fetch_impl.hh revision 3521:0b0b3551def0
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58    panic("DefaultFetch doesn't expect recvAtomic callback!");
59    return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66    warn("Default fetch doesn't update it's state from a functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73    if (status == RangeChange)
74        return;
75
76    panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
82{
83    if (pkt->isResponse()) {
84        fetch->processCacheCompletion(pkt);
85    }
86    //else Snooped a coherence request, just return
87    return true;
88}
89
90template<class Impl>
91void
92DefaultFetch<Impl>::IcachePort::recvRetry()
93{
94    fetch->recvRetry();
95}
96
97template<class Impl>
98DefaultFetch<Impl>::DefaultFetch(Params *params)
99    : branchPred(params),
100      decodeToFetchDelay(params->decodeToFetchDelay),
101      renameToFetchDelay(params->renameToFetchDelay),
102      iewToFetchDelay(params->iewToFetchDelay),
103      commitToFetchDelay(params->commitToFetchDelay),
104      fetchWidth(params->fetchWidth),
105      cacheBlocked(false),
106      retryPkt(NULL),
107      retryTid(-1),
108      numThreads(params->numberOfThreads),
109      numFetchingThreads(params->smtNumFetchingThreads),
110      interruptPending(false),
111      drainPending(false),
112      switchedOut(false)
113{
114    if (numThreads > Impl::MaxThreads)
115        fatal("numThreads is not a valid value\n");
116
117    // Set fetch stage's status to inactive.
118    _status = Inactive;
119
120    std::string policy = params->smtFetchPolicy;
121
122    // Convert string to lowercase
123    std::transform(policy.begin(), policy.end(), policy.begin(),
124                   (int(*)(int)) tolower);
125
126    // Figure out fetch policy
127    if (policy == "singlethread") {
128        fetchPolicy = SingleThread;
129        if (numThreads > 1)
130            panic("Invalid Fetch Policy for a SMT workload.");
131    } else if (policy == "roundrobin") {
132        fetchPolicy = RoundRobin;
133        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
134    } else if (policy == "branch") {
135        fetchPolicy = Branch;
136        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
137    } else if (policy == "iqcount") {
138        fetchPolicy = IQ;
139        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
140    } else if (policy == "lsqcount") {
141        fetchPolicy = LSQ;
142        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
143    } else {
144        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
145              " RoundRobin,LSQcount,IQcount}\n");
146    }
147
148    // Size of cache block.
149    cacheBlkSize = 64;
150
151    // Create mask to get rid of offset bits.
152    cacheBlkMask = (cacheBlkSize - 1);
153
154    for (int tid=0; tid < numThreads; tid++) {
155
156        fetchStatus[tid] = Running;
157
158        priorityList.push_back(tid);
159
160        memReq[tid] = NULL;
161
162        // Create space to store a cache line.
163        cacheData[tid] = new uint8_t[cacheBlkSize];
164        cacheDataPC[tid] = 0;
165        cacheDataValid[tid] = false;
166
167        delaySlotInfo[tid].branchSeqNum = -1;
168        delaySlotInfo[tid].numInsts = 0;
169        delaySlotInfo[tid].targetAddr = 0;
170        delaySlotInfo[tid].targetReady = false;
171
172        stalls[tid].decode = false;
173        stalls[tid].rename = false;
174        stalls[tid].iew = false;
175        stalls[tid].commit = false;
176    }
177
178    // Get the size of an instruction.
179    instSize = sizeof(TheISA::MachInst);
180}
181
182template <class Impl>
183std::string
184DefaultFetch<Impl>::name() const
185{
186    return cpu->name() + ".fetch";
187}
188
189template <class Impl>
190void
191DefaultFetch<Impl>::regStats()
192{
193    icacheStallCycles
194        .name(name() + ".icacheStallCycles")
195        .desc("Number of cycles fetch is stalled on an Icache miss")
196        .prereq(icacheStallCycles);
197
198    fetchedInsts
199        .name(name() + ".Insts")
200        .desc("Number of instructions fetch has processed")
201        .prereq(fetchedInsts);
202
203    fetchedBranches
204        .name(name() + ".Branches")
205        .desc("Number of branches that fetch encountered")
206        .prereq(fetchedBranches);
207
208    predictedBranches
209        .name(name() + ".predictedBranches")
210        .desc("Number of branches that fetch has predicted taken")
211        .prereq(predictedBranches);
212
213    fetchCycles
214        .name(name() + ".Cycles")
215        .desc("Number of cycles fetch has run and was not squashing or"
216              " blocked")
217        .prereq(fetchCycles);
218
219    fetchSquashCycles
220        .name(name() + ".SquashCycles")
221        .desc("Number of cycles fetch has spent squashing")
222        .prereq(fetchSquashCycles);
223
224    fetchIdleCycles
225        .name(name() + ".IdleCycles")
226        .desc("Number of cycles fetch was idle")
227        .prereq(fetchIdleCycles);
228
229    fetchBlockedCycles
230        .name(name() + ".BlockedCycles")
231        .desc("Number of cycles fetch has spent blocked")
232        .prereq(fetchBlockedCycles);
233
234    fetchedCacheLines
235        .name(name() + ".CacheLines")
236        .desc("Number of cache lines fetched")
237        .prereq(fetchedCacheLines);
238
239    fetchMiscStallCycles
240        .name(name() + ".MiscStallCycles")
241        .desc("Number of cycles fetch has spent waiting on interrupts, or "
242              "bad addresses, or out of MSHRs")
243        .prereq(fetchMiscStallCycles);
244
245    fetchIcacheSquashes
246        .name(name() + ".IcacheSquashes")
247        .desc("Number of outstanding Icache misses that were squashed")
248        .prereq(fetchIcacheSquashes);
249
250    fetchNisnDist
251        .init(/* base value */ 0,
252              /* last value */ fetchWidth,
253              /* bucket size */ 1)
254        .name(name() + ".rateDist")
255        .desc("Number of instructions fetched each cycle (Total)")
256        .flags(Stats::pdf);
257
258    idleRate
259        .name(name() + ".idleRate")
260        .desc("Percent of cycles fetch was idle")
261        .prereq(idleRate);
262    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
263
264    branchRate
265        .name(name() + ".branchRate")
266        .desc("Number of branch fetches per cycle")
267        .flags(Stats::total);
268    branchRate = fetchedBranches / cpu->numCycles;
269
270    fetchRate
271        .name(name() + ".rate")
272        .desc("Number of inst fetches per cycle")
273        .flags(Stats::total);
274    fetchRate = fetchedInsts / cpu->numCycles;
275
276    branchPred.regStats();
277}
278
279template<class Impl>
280void
281DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
282{
283    DPRINTF(Fetch, "Setting the CPU pointer.\n");
284    cpu = cpu_ptr;
285
286    // Name is finally available, so create the port.
287    icachePort = new IcachePort(this);
288
289#if USE_CHECKER
290    if (cpu->checker) {
291        cpu->checker->setIcachePort(icachePort);
292    }
293#endif
294
295    // Schedule fetch to get the correct PC from the CPU
296    // scheduleFetchStartupEvent(1);
297
298    // Fetch needs to start fetching instructions at the very beginning,
299    // so it must start up in active state.
300    switchToActive();
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
306{
307    DPRINTF(Fetch, "Setting the time buffer pointer.\n");
308    timeBuffer = time_buffer;
309
310    // Create wires to get information from proper places in time buffer.
311    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
312    fromRename = timeBuffer->getWire(-renameToFetchDelay);
313    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
314    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
315}
316
317template<class Impl>
318void
319DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
320{
321    DPRINTF(Fetch, "Setting active threads list pointer.\n");
322    activeThreads = at_ptr;
323}
324
325template<class Impl>
326void
327DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
328{
329    DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
330    fetchQueue = fq_ptr;
331
332    // Create wire to write information to proper place in fetch queue.
333    toDecode = fetchQueue->getWire(0);
334}
335
336template<class Impl>
337void
338DefaultFetch<Impl>::initStage()
339{
340    // Setup PC and nextPC with initial state.
341    for (int tid = 0; tid < numThreads; tid++) {
342        PC[tid] = cpu->readPC(tid);
343        nextPC[tid] = cpu->readNextPC(tid);
344#if ISA_HAS_DELAY_SLOT
345        nextNPC[tid] = cpu->readNextNPC(tid);
346#endif
347    }
348}
349
350template<class Impl>
351void
352DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
353{
354    unsigned tid = pkt->req->getThreadNum();
355
356    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
357
358    // Only change the status if it's still waiting on the icache access
359    // to return.
360    if (fetchStatus[tid] != IcacheWaitResponse ||
361        pkt->req != memReq[tid] ||
362        isSwitchedOut()) {
363        ++fetchIcacheSquashes;
364        delete pkt->req;
365        delete pkt;
366        return;
367    }
368
369    memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
370    cacheDataValid[tid] = true;
371
372    if (!drainPending) {
373        // Wake up the CPU (if it went to sleep and was waiting on
374        // this completion event).
375        cpu->wakeCPU();
376
377        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
378                tid);
379
380        switchToActive();
381    }
382
383    // Only switch to IcacheAccessComplete if we're not stalled as well.
384    if (checkStall(tid)) {
385        fetchStatus[tid] = Blocked;
386    } else {
387        fetchStatus[tid] = IcacheAccessComplete;
388    }
389
390    // Reset the mem req to NULL.
391    delete pkt->req;
392    delete pkt;
393    memReq[tid] = NULL;
394}
395
396template <class Impl>
397bool
398DefaultFetch<Impl>::drain()
399{
400    // Fetch is ready to drain at any time.
401    cpu->signalDrained();
402    drainPending = true;
403    return true;
404}
405
406template <class Impl>
407void
408DefaultFetch<Impl>::resume()
409{
410    drainPending = false;
411}
412
413template <class Impl>
414void
415DefaultFetch<Impl>::switchOut()
416{
417    switchedOut = true;
418    // Branch predictor needs to have its state cleared.
419    branchPred.switchOut();
420}
421
422template <class Impl>
423void
424DefaultFetch<Impl>::takeOverFrom()
425{
426    // Reset all state
427    for (int i = 0; i < Impl::MaxThreads; ++i) {
428        stalls[i].decode = 0;
429        stalls[i].rename = 0;
430        stalls[i].iew = 0;
431        stalls[i].commit = 0;
432        PC[i] = cpu->readPC(i);
433        nextPC[i] = cpu->readNextPC(i);
434#if ISA_HAS_DELAY_SLOT
435        nextNPC[i] = cpu->readNextNPC(i);
436        delaySlotInfo[i].branchSeqNum = -1;
437        delaySlotInfo[i].numInsts = 0;
438        delaySlotInfo[i].targetAddr = 0;
439        delaySlotInfo[i].targetReady = false;
440#endif
441        fetchStatus[i] = Running;
442    }
443    numInst = 0;
444    wroteToTimeBuffer = false;
445    _status = Inactive;
446    switchedOut = false;
447    interruptPending = false;
448    branchPred.takeOverFrom();
449}
450
451template <class Impl>
452void
453DefaultFetch<Impl>::wakeFromQuiesce()
454{
455    DPRINTF(Fetch, "Waking up from quiesce\n");
456    // Hopefully this is safe
457    // @todo: Allow other threads to wake from quiesce.
458    fetchStatus[0] = Running;
459}
460
461template <class Impl>
462inline void
463DefaultFetch<Impl>::switchToActive()
464{
465    if (_status == Inactive) {
466        DPRINTF(Activity, "Activating stage.\n");
467
468        cpu->activateStage(O3CPU::FetchIdx);
469
470        _status = Active;
471    }
472}
473
474template <class Impl>
475inline void
476DefaultFetch<Impl>::switchToInactive()
477{
478    if (_status == Active) {
479        DPRINTF(Activity, "Deactivating stage.\n");
480
481        cpu->deactivateStage(O3CPU::FetchIdx);
482
483        _status = Inactive;
484    }
485}
486
487template <class Impl>
488bool
489DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
490                                          Addr &next_NPC)
491{
492    // Do branch prediction check here.
493    // A bit of a misnomer...next_PC is actually the current PC until
494    // this function updates it.
495    bool predict_taken;
496
497    if (!inst->isControl()) {
498#if ISA_HAS_DELAY_SLOT
499        Addr cur_PC = next_PC;
500        next_PC  = cur_PC + instSize;      //next_NPC;
501        next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
502        inst->setPredTarg(next_NPC);
503#else
504        next_PC = next_PC + instSize;
505        inst->setPredTarg(next_PC);
506#endif
507        return false;
508    }
509
510    int tid = inst->threadNumber;
511#if ISA_HAS_DELAY_SLOT
512    Addr pred_PC = next_PC;
513    predict_taken = branchPred.predict(inst, pred_PC, tid);
514
515    if (predict_taken) {
516        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
517    } else {
518        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
519    }
520
521    if (predict_taken) {
522        next_PC = next_NPC;
523        next_NPC = pred_PC;
524
525        // Update delay slot info
526        ++delaySlotInfo[tid].numInsts;
527        delaySlotInfo[tid].targetAddr = pred_PC;
528        DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
529                delaySlotInfo[tid].numInsts);
530    } else { // !predict_taken
531        if (inst->isCondDelaySlot()) {
532            next_PC = pred_PC;
533            // The delay slot is skipped here if there is on
534            // prediction
535        } else {
536            next_PC = next_NPC;
537            // No need to declare a delay slot here since
538            // there is no for the pred. target to jump
539        }
540
541        next_NPC = next_NPC + instSize;
542    }
543#else
544    predict_taken = branchPred.predict(inst, next_PC, tid);
545#endif
546
547    ++fetchedBranches;
548
549    if (predict_taken) {
550        ++predictedBranches;
551    }
552
553    return predict_taken;
554}
555
556template <class Impl>
557bool
558DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
559{
560    Fault fault = NoFault;
561
562    //AlphaDep
563    if (cacheBlocked || isSwitchedOut() ||
564            (interruptPending && (fetch_PC & 0x3))) {
565        // Hold off fetch from getting new instructions when:
566        // Cache is blocked, or
567        // while an interrupt is pending and we're not in PAL mode, or
568        // fetch is switched out.
569        return false;
570    }
571
572    // Align the fetch PC so it's at the start of a cache block.
573    fetch_PC = icacheBlockAlignPC(fetch_PC);
574
575    // If we've already got the block, no need to try to fetch it again.
576    if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
577        return true;
578    }
579
580    // Setup the memReq to do a read of the first instruction's address.
581    // Set the appropriate read size and flags as well.
582    // Build request here.
583    RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, 0,
584                                     fetch_PC, cpu->readCpuId(), tid);
585
586    memReq[tid] = mem_req;
587
588    // Translate the instruction request.
589    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
590
591    // In the case of faults, the fetch stage may need to stall and wait
592    // for the ITB miss to be handled.
593
594    // If translation was successful, attempt to read the first
595    // instruction.
596    if (fault == NoFault) {
597#if 0
598        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
599            memReq[tid]->isUncacheable()) {
600            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
601                    "misspeculating path)!",
602                    memReq[tid]->paddr);
603            ret_fault = TheISA::genMachineCheckFault();
604            return false;
605        }
606#endif
607
608        // Build packet here.
609        PacketPtr data_pkt = new Packet(mem_req,
610                                        Packet::ReadReq, Packet::Broadcast);
611        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
612
613        cacheDataPC[tid] = fetch_PC;
614        cacheDataValid[tid] = false;
615
616        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
617
618        fetchedCacheLines++;
619
620        // Now do the timing access to see whether or not the instruction
621        // exists within the cache.
622        if (!icachePort->sendTiming(data_pkt)) {
623            if (data_pkt->result == Packet::BadAddress) {
624                fault = TheISA::genMachineCheckFault();
625                delete mem_req;
626                memReq[tid] = NULL;
627            }
628            assert(retryPkt == NULL);
629            assert(retryTid == -1);
630            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
631            fetchStatus[tid] = IcacheWaitRetry;
632            retryPkt = data_pkt;
633            retryTid = tid;
634            cacheBlocked = true;
635            return false;
636        }
637
638        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
639
640        lastIcacheStall[tid] = curTick;
641
642        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
643                "response.\n", tid);
644
645        fetchStatus[tid] = IcacheWaitResponse;
646    } else {
647        delete mem_req;
648        memReq[tid] = NULL;
649    }
650
651    ret_fault = fault;
652    return true;
653}
654
655template <class Impl>
656inline void
657DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
658{
659    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
660            tid, new_PC);
661
662    PC[tid] = new_PC;
663    nextPC[tid] = new_PC + instSize;
664    nextNPC[tid] = new_PC + (2 * instSize);
665
666    // Clear the icache miss if it's outstanding.
667    if (fetchStatus[tid] == IcacheWaitResponse) {
668        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
669                tid);
670        memReq[tid] = NULL;
671    }
672
673    // Get rid of the retrying packet if it was from this thread.
674    if (retryTid == tid) {
675        assert(cacheBlocked);
676        cacheBlocked = false;
677        retryTid = -1;
678        delete retryPkt->req;
679        delete retryPkt;
680        retryPkt = NULL;
681    }
682
683    fetchStatus[tid] = Squashing;
684
685    ++fetchSquashCycles;
686}
687
688template<class Impl>
689void
690DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
691                                     const InstSeqNum &seq_num,
692                                     unsigned tid)
693{
694    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
695
696    doSquash(new_PC, tid);
697
698#if ISA_HAS_DELAY_SLOT
699    if (seq_num <=  delaySlotInfo[tid].branchSeqNum) {
700        delaySlotInfo[tid].numInsts = 0;
701        delaySlotInfo[tid].targetAddr = 0;
702        delaySlotInfo[tid].targetReady = false;
703    }
704#endif
705
706    // Tell the CPU to remove any instructions that are in flight between
707    // fetch and decode.
708    cpu->removeInstsUntil(seq_num, tid);
709}
710
711template<class Impl>
712bool
713DefaultFetch<Impl>::checkStall(unsigned tid) const
714{
715    bool ret_val = false;
716
717    if (cpu->contextSwitch) {
718        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
719        ret_val = true;
720    } else if (stalls[tid].decode) {
721        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
722        ret_val = true;
723    } else if (stalls[tid].rename) {
724        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
725        ret_val = true;
726    } else if (stalls[tid].iew) {
727        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
728        ret_val = true;
729    } else if (stalls[tid].commit) {
730        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
731        ret_val = true;
732    }
733
734    return ret_val;
735}
736
737template<class Impl>
738typename DefaultFetch<Impl>::FetchStatus
739DefaultFetch<Impl>::updateFetchStatus()
740{
741    //Check Running
742    std::list<unsigned>::iterator threads = (*activeThreads).begin();
743
744    while (threads != (*activeThreads).end()) {
745
746        unsigned tid = *threads++;
747
748        if (fetchStatus[tid] == Running ||
749            fetchStatus[tid] == Squashing ||
750            fetchStatus[tid] == IcacheAccessComplete) {
751
752            if (_status == Inactive) {
753                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
754
755                if (fetchStatus[tid] == IcacheAccessComplete) {
756                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
757                            "completion\n",tid);
758                }
759
760                cpu->activateStage(O3CPU::FetchIdx);
761            }
762
763            return Active;
764        }
765    }
766
767    // Stage is switching from active to inactive, notify CPU of it.
768    if (_status == Active) {
769        DPRINTF(Activity, "Deactivating stage.\n");
770
771        cpu->deactivateStage(O3CPU::FetchIdx);
772    }
773
774    return Inactive;
775}
776
777template <class Impl>
778void
779DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
780                           bool squash_delay_slot, unsigned tid)
781{
782    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
783
784    doSquash(new_PC, tid);
785
786#if ISA_HAS_DELAY_SLOT
787    if (seq_num <=  delaySlotInfo[tid].branchSeqNum) {
788        delaySlotInfo[tid].numInsts = 0;
789        delaySlotInfo[tid].targetAddr = 0;
790        delaySlotInfo[tid].targetReady = false;
791    }
792
793    // Tell the CPU to remove any instructions that are not in the ROB.
794    cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
795#else
796    // Tell the CPU to remove any instructions that are not in the ROB.
797    cpu->removeInstsNotInROB(tid, true, 0);
798#endif
799}
800
801template <class Impl>
802void
803DefaultFetch<Impl>::tick()
804{
805    std::list<unsigned>::iterator threads = (*activeThreads).begin();
806    bool status_change = false;
807
808    wroteToTimeBuffer = false;
809
810    while (threads != (*activeThreads).end()) {
811        unsigned tid = *threads++;
812
813        // Check the signals for each thread to determine the proper status
814        // for each thread.
815        bool updated_status = checkSignalsAndUpdate(tid);
816        status_change =  status_change || updated_status;
817    }
818
819    DPRINTF(Fetch, "Running stage.\n");
820
821    // Reset the number of the instruction we're fetching.
822    numInst = 0;
823
824#if FULL_SYSTEM
825    if (fromCommit->commitInfo[0].interruptPending) {
826        interruptPending = true;
827    }
828
829    if (fromCommit->commitInfo[0].clearInterrupt) {
830        interruptPending = false;
831    }
832#endif
833
834    for (threadFetched = 0; threadFetched < numFetchingThreads;
835         threadFetched++) {
836        // Fetch each of the actively fetching threads.
837        fetch(status_change);
838    }
839
840    // Record number of instructions fetched this cycle for distribution.
841    fetchNisnDist.sample(numInst);
842
843    if (status_change) {
844        // Change the fetch stage status if there was a status change.
845        _status = updateFetchStatus();
846    }
847
848    // If there was activity this cycle, inform the CPU of it.
849    if (wroteToTimeBuffer || cpu->contextSwitch) {
850        DPRINTF(Activity, "Activity this cycle.\n");
851
852        cpu->activityThisCycle();
853    }
854}
855
856template <class Impl>
857bool
858DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
859{
860    // Update the per thread stall statuses.
861    if (fromDecode->decodeBlock[tid]) {
862        stalls[tid].decode = true;
863    }
864
865    if (fromDecode->decodeUnblock[tid]) {
866        assert(stalls[tid].decode);
867        assert(!fromDecode->decodeBlock[tid]);
868        stalls[tid].decode = false;
869    }
870
871    if (fromRename->renameBlock[tid]) {
872        stalls[tid].rename = true;
873    }
874
875    if (fromRename->renameUnblock[tid]) {
876        assert(stalls[tid].rename);
877        assert(!fromRename->renameBlock[tid]);
878        stalls[tid].rename = false;
879    }
880
881    if (fromIEW->iewBlock[tid]) {
882        stalls[tid].iew = true;
883    }
884
885    if (fromIEW->iewUnblock[tid]) {
886        assert(stalls[tid].iew);
887        assert(!fromIEW->iewBlock[tid]);
888        stalls[tid].iew = false;
889    }
890
891    if (fromCommit->commitBlock[tid]) {
892        stalls[tid].commit = true;
893    }
894
895    if (fromCommit->commitUnblock[tid]) {
896        assert(stalls[tid].commit);
897        assert(!fromCommit->commitBlock[tid]);
898        stalls[tid].commit = false;
899    }
900
901    // Check squash signals from commit.
902    if (fromCommit->commitInfo[tid].squash) {
903
904        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
905                "from commit.\n",tid);
906
907#if ISA_HAS_DELAY_SLOT
908    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
909#else
910    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
911#endif
912        // In any case, squash.
913        squash(fromCommit->commitInfo[tid].nextPC,
914               doneSeqNum,
915               fromCommit->commitInfo[tid].squashDelaySlot,
916               tid);
917
918        // Also check if there's a mispredict that happened.
919        if (fromCommit->commitInfo[tid].branchMispredict) {
920            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
921                              fromCommit->commitInfo[tid].nextPC,
922                              fromCommit->commitInfo[tid].branchTaken,
923                              tid);
924        } else {
925            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
926                              tid);
927        }
928
929        return true;
930    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
931        // Update the branch predictor if it wasn't a squashed instruction
932        // that was broadcasted.
933        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
934    }
935
936    // Check ROB squash signals from commit.
937    if (fromCommit->commitInfo[tid].robSquashing) {
938        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
939
940        // Continue to squash.
941        fetchStatus[tid] = Squashing;
942
943        return true;
944    }
945
946    // Check squash signals from decode.
947    if (fromDecode->decodeInfo[tid].squash) {
948        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
949                "from decode.\n",tid);
950
951        // Update the branch predictor.
952        if (fromDecode->decodeInfo[tid].branchMispredict) {
953            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
954                              fromDecode->decodeInfo[tid].nextPC,
955                              fromDecode->decodeInfo[tid].branchTaken,
956                              tid);
957        } else {
958            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
959                              tid);
960        }
961
962        if (fetchStatus[tid] != Squashing) {
963
964#if ISA_HAS_DELAY_SLOT
965            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
966#else
967            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
968#endif
969            // Squash unless we're already squashing
970            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
971                             doneSeqNum,
972                             tid);
973
974            return true;
975        }
976    }
977
978    if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
979        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
980
981        fetchStatus[tid] = Blocked;
982
983        return true;
984    }
985
986    if (fetchStatus[tid] == Blocked ||
987        fetchStatus[tid] == Squashing) {
988        // Switch status to running if fetch isn't being told to block or
989        // squash this cycle.
990        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
991                tid);
992
993        fetchStatus[tid] = Running;
994
995        return true;
996    }
997
998    // If we've reached this point, we have not gotten any signals that
999    // cause fetch to change its status.  Fetch remains the same as before.
1000    return false;
1001}
1002
1003template<class Impl>
1004void
1005DefaultFetch<Impl>::fetch(bool &status_change)
1006{
1007    //////////////////////////////////////////
1008    // Start actual fetch
1009    //////////////////////////////////////////
1010    int tid = getFetchingThread(fetchPolicy);
1011
1012    if (tid == -1 || drainPending) {
1013        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1014
1015        // Breaks looping condition in tick()
1016        threadFetched = numFetchingThreads;
1017        return;
1018    }
1019
1020    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1021
1022    // The current PC.
1023    Addr &fetch_PC = PC[tid];
1024
1025    // Fault code for memory access.
1026    Fault fault = NoFault;
1027
1028    // If returning from the delay of a cache miss, then update the status
1029    // to running, otherwise do the cache access.  Possibly move this up
1030    // to tick() function.
1031    if (fetchStatus[tid] == IcacheAccessComplete) {
1032        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1033                tid);
1034
1035        fetchStatus[tid] = Running;
1036        status_change = true;
1037    } else if (fetchStatus[tid] == Running) {
1038        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1039                "instruction, starting at PC %08p.\n",
1040                tid, fetch_PC);
1041
1042        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1043        if (!fetch_success) {
1044            if (cacheBlocked) {
1045                ++icacheStallCycles;
1046            } else {
1047                ++fetchMiscStallCycles;
1048            }
1049            return;
1050        }
1051    } else {
1052        if (fetchStatus[tid] == Idle) {
1053            ++fetchIdleCycles;
1054        } else if (fetchStatus[tid] == Blocked) {
1055            ++fetchBlockedCycles;
1056        } else if (fetchStatus[tid] == Squashing) {
1057            ++fetchSquashCycles;
1058        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1059            ++icacheStallCycles;
1060        }
1061
1062        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1063        // fetch should do nothing.
1064        return;
1065    }
1066
1067    ++fetchCycles;
1068
1069    // If we had a stall due to an icache miss, then return.
1070    if (fetchStatus[tid] == IcacheWaitResponse) {
1071        ++icacheStallCycles;
1072        status_change = true;
1073        return;
1074    }
1075
1076    Addr next_PC = fetch_PC;
1077    Addr next_NPC = next_PC + instSize;
1078    InstSeqNum inst_seq;
1079    MachInst inst;
1080    ExtMachInst ext_inst;
1081    // @todo: Fix this hack.
1082    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1083
1084    if (fault == NoFault) {
1085        // If the read of the first instruction was successful, then grab the
1086        // instructions from the rest of the cache line and put them into the
1087        // queue heading to decode.
1088
1089        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1090                "decode.\n",tid);
1091
1092        // Need to keep track of whether or not a predicted branch
1093        // ended this fetch block.
1094        bool predicted_branch = false;
1095
1096        // Need to keep track of whether or not a delay slot
1097        // instruction has been fetched
1098
1099        for (;
1100             offset < cacheBlkSize &&
1101                 numInst < fetchWidth &&
1102                 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1103             ++numInst) {
1104
1105            // Get a sequence number.
1106            inst_seq = cpu->getAndIncrementInstSeq();
1107
1108            // Make sure this is a valid index.
1109            assert(offset <= cacheBlkSize - instSize);
1110
1111            // Get the instruction from the array of the cache line.
1112            inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1113                        (&cacheData[tid][offset]));
1114
1115#if THE_ISA == ALPHA_ISA
1116            ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1117#elif THE_ISA == SPARC_ISA
1118            ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1119#endif
1120
1121            // Create a new DynInst from the instruction fetched.
1122            DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1123                                                 next_PC,
1124                                                 inst_seq, cpu);
1125            instruction->setTid(tid);
1126
1127            instruction->setASID(tid);
1128
1129            instruction->setThreadState(cpu->thread[tid]);
1130
1131            DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1132                    "[sn:%lli]\n",
1133                    tid, instruction->readPC(), inst_seq);
1134
1135            DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1136                    tid, instruction->staticInst->disassemble(fetch_PC));
1137
1138            instruction->traceData =
1139                Trace::getInstRecord(curTick, cpu->tcBase(tid),
1140                                     instruction->staticInst,
1141                                     instruction->readPC());
1142
1143            predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1144                                                     next_NPC);
1145
1146            // Add instruction to the CPU's list of instructions.
1147            instruction->setInstListIt(cpu->addInst(instruction));
1148
1149            // Write the instruction to the first slot in the queue
1150            // that heads to decode.
1151            toDecode->insts[numInst] = instruction;
1152
1153            toDecode->size++;
1154
1155            // Increment stat of fetched instructions.
1156            ++fetchedInsts;
1157
1158            // Move to the next instruction, unless we have a branch.
1159            fetch_PC = next_PC;
1160
1161            if (instruction->isQuiesce()) {
1162//                warn("%lli: Quiesce instruction encountered, halting fetch!",
1163//                     curTick);
1164                fetchStatus[tid] = QuiescePending;
1165                ++numInst;
1166                status_change = true;
1167                break;
1168            }
1169
1170            offset += instSize;
1171
1172#if ISA_HAS_DELAY_SLOT
1173            if (predicted_branch) {
1174                delaySlotInfo[tid].branchSeqNum = inst_seq;
1175
1176                DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1177                        tid, inst_seq);
1178                continue;
1179            } else if (delaySlotInfo[tid].numInsts > 0) {
1180                --delaySlotInfo[tid].numInsts;
1181
1182                // It's OK to set PC to target of branch
1183                if (delaySlotInfo[tid].numInsts == 0) {
1184                    delaySlotInfo[tid].targetReady = true;
1185
1186                    // Break the looping condition
1187                    predicted_branch = true;
1188                }
1189
1190                DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1191                        " process.\n", tid, delaySlotInfo[tid].numInsts);
1192            }
1193#endif
1194        }
1195
1196        if (offset >= cacheBlkSize) {
1197            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1198                    "block.\n", tid);
1199        } else if (numInst >= fetchWidth) {
1200            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1201                    "for this cycle.\n", tid);
1202        } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1203            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1204                    "instruction encountered.\n", tid);
1205        }
1206    }
1207
1208    if (numInst > 0) {
1209        wroteToTimeBuffer = true;
1210    }
1211
1212    // Now that fetching is completed, update the PC to signify what the next
1213    // cycle will be.
1214    if (fault == NoFault) {
1215#if ISA_HAS_DELAY_SLOT
1216        if (delaySlotInfo[tid].targetReady &&
1217            delaySlotInfo[tid].numInsts == 0) {
1218            // Set PC to target
1219            PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1220            nextPC[tid] = next_PC + instSize;        //next_NPC
1221            nextNPC[tid] = next_PC + (2 * instSize);
1222
1223            delaySlotInfo[tid].targetReady = false;
1224        } else {
1225            PC[tid] = next_PC;
1226            nextPC[tid] = next_NPC;
1227            nextNPC[tid] = next_NPC + instSize;
1228        }
1229
1230        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1231#else
1232        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1233        PC[tid] = next_PC;
1234        nextPC[tid] = next_PC + instSize;
1235#endif
1236    } else {
1237        // We shouldn't be in an icache miss and also have a fault (an ITB
1238        // miss)
1239        if (fetchStatus[tid] == IcacheWaitResponse) {
1240            panic("Fetch should have exited prior to this!");
1241        }
1242
1243        // Send the fault to commit.  This thread will not do anything
1244        // until commit handles the fault.  The only other way it can
1245        // wake up is if a squash comes along and changes the PC.
1246#if FULL_SYSTEM
1247        assert(numInst != fetchWidth);
1248        // Get a sequence number.
1249        inst_seq = cpu->getAndIncrementInstSeq();
1250        // We will use a nop in order to carry the fault.
1251        ext_inst = TheISA::NoopMachInst;
1252
1253        // Create a new DynInst from the dummy nop.
1254        DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1255                                             next_PC,
1256                                             inst_seq, cpu);
1257        instruction->setPredTarg(next_PC + instSize);
1258        instruction->setTid(tid);
1259
1260        instruction->setASID(tid);
1261
1262        instruction->setThreadState(cpu->thread[tid]);
1263
1264        instruction->traceData = NULL;
1265
1266        instruction->setInstListIt(cpu->addInst(instruction));
1267
1268        instruction->fault = fault;
1269
1270        toDecode->insts[numInst] = instruction;
1271        toDecode->size++;
1272
1273        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1274
1275        fetchStatus[tid] = TrapPending;
1276        status_change = true;
1277
1278//        warn("%lli fault (%d) detected @ PC %08p", curTick, fault, PC[tid]);
1279#else // !FULL_SYSTEM
1280        warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1281#endif // FULL_SYSTEM
1282    }
1283}
1284
1285template<class Impl>
1286void
1287DefaultFetch<Impl>::recvRetry()
1288{
1289    if (retryPkt != NULL) {
1290        assert(cacheBlocked);
1291        assert(retryTid != -1);
1292        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1293
1294        if (icachePort->sendTiming(retryPkt)) {
1295            fetchStatus[retryTid] = IcacheWaitResponse;
1296            retryPkt = NULL;
1297            retryTid = -1;
1298            cacheBlocked = false;
1299        }
1300    } else {
1301        assert(retryTid == -1);
1302        // Access has been squashed since it was sent out.  Just clear
1303        // the cache being blocked.
1304        cacheBlocked = false;
1305    }
1306}
1307
1308///////////////////////////////////////
1309//                                   //
1310//  SMT FETCH POLICY MAINTAINED HERE //
1311//                                   //
1312///////////////////////////////////////
1313template<class Impl>
1314int
1315DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1316{
1317    if (numThreads > 1) {
1318        switch (fetch_priority) {
1319
1320          case SingleThread:
1321            return 0;
1322
1323          case RoundRobin:
1324            return roundRobin();
1325
1326          case IQ:
1327            return iqCount();
1328
1329          case LSQ:
1330            return lsqCount();
1331
1332          case Branch:
1333            return branchCount();
1334
1335          default:
1336            return -1;
1337        }
1338    } else {
1339        int tid = *((*activeThreads).begin());
1340
1341        if (fetchStatus[tid] == Running ||
1342            fetchStatus[tid] == IcacheAccessComplete ||
1343            fetchStatus[tid] == Idle) {
1344            return tid;
1345        } else {
1346            return -1;
1347        }
1348    }
1349
1350}
1351
1352
1353template<class Impl>
1354int
1355DefaultFetch<Impl>::roundRobin()
1356{
1357    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1358    std::list<unsigned>::iterator end      = priorityList.end();
1359
1360    int high_pri;
1361
1362    while (pri_iter != end) {
1363        high_pri = *pri_iter;
1364
1365        assert(high_pri <= numThreads);
1366
1367        if (fetchStatus[high_pri] == Running ||
1368            fetchStatus[high_pri] == IcacheAccessComplete ||
1369            fetchStatus[high_pri] == Idle) {
1370
1371            priorityList.erase(pri_iter);
1372            priorityList.push_back(high_pri);
1373
1374            return high_pri;
1375        }
1376
1377        pri_iter++;
1378    }
1379
1380    return -1;
1381}
1382
1383template<class Impl>
1384int
1385DefaultFetch<Impl>::iqCount()
1386{
1387    std::priority_queue<unsigned> PQ;
1388
1389    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1390
1391    while (threads != (*activeThreads).end()) {
1392        unsigned tid = *threads++;
1393
1394        PQ.push(fromIEW->iewInfo[tid].iqCount);
1395    }
1396
1397    while (!PQ.empty()) {
1398
1399        unsigned high_pri = PQ.top();
1400
1401        if (fetchStatus[high_pri] == Running ||
1402            fetchStatus[high_pri] == IcacheAccessComplete ||
1403            fetchStatus[high_pri] == Idle)
1404            return high_pri;
1405        else
1406            PQ.pop();
1407
1408    }
1409
1410    return -1;
1411}
1412
1413template<class Impl>
1414int
1415DefaultFetch<Impl>::lsqCount()
1416{
1417    std::priority_queue<unsigned> PQ;
1418
1419
1420    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1421
1422    while (threads != (*activeThreads).end()) {
1423        unsigned tid = *threads++;
1424
1425        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1426    }
1427
1428    while (!PQ.empty()) {
1429
1430        unsigned high_pri = PQ.top();
1431
1432        if (fetchStatus[high_pri] == Running ||
1433            fetchStatus[high_pri] == IcacheAccessComplete ||
1434            fetchStatus[high_pri] == Idle)
1435            return high_pri;
1436        else
1437            PQ.pop();
1438
1439    }
1440
1441    return -1;
1442}
1443
1444template<class Impl>
1445int
1446DefaultFetch<Impl>::branchCount()
1447{
1448    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1449    panic("Branch Count Fetch policy unimplemented\n");
1450    return *threads;
1451}
1452