
267
268#if USE_CHECKER
269    if (cpu->checker) {
270        cpu->checker->setIcachePort(icachePort);
271    }
272#endif
273
274    // Schedule fetch to get the correct PC from the CPU
275    // scheduleFetchStartupEvent(1);
276
277    // Fetch needs to start fetching instructions at the very beginning,
278    // so it must start up in active state.
279    switchToActive();
280}
281
282template<class Impl>
283void
284DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
285{
286    DPRINTF(Fetch, "Setting the time buffer pointer.\n");
287    timeBuffer = time_buffer;
288
289    // Create wires to get information from proper places in time buffer.
290    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
291    fromRename = timeBuffer->getWire(-renameToFetchDelay);
292    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
293    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
299{
300    DPRINTF(Fetch, "Setting active threads list pointer.\n");
301    activeThreads = at_ptr;
302}
303
304template<class Impl>
305void
306DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
307{
308    DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
309    fetchQueue = fq_ptr;
310
311    // Create wire to write information to proper place in fetch queue.
312    toDecode = fetchQueue->getWire(0);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::initStage()
318{
319    // Setup PC and nextPC with initial state.
320    for (int tid = 0; tid < numThreads; tid++) {
321        PC[tid] = cpu->readPC(tid);
322        nextPC[tid] = cpu->readNextPC(tid);
323        nextNPC[tid] = cpu->readNextNPC(tid);
324    }
325
326    // Size of cache block.
327    cacheBlkSize = icachePort->peerBlockSize();
328
329    // Create mask to get rid of offset bits.
330    cacheBlkMask = (cacheBlkSize - 1);
331
332    for (int tid=0; tid < numThreads; tid++) {
333
334        fetchStatus[tid] = Running;
335
336        priorityList.push_back(tid);
337
338        memReq[tid] = NULL;
339
340        // Create space to store a cache line.
341        cacheData[tid] = new uint8_t[cacheBlkSize];
342        cacheDataPC[tid] = 0;
343        cacheDataValid[tid] = false;
344
345        stalls[tid].decode = false;
346        stalls[tid].rename = false;
347        stalls[tid].iew = false;
348        stalls[tid].commit = false;
349    }
350}
351
352template<class Impl>
353void
354DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
355{
356    unsigned tid = pkt->req->getThreadNum();
357
358    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
359
360    // Only change the status if it's still waiting on the icache access
361    // to return.
362    if (fetchStatus[tid] != IcacheWaitResponse ||
363        pkt->req != memReq[tid] ||
364        isSwitchedOut()) {
365        ++fetchIcacheSquashes;
366        delete pkt->req;
367        delete pkt;
368        return;
369    }
370
371    memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
372    cacheDataValid[tid] = true;
373
374    if (!drainPending) {
375        // Wake up the CPU (if it went to sleep and was waiting on
376        // this completion event).
377        cpu->wakeCPU();
378
379        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
380                tid);
381
382        switchToActive();
383    }
384
385    // Only switch to IcacheAccessComplete if we're not stalled as well.
386    if (checkStall(tid)) {
387        fetchStatus[tid] = Blocked;
388    } else {
389        fetchStatus[tid] = IcacheAccessComplete;
390    }
391
392    // Reset the mem req to NULL.
393    delete pkt->req;
394    delete pkt;
395    memReq[tid] = NULL;
396}
397
398template <class Impl>
399bool
400DefaultFetch<Impl>::drain()
401{
402    // Fetch is ready to drain at any time.
403    cpu->signalDrained();
404    drainPending = true;
405    return true;
406}
407
408template <class Impl>
409void
410DefaultFetch<Impl>::resume()
411{
412    drainPending = false;
413}
414
415template <class Impl>
416void
417DefaultFetch<Impl>::switchOut()
418{
419    switchedOut = true;
420    // Branch predictor needs to have its state cleared.
421    branchPred.switchOut();
422}
423
424template <class Impl>
425void
426DefaultFetch<Impl>::takeOverFrom()
427{
428    // Reset all state
429    for (int i = 0; i < Impl::MaxThreads; ++i) {
430        stalls[i].decode = 0;
431        stalls[i].rename = 0;
432        stalls[i].iew = 0;
433        stalls[i].commit = 0;
434        PC[i] = cpu->readPC(i);
435        nextPC[i] = cpu->readNextPC(i);
436#if ISA_HAS_DELAY_SLOT
437        nextNPC[i] = cpu->readNextNPC(i);
438#else
439        nextNPC[i] = nextPC[i] + sizeof(TheISA::MachInst);
440#endif
441        fetchStatus[i] = Running;
442    }
443    numInst = 0;
444    wroteToTimeBuffer = false;
445    _status = Inactive;
446    switchedOut = false;
447    interruptPending = false;
448    branchPred.takeOverFrom();
449}
450
451template <class Impl>
452void
453DefaultFetch<Impl>::wakeFromQuiesce()
454{
455    DPRINTF(Fetch, "Waking up from quiesce\n");
456    // Hopefully this is safe
457    // @todo: Allow other threads to wake from quiesce.
458    fetchStatus[0] = Running;
459}
460
461template <class Impl>
462inline void
463DefaultFetch<Impl>::switchToActive()
464{
465    if (_status == Inactive) {
466        DPRINTF(Activity, "Activating stage.\n");
467
468        cpu->activateStage(O3CPU::FetchIdx);
469
470        _status = Active;
471    }
472}
473
474template <class Impl>
475inline void
476DefaultFetch<Impl>::switchToInactive()
477{
478    if (_status == Active) {
479        DPRINTF(Activity, "Deactivating stage.\n");
480
481        cpu->deactivateStage(O3CPU::FetchIdx);
482
483        _status = Inactive;
484    }
485}
486
487template <class Impl>
488bool
489DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
490                                          Addr &next_NPC)
491{
492    // Do branch prediction check here.
493    // A bit of a misnomer...next_PC is actually the current PC until
494    // this function updates it.
495    bool predict_taken;
496
497    if (!inst->isControl()) {
498        next_PC  = next_NPC;
499        next_NPC = next_NPC + instSize;
500        inst->setPredTarg(next_PC, next_NPC);
501        inst->setPredTaken(false);
502        return false;
503    }
504
505    int tid = inst->threadNumber;
506    Addr pred_PC = next_PC;
507    predict_taken = branchPred.predict(inst, pred_PC, tid);
508
509/*    if (predict_taken) {
510        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken to %#x.\n",
511                tid, pred_PC);
512    } else {
513        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
514    }*/
515
516#if ISA_HAS_DELAY_SLOT
517    next_PC = next_NPC;
518    if (predict_taken)
519        next_NPC = pred_PC;
520    else
521        next_NPC += instSize;
522#else
523    if (predict_taken)
524        next_PC = pred_PC;
525    else
526        next_PC += instSize;
527    next_NPC = next_PC + instSize;
528#endif
529/*    DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
530            tid, next_PC, next_NPC);*/
531    inst->setPredTarg(next_PC, next_NPC);
532    inst->setPredTaken(predict_taken);
533
534    ++fetchedBranches;
535
536    if (predict_taken) {
537        ++predictedBranches;
538    }
539
540    return predict_taken;
541}
542
543template <class Impl>
544bool
545DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
546{
547    Fault fault = NoFault;
548
549    //AlphaDep
550    if (cacheBlocked) {
551        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
552                tid);
553        return false;
554    } else if (isSwitchedOut()) {
555        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
556                tid);
557        return false;
558    } else if (interruptPending && !(fetch_PC & 0x3)) {
559        // Hold off fetch from getting new instructions when:
560        // Cache is blocked, or
561        // while an interrupt is pending and we're not in PAL mode, or
562        // fetch is switched out.
563        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
564                tid);
565        return false;
566    }
567
568    // Align the fetch PC so it's at the start of a cache block.
569    Addr block_PC = icacheBlockAlignPC(fetch_PC);
570
571    // If we've already got the block, no need to try to fetch it again.
572    if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
573        return true;
574    }
575
576    // Setup the memReq to do a read of the first instruction's address.
577    // Set the appropriate read size and flags as well.
578    // Build request here.
579    RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
580                                     fetch_PC, cpu->readCpuId(), tid);
581
582    memReq[tid] = mem_req;
583
584    // Translate the instruction request.
585    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
586
587    // In the case of faults, the fetch stage may need to stall and wait
588    // for the ITB miss to be handled.
589
590    // If translation was successful, attempt to read the first
591    // instruction.
592    if (fault == NoFault) {
593#if 0
594        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
595            memReq[tid]->isUncacheable()) {
596            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
597                    "misspeculating path)!",
598                    memReq[tid]->paddr);
599            ret_fault = TheISA::genMachineCheckFault();
600            return false;
601        }
602#endif
603
604        // Build packet here.
605        PacketPtr data_pkt = new Packet(mem_req,
606                                        MemCmd::ReadReq, Packet::Broadcast);
607        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
608
609        cacheDataPC[tid] = block_PC;
610        cacheDataValid[tid] = false;
611
612        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
613
614        fetchedCacheLines++;
615
616        // Now do the timing access to see whether or not the instruction
617        // exists within the cache.
618        if (!icachePort->sendTiming(data_pkt)) {
619            if (data_pkt->result == Packet::BadAddress) {
620                fault = TheISA::genMachineCheckFault();
621                delete mem_req;
622                memReq[tid] = NULL;
623            }
624            assert(retryPkt == NULL);
625            assert(retryTid == -1);
626            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
627            fetchStatus[tid] = IcacheWaitRetry;
628            retryPkt = data_pkt;
629            retryTid = tid;
630            cacheBlocked = true;
631            return false;
632        }
633
634        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
635
636        lastIcacheStall[tid] = curTick;
637
638        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
639                "response.\n", tid);
640
641        fetchStatus[tid] = IcacheWaitResponse;
642    } else {
643        delete mem_req;
644        memReq[tid] = NULL;
645    }
646
647    ret_fault = fault;
648    return true;
649}
650
651template <class Impl>
652inline void
653DefaultFetch<Impl>::doSquash(const Addr &new_PC,
654        const Addr &new_NPC, unsigned tid)
655{
656    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
657            tid, new_PC, new_NPC);
658
659    PC[tid] = new_PC;
660    nextPC[tid] = new_NPC;
661    nextNPC[tid] = new_NPC + instSize;
662
663    // Clear the icache miss if it's outstanding.
664    if (fetchStatus[tid] == IcacheWaitResponse) {
665        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
666                tid);
667        memReq[tid] = NULL;
668    }
669
670    // Get rid of the retrying packet if it was from this thread.
671    if (retryTid == tid) {
672        assert(cacheBlocked);
673        cacheBlocked = false;
674        retryTid = -1;
675        delete retryPkt->req;
676        delete retryPkt;
677        retryPkt = NULL;
678    }
679
680    fetchStatus[tid] = Squashing;
681
682    ++fetchSquashCycles;
683}
684
685template<class Impl>
686void
687DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
688                                     const InstSeqNum &seq_num,
689                                     unsigned tid)
690{
691    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
692
693    doSquash(new_PC, new_NPC, tid);
694
695    // Tell the CPU to remove any instructions that are in flight between
696    // fetch and decode.
697    cpu->removeInstsUntil(seq_num, tid);
698}
699
700template<class Impl>
701bool
702DefaultFetch<Impl>::checkStall(unsigned tid) const
703{
704    bool ret_val = false;
705
706    if (cpu->contextSwitch) {
707        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
708        ret_val = true;
709    } else if (stalls[tid].decode) {
710        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
711        ret_val = true;
712    } else if (stalls[tid].rename) {
713        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
714        ret_val = true;
715    } else if (stalls[tid].iew) {
716        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
717        ret_val = true;
718    } else if (stalls[tid].commit) {
719        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
720        ret_val = true;
721    }
722
723    return ret_val;
724}
725
726template<class Impl>
727typename DefaultFetch<Impl>::FetchStatus
728DefaultFetch<Impl>::updateFetchStatus()
729{
730    //Check Running
731    std::list<unsigned>::iterator threads = activeThreads->begin();
732    std::list<unsigned>::iterator end = activeThreads->end();
733
734    while (threads != end) {
735        unsigned tid = *threads++;
736
737        if (fetchStatus[tid] == Running ||
738            fetchStatus[tid] == Squashing ||
739            fetchStatus[tid] == IcacheAccessComplete) {
740
741            if (_status == Inactive) {
742                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
743
744                if (fetchStatus[tid] == IcacheAccessComplete) {
745                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
746                            "completion\n",tid);
747                }
748
749                cpu->activateStage(O3CPU::FetchIdx);
750            }
751
752            return Active;
753        }
754    }
755
756    // Stage is switching from active to inactive, notify CPU of it.
757    if (_status == Active) {
758        DPRINTF(Activity, "Deactivating stage.\n");
759
760        cpu->deactivateStage(O3CPU::FetchIdx);
761    }
762
763    return Inactive;
764}
765
766template <class Impl>
767void
768DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
769                           const InstSeqNum &seq_num,
770                           bool squash_delay_slot, unsigned tid)
771{
772    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
773
774    doSquash(new_PC, new_NPC, tid);
775
776#if ISA_HAS_DELAY_SLOT
777    // Tell the CPU to remove any instructions that are not in the ROB.
778    cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
779#else
780    // Tell the CPU to remove any instructions that are not in the ROB.
781    cpu->removeInstsNotInROB(tid, true, 0);
782#endif
783}
784
785template <class Impl>
786void
787DefaultFetch<Impl>::tick()
788{
789    std::list<unsigned>::iterator threads = activeThreads->begin();
790    std::list<unsigned>::iterator end = activeThreads->end();
791    bool status_change = false;
792
793    wroteToTimeBuffer = false;
794
795    while (threads != end) {
796        unsigned tid = *threads++;
797
798        // Check the signals for each thread to determine the proper status
799        // for each thread.
800        bool updated_status = checkSignalsAndUpdate(tid);
801        status_change =  status_change || updated_status;
802    }
803
804    DPRINTF(Fetch, "Running stage.\n");
805
806    // Reset the number of the instruction we're fetching.
807    numInst = 0;
808
809#if FULL_SYSTEM
810    if (fromCommit->commitInfo[0].interruptPending) {
811        interruptPending = true;
812    }
813
814    if (fromCommit->commitInfo[0].clearInterrupt) {
815        interruptPending = false;
816    }
817#endif
818
819    for (threadFetched = 0; threadFetched < numFetchingThreads;
820         threadFetched++) {
821        // Fetch each of the actively fetching threads.
822        fetch(status_change);
823    }
824
825    // Record number of instructions fetched this cycle for distribution.
826    fetchNisnDist.sample(numInst);
827
828    if (status_change) {
829        // Change the fetch stage status if there was a status change.
830        _status = updateFetchStatus();
831    }
832
833    // If there was activity this cycle, inform the CPU of it.
834    if (wroteToTimeBuffer || cpu->contextSwitch) {
835        DPRINTF(Activity, "Activity this cycle.\n");
836
837        cpu->activityThisCycle();
838    }
839}
840
841template <class Impl>
842bool
843DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
844{
845    // Update the per thread stall statuses.
846    if (fromDecode->decodeBlock[tid]) {
847        stalls[tid].decode = true;
848    }
849
850    if (fromDecode->decodeUnblock[tid]) {
851        assert(stalls[tid].decode);
852        assert(!fromDecode->decodeBlock[tid]);
853        stalls[tid].decode = false;
854    }
855
856    if (fromRename->renameBlock[tid]) {
857        stalls[tid].rename = true;
858    }
859
860    if (fromRename->renameUnblock[tid]) {
861        assert(stalls[tid].rename);
862        assert(!fromRename->renameBlock[tid]);
863        stalls[tid].rename = false;
864    }
865
866    if (fromIEW->iewBlock[tid]) {
867        stalls[tid].iew = true;
868    }
869
870    if (fromIEW->iewUnblock[tid]) {
871        assert(stalls[tid].iew);
872        assert(!fromIEW->iewBlock[tid]);
873        stalls[tid].iew = false;
874    }
875
876    if (fromCommit->commitBlock[tid]) {
877        stalls[tid].commit = true;
878    }
879
880    if (fromCommit->commitUnblock[tid]) {
881        assert(stalls[tid].commit);
882        assert(!fromCommit->commitBlock[tid]);
883        stalls[tid].commit = false;
884    }
885
886    // Check squash signals from commit.
