fetch_impl.hh revision 12749:223c83ed9979
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * Copyright (c) 2012-2013 AMD
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_FETCH_IMPL_HH__
46#define __CPU_O3_FETCH_IMPL_HH__
47
48#include <algorithm>
49#include <cstring>
50#include <list>
51#include <map>
52#include <queue>
53
54#include "arch/generic/tlb.hh"
55#include "arch/isa_traits.hh"
56#include "arch/utility.hh"
57#include "arch/vtophys.hh"
58#include "base/random.hh"
59#include "base/types.hh"
60#include "config/the_isa.hh"
61#include "cpu/base.hh"
62//#include "cpu/checker/cpu.hh"
63#include "cpu/o3/fetch.hh"
64#include "cpu/exetrace.hh"
65#include "debug/Activity.hh"
66#include "debug/Drain.hh"
67#include "debug/Fetch.hh"
68#include "debug/O3PipeView.hh"
69#include "mem/packet.hh"
70#include "params/DerivO3CPU.hh"
71#include "sim/byteswap.hh"
72#include "sim/core.hh"
73#include "sim/eventq.hh"
74#include "sim/full_system.hh"
75#include "sim/system.hh"
76#include "cpu/o3/isa_specific.hh"
77
78using namespace std;
79
80template<class Impl>
81DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
82    : cpu(_cpu),
83      decodeToFetchDelay(params->decodeToFetchDelay),
84      renameToFetchDelay(params->renameToFetchDelay),
85      iewToFetchDelay(params->iewToFetchDelay),
86      commitToFetchDelay(params->commitToFetchDelay),
87      fetchWidth(params->fetchWidth),
88      decodeWidth(params->decodeWidth),
89      retryPkt(NULL),
90      retryTid(InvalidThreadID),
91      cacheBlkSize(cpu->cacheLineSize()),
92      fetchBufferSize(params->fetchBufferSize),
93      fetchBufferMask(fetchBufferSize - 1),
94      fetchQueueSize(params->fetchQueueSize),
95      numThreads(params->numThreads),
96      numFetchingThreads(params->smtNumFetchingThreads),
97      finishTranslationEvent(this)
98{
99    if (numThreads > Impl::MaxThreads)
100        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
101              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
102              numThreads, static_cast<int>(Impl::MaxThreads));
103    if (fetchWidth > Impl::MaxWidth)
104        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
105             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
106             fetchWidth, static_cast<int>(Impl::MaxWidth));
107    if (fetchBufferSize > cacheBlkSize)
108        fatal("fetch buffer size (%u bytes) is greater than the cache "
109              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
110    if (cacheBlkSize % fetchBufferSize)
111        fatal("cache block (%u bytes) is not a multiple of the "
112              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
113
114    std::string policy = params->smtFetchPolicy;
115
116    // Convert string to lowercase
117    std::transform(policy.begin(), policy.end(), policy.begin(),
118                   (int(*)(int)) tolower);
119
120    // Figure out fetch policy
121    if (policy == "singlethread") {
122        fetchPolicy = SingleThread;
123        if (numThreads > 1)
124            panic("Invalid Fetch Policy for a SMT workload.");
125    } else if (policy == "roundrobin") {
126        fetchPolicy = RoundRobin;
127        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
128    } else if (policy == "branch") {
129        fetchPolicy = Branch;
130        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
131    } else if (policy == "iqcount") {
132        fetchPolicy = IQ;
133        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
134    } else if (policy == "lsqcount") {
135        fetchPolicy = LSQ;
136        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
137    } else {
138        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
139              " RoundRobin,LSQcount,IQcount}\n");
140    }
141
142    // Get the size of an instruction.
143    instSize = sizeof(TheISA::MachInst);
144
145    for (int i = 0; i < Impl::MaxThreads; i++) {
146        decoder[i] = NULL;
147        fetchBuffer[i] = NULL;
148        fetchBufferPC[i] = 0;
149        fetchBufferValid[i] = false;
150    }
151
152    branchPred = params->branchPred;
153
154    for (ThreadID tid = 0; tid < numThreads; tid++) {
155        decoder[tid] = new TheISA::Decoder(params->isa[tid]);
156        // Create space to buffer the cache line data,
157        // which may not hold the entire cache line.