887    if (fromCommit->commitInfo[tid].squash) {
888
889        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
890                "from commit.\n",tid);
891
892#if ISA_HAS_DELAY_SLOT
893    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
894#else
895    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
896#endif
897        // In any case, squash.
898        squash(fromCommit->commitInfo[tid].nextPC,
899               fromCommit->commitInfo[tid].nextNPC,
900               doneSeqNum,
901               fromCommit->commitInfo[tid].squashDelaySlot,
902               tid);
903
904        // Also check if there's a mispredict that happened.
905        if (fromCommit->commitInfo[tid].branchMispredict) {
906            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
907                              fromCommit->commitInfo[tid].nextPC,
908                              fromCommit->commitInfo[tid].branchTaken,
909                              tid);
910        } else {
911            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
912                              tid);
913        }
914
915        return true;
916    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
917        // Update the branch predictor if it wasn't a squashed instruction
918        // that was broadcasted.
919        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
920    }
921
922    // Check ROB squash signals from commit.
923    if (fromCommit->commitInfo[tid].robSquashing) {
924        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
925
926        // Continue to squash.
927        fetchStatus[tid] = Squashing;
928
929        return true;
930    }
931
932    // Check squash signals from decode.
933    if (fromDecode->decodeInfo[tid].squash) {
934        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
935                "from decode.\n",tid);
936
937        // Update the branch predictor.
938        if (fromDecode->decodeInfo[tid].branchMispredict) {
939            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
940                              fromDecode->decodeInfo[tid].nextPC,
941                              fromDecode->decodeInfo[tid].branchTaken,
942                              tid);
943        } else {
944            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
945                              tid);
946        }
947
948        if (fetchStatus[tid] != Squashing) {
949
950#if ISA_HAS_DELAY_SLOT
951            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
952#else
953            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
954#endif
955            DPRINTF(Fetch, "Squashing from decode with PC = %#x, NPC = %#x\n",
956                    fromDecode->decodeInfo[tid].nextPC,
957                    fromDecode->decodeInfo[tid].nextNPC);
958            // Squash unless we're already squashing
959            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
960                             fromDecode->decodeInfo[tid].nextNPC,
961                             doneSeqNum,
962                             tid);
963
964            return true;
965        }
966    }
967
968    if (checkStall(tid) &&
969        fetchStatus[tid] != IcacheWaitResponse &&
970        fetchStatus[tid] != IcacheWaitRetry) {
971        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
972
973        fetchStatus[tid] = Blocked;
974
975        return true;
976    }
977
978    if (fetchStatus[tid] == Blocked ||
979        fetchStatus[tid] == Squashing) {
980        // Switch status to running if fetch isn't being told to block or
981        // squash this cycle.
982        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
983                tid);
984
985        fetchStatus[tid] = Running;
986
987        return true;
988    }
989
990    // If we've reached this point, we have not gotten any signals that
991    // cause fetch to change its status.  Fetch remains the same as before.
992    return false;
993}
994
995template<class Impl>
996void
997DefaultFetch<Impl>::fetch(bool &status_change)
998{
999    //////////////////////////////////////////
1000    // Start actual fetch
1001    //////////////////////////////////////////
1002    int tid = getFetchingThread(fetchPolicy);
1003
1004    if (tid == -1 || drainPending) {
1005        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1006
1007        // Breaks looping condition in tick()
1008        threadFetched = numFetchingThreads;
1009        return;
1010    }
1011
1012    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1013
1014    // The current PC.
1015    Addr &fetch_PC = PC[tid];
1016
1017    Addr &fetch_NPC = nextPC[tid];
1018
1019    // Fault code for memory access.
1020    Fault fault = NoFault;
1021
1022    // If returning from the delay of a cache miss, then update the status
1023    // to running, otherwise do the cache access.  Possibly move this up
1024    // to tick() function.
1025    if (fetchStatus[tid] == IcacheAccessComplete) {
1026        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1027                tid);
1028
1029        fetchStatus[tid] = Running;
1030        status_change = true;
1031    } else if (fetchStatus[tid] == Running) {
1032        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1033                "instruction, starting at PC %08p.\n",
1034                tid, fetch_PC);
1035
1036        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1037        if (!fetch_success) {
1038            if (cacheBlocked) {
1039                ++icacheStallCycles;
1040            } else {
1041                ++fetchMiscStallCycles;
1042            }
1043            return;
1044        }
1045    } else {
1046        if (fetchStatus[tid] == Idle) {
1047            ++fetchIdleCycles;
1048            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1049        } else if (fetchStatus[tid] == Blocked) {
1050            ++fetchBlockedCycles;
1051            DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1052        } else if (fetchStatus[tid] == Squashing) {
1053            ++fetchSquashCycles;
1054            DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1055        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1056            ++icacheStallCycles;
1057            DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1058        }
1059
1060        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1061        // fetch should do nothing.
1062        return;
1063    }
1064
1065    ++fetchCycles;
1066
1067    // If we had a stall due to an icache miss, then return.
1068    if (fetchStatus[tid] == IcacheWaitResponse) {
1069        ++icacheStallCycles;
1070        status_change = true;
1071        return;
1072    }
1073
1074    Addr next_PC = fetch_PC;
1075    Addr next_NPC = fetch_NPC;
1076
1077    InstSeqNum inst_seq;
1078    MachInst inst;
1079    ExtMachInst ext_inst;
1080    // @todo: Fix this hack.
1081    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1082
1083    if (fault == NoFault) {
1084        // If the read of the first instruction was successful, then grab the
1085        // instructions from the rest of the cache line and put them into the
1086        // queue heading to decode.
1087
1088        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1089                "decode.\n",tid);
1090
1091        // Need to keep track of whether or not a predicted branch
1092        // ended this fetch block.
1093        bool predicted_branch = false;
1094
1095        for (;
1096             offset < cacheBlkSize &&
1097                 numInst < fetchWidth &&
1098                 !predicted_branch;
1099             ++numInst) {
1100
1101            // If we're branching after this instruction, quite fetching
1102            // from the same block then.
1103            predicted_branch =
1104                (fetch_PC + sizeof(TheISA::MachInst) != fetch_NPC);
1105            if (predicted_branch) {
1106                DPRINTF(Fetch, "Branch detected with PC = %#x, NPC = %#x\n",
1107                        fetch_PC, fetch_NPC);
1108            }
1109
1110
1111            // Get a sequence number.
1112            inst_seq = cpu->getAndIncrementInstSeq();
1113
1114            // Make sure this is a valid index.
1115            assert(offset <= cacheBlkSize - instSize);
1116
1117            // Get the instruction from the array of the cache line.
1118            inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1119                        (&cacheData[tid][offset]));
1120
1121            predecoder.setTC(cpu->thread[tid]->getTC());
1122            predecoder.moreBytes(fetch_PC, 0, inst);
1123
1124            ext_inst = predecoder.getExtMachInst();
1125
1126            // Create a new DynInst from the instruction fetched.
1127            DynInstPtr instruction = new DynInst(ext_inst,
1128                                                 fetch_PC, fetch_NPC,
1129                                                 next_PC, next_NPC,
1130                                                 inst_seq, cpu);
1131            instruction->setTid(tid);
1132
1133            instruction->setASID(tid);
1134
1135            instruction->setThreadState(cpu->thread[tid]);
1136
1137            DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1138                    "[sn:%lli]\n",
1139                    tid, instruction->readPC(), inst_seq);
1140
1141            //DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1142
1143            DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1144                    tid, instruction->staticInst->disassemble(fetch_PC));
1145
1146            instruction->traceData =
1147                Trace::getInstRecord(curTick, cpu->tcBase(tid),
1148                                     instruction->staticInst,
1149                                     instruction->readPC());
1150
1151            ///FIXME This needs to be more robust in dealing with delay slots
1152#if !ISA_HAS_DELAY_SLOT
1153            predicted_branch |=
1154#endif
1155            lookupAndUpdateNextPC(instruction, next_PC, next_NPC);
1156            predicted_branch |= (next_PC != fetch_NPC);
1157
1158            // Add instruction to the CPU's list of instructions.
1159            instruction->setInstListIt(cpu->addInst(instruction));
1160
1161            // Write the instruction to the first slot in the queue
1162            // that heads to decode.
1163            toDecode->insts[numInst] = instruction;
1164
1165            toDecode->size++;
1166
1167            // Increment stat of fetched instructions.
1168            ++fetchedInsts;
1169
1170            // Move to the next instruction, unless we have a branch.
1171            fetch_PC = next_PC;
1172            fetch_NPC = next_NPC;
1173
1174            if (instruction->isQuiesce()) {
1175                DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1176                        curTick);
1177                fetchStatus[tid] = QuiescePending;
1178                ++numInst;
1179                status_change = true;
1180                break;
1181            }
1182
1183            offset += instSize;
1184        }
1185
1186        if (offset >= cacheBlkSize) {
1187            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1188                    "block.\n", tid);
1189        } else if (numInst >= fetchWidth) {
1190            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1191                    "for this cycle.\n", tid);
1192        } else if (predicted_branch) {
1193            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1194                    "instruction encountered.\n", tid);
1195        }
1196    }
1197
1198    if (numInst > 0) {
1199        wroteToTimeBuffer = true;
1200    }
1201
1202    // Now that fetching is completed, update the PC to signify what the next
1203    // cycle will be.
1204    if (fault == NoFault) {
1205        PC[tid] = next_PC;
1206        nextPC[tid] = next_NPC;
1207        nextNPC[tid] = next_NPC + instSize;
1208#if ISA_HAS_DELAY_SLOT
1209        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1210#else
1211        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, next_PC);
1212#endif
1213    } else {
1214        // We shouldn't be in an icache miss and also have a fault (an ITB
1215        // miss)
1216        if (fetchStatus[tid] == IcacheWaitResponse) {
1217            panic("Fetch should have exited prior to this!");
1218        }
1219
1220        // Send the fault to commit.  This thread will not do anything
1221        // until commit handles the fault.  The only other way it can
1222        // wake up is if a squash comes along and changes the PC.
1223#if FULL_SYSTEM
1224        assert(numInst != fetchWidth);
1225        // Get a sequence number.
1226        inst_seq = cpu->getAndIncrementInstSeq();
1227        // We will use a nop in order to carry the fault.
1228        ext_inst = TheISA::NoopMachInst;
1229
1230        // Create a new DynInst from the dummy nop.
1231        DynInstPtr instruction = new DynInst(ext_inst,
1232                                             fetch_PC, fetch_NPC,
1233                                             next_PC, next_NPC,
1234                                             inst_seq, cpu);
1235        instruction->setPredTarg(next_PC, next_NPC);
1236        instruction->setTid(tid);
1237
1238        instruction->setASID(tid);
1239
1240        instruction->setThreadState(cpu->thread[tid]);
1241
1242        instruction->traceData = NULL;
1243
1244        instruction->setInstListIt(cpu->addInst(instruction));
1245
1246        instruction->fault = fault;
1247
1248        toDecode->insts[numInst] = instruction;
1249        toDecode->size++;
1250
1251        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1252
1253        fetchStatus[tid] = TrapPending;
1254        status_change = true;
1255#else // !FULL_SYSTEM
1256        fetchStatus[tid] = TrapPending;
1257        status_change = true;
1258
1259#endif // FULL_SYSTEM
1260        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1261                tid, fault->name(), PC[tid]);
1262    }
1263}
1264
1265template<class Impl>
1266void
1267DefaultFetch<Impl>::recvRetry()
1268{
1269    if (retryPkt != NULL) {
1270        assert(cacheBlocked);
1271        assert(retryTid != -1);
1272        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1273
1274        if (icachePort->sendTiming(retryPkt)) {
1275            fetchStatus[retryTid] = IcacheWaitResponse;
1276            retryPkt = NULL;
1277            retryTid = -1;
1278            cacheBlocked = false;
1279        }
1280    } else {
1281        assert(retryTid == -1);
1282        // Access has been squashed since it was sent out.  Just clear
1283        // the cache being blocked.
1284        cacheBlocked = false;
1285    }
1286}
1287
1288///////////////////////////////////////
1289//                                   //
1290//  SMT FETCH POLICY MAINTAINED HERE //
1291//                                   //
1292///////////////////////////////////////
1293template<class Impl>
1294int
1295DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1296{
1297    if (numThreads > 1) {
1298        switch (fetch_priority) {
1299
1300          case SingleThread:
1301            return 0;
1302
1303          case RoundRobin:
1304            return roundRobin();
1305
1306          case IQ:
1307            return iqCount();
1308
1309          case LSQ:
1310            return lsqCount();
1311
1312          case Branch:
1313            return branchCount();
1314
1315          default:
1316            return -1;
1317        }
1318    } else {
1319        std::list<unsigned>::iterator thread = activeThreads->begin();
1320        assert(thread != activeThreads->end());
1321        int tid = *thread;
1322
1323        if (fetchStatus[tid] == Running ||
1324            fetchStatus[tid] == IcacheAccessComplete ||
1325            fetchStatus[tid] == Idle) {
1326            return tid;
1327        } else {
1328            return -1;
1329        }
1330    }
1331
1332}
1333
1334
1335template<class Impl>
1336int
1337DefaultFetch<Impl>::roundRobin()
1338{
1339    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1340    std::list<unsigned>::iterator end      = priorityList.end();
1341
1342    int high_pri;
1343
1344    while (pri_iter != end) {
1345        high_pri = *pri_iter;
1346
1347        assert(high_pri <= numThreads);
1348
1349        if (fetchStatus[high_pri] == Running ||
1350            fetchStatus[high_pri] == IcacheAccessComplete ||
1351            fetchStatus[high_pri] == Idle) {
1352
1353            priorityList.erase(pri_iter);
1354            priorityList.push_back(high_pri);
1355
1356            return high_pri;
1357        }
1358
1359        pri_iter++;
1360    }
1361
1362    return -1;
1363}
1364
1365template<class Impl>
1366int
1367DefaultFetch<Impl>::iqCount()
1368{
1369    std::priority_queue<unsigned> PQ;
1370
1371    std::list<unsigned>::iterator threads = activeThreads->begin();
1372    std::list<unsigned>::iterator end = activeThreads->end();
1373
1374    while (threads != end) {
1375        unsigned tid = *threads++;
1376
1377        PQ.push(fromIEW->iewInfo[tid].iqCount);
1378    }
1379
1380    while (!PQ.empty()) {
1381
1382        unsigned high_pri = PQ.top();
1383
1384        if (fetchStatus[high_pri] == Running ||
1385            fetchStatus[high_pri] == IcacheAccessComplete ||
1386            fetchStatus[high_pri] == Idle)
1387            return high_pri;
1388        else
1389            PQ.pop();
1390
1391    }
1392
1393    return -1;
1394}
1395
1396template<class Impl>
1397int
1398DefaultFetch<Impl>::lsqCount()
1399{
1400    std::priority_queue<unsigned> PQ;
1401
1402    std::list<unsigned>::iterator threads = activeThreads->begin();
1403    std::list<unsigned>::iterator end = activeThreads->end();
1404
1405    while (threads != end) {
1406        unsigned tid = *threads++;
1407
1408        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1409    }
1410
1411    while (!PQ.empty()) {
1412
1413        unsigned high_pri = PQ.top();
1414
1415        if (fetchStatus[high_pri] == Running ||
1416            fetchStatus[high_pri] == IcacheAccessComplete ||
1417            fetchStatus[high_pri] == Idle)
1418            return high_pri;
1419        else
1420            PQ.pop();
1421
1422    }
1423
1424    return -1;
1425}
1426
1427template<class Impl>
1428int
1429DefaultFetch<Impl>::branchCount()
1430{
1431    std::list<unsigned>::iterator thread = activeThreads->begin();
1432    assert(thread != activeThreads->end());
1433    unsigned tid = *thread;
1434
1435    panic("Branch Count Fetch policy unimplemented\n");
1436    return 0 * tid;
1437}
1438