158        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
159    }
160}
161
162template <class Impl>
163std::string
164DefaultFetch<Impl>::name() const
165{
166    return cpu->name() + ".fetch";
167}
168
169template <class Impl>
170void
171DefaultFetch<Impl>::regProbePoints()
172{
173    ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
174    ppFetchRequestSent = new ProbePointArg<RequestPtr>(cpu->getProbeManager(),
175                                                       "FetchRequest");
176
177}
178
179template <class Impl>
180void
181DefaultFetch<Impl>::regStats()
182{
183    icacheStallCycles
184        .name(name() + ".icacheStallCycles")
185        .desc("Number of cycles fetch is stalled on an Icache miss")
186        .prereq(icacheStallCycles);
187
188    fetchedInsts
189        .name(name() + ".Insts")
190        .desc("Number of instructions fetch has processed")
191        .prereq(fetchedInsts);
192
193    fetchedBranches
194        .name(name() + ".Branches")
195        .desc("Number of branches that fetch encountered")
196        .prereq(fetchedBranches);
197
198    predictedBranches
199        .name(name() + ".predictedBranches")
200        .desc("Number of branches that fetch has predicted taken")
201        .prereq(predictedBranches);
202
203    fetchCycles
204        .name(name() + ".Cycles")
205        .desc("Number of cycles fetch has run and was not squashing or"
206              " blocked")
207        .prereq(fetchCycles);
208
209    fetchSquashCycles
210        .name(name() + ".SquashCycles")
211        .desc("Number of cycles fetch has spent squashing")
212        .prereq(fetchSquashCycles);
213
214    fetchTlbCycles
215        .name(name() + ".TlbCycles")
216        .desc("Number of cycles fetch has spent waiting for tlb")
217        .prereq(fetchTlbCycles);
218
219    fetchIdleCycles
220        .name(name() + ".IdleCycles")
221        .desc("Number of cycles fetch was idle")
222        .prereq(fetchIdleCycles);
223
224    fetchBlockedCycles
225        .name(name() + ".BlockedCycles")
226        .desc("Number of cycles fetch has spent blocked")
227        .prereq(fetchBlockedCycles);
228
229    fetchedCacheLines
230        .name(name() + ".CacheLines")
231        .desc("Number of cache lines fetched")
232        .prereq(fetchedCacheLines);
233
234    fetchMiscStallCycles
235        .name(name() + ".MiscStallCycles")
236        .desc("Number of cycles fetch has spent waiting on interrupts, or "
237              "bad addresses, or out of MSHRs")
238        .prereq(fetchMiscStallCycles);
239
240    fetchPendingDrainCycles
241        .name(name() + ".PendingDrainCycles")
242        .desc("Number of cycles fetch has spent waiting on pipes to drain")
243        .prereq(fetchPendingDrainCycles);
244
245    fetchNoActiveThreadStallCycles
246        .name(name() + ".NoActiveThreadStallCycles")
247        .desc("Number of stall cycles due to no active thread to fetch from")
248        .prereq(fetchNoActiveThreadStallCycles);
249
250    fetchPendingTrapStallCycles
251        .name(name() + ".PendingTrapStallCycles")
252        .desc("Number of stall cycles due to pending traps")
253        .prereq(fetchPendingTrapStallCycles);
254
255    fetchPendingQuiesceStallCycles
256        .name(name() + ".PendingQuiesceStallCycles")
257        .desc("Number of stall cycles due to pending quiesce instructions")
258        .prereq(fetchPendingQuiesceStallCycles);
259
260    fetchIcacheWaitRetryStallCycles
261        .name(name() + ".IcacheWaitRetryStallCycles")
262        .desc("Number of stall cycles due to full MSHR")
263        .prereq(fetchIcacheWaitRetryStallCycles);
264
265    fetchIcacheSquashes
266        .name(name() + ".IcacheSquashes")
267        .desc("Number of outstanding Icache misses that were squashed")
268        .prereq(fetchIcacheSquashes);
269
270    fetchTlbSquashes
271        .name(name() + ".ItlbSquashes")
272        .desc("Number of outstanding ITLB misses that were squashed")
273        .prereq(fetchTlbSquashes);
274
275    fetchNisnDist
276        .init(/* base value */ 0,
277              /* last value */ fetchWidth,
278              /* bucket size */ 1)
279        .name(name() + ".rateDist")
280        .desc("Number of instructions fetched each cycle (Total)")
281        .flags(Stats::pdf);
282
283    idleRate
284        .name(name() + ".idleRate")
285        .desc("Percent of cycles fetch was idle")
286        .prereq(idleRate);
287    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
288
289    branchRate
290        .name(name() + ".branchRate")
291        .desc("Number of branch fetches per cycle")
292        .flags(Stats::total);
293    branchRate = fetchedBranches / cpu->numCycles;
294
295    fetchRate
296        .name(name() + ".rate")
297        .desc("Number of inst fetches per cycle")
298        .flags(Stats::total);
299    fetchRate = fetchedInsts / cpu->numCycles;
300}
301
302template<class Impl>
303void
304DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
305{
306    timeBuffer = time_buffer;
307
308    // Create wires to get information from proper places in time buffer.
309    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
310    fromRename = timeBuffer->getWire(-renameToFetchDelay);
311    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
312    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
318{
319    activeThreads = at_ptr;
320}
321
322template<class Impl>
323void
324DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
325{
326    // Create wire to write information to proper place in fetch time buf.
327    toDecode = ftb_ptr->getWire(0);
328}
329
330template<class Impl>
331void
332DefaultFetch<Impl>::startupStage()
333{
334    assert(priorityList.empty());
335    resetStage();
336
337    // Fetch needs to start fetching instructions at the very beginning,
338    // so it must start up in active state.
339    switchToActive();
340}
341
342template<class Impl>
343void
344DefaultFetch<Impl>::resetStage()
345{
346    numInst = 0;
347    interruptPending = false;
348    cacheBlocked = false;
349
350    priorityList.clear();
351
352    // Setup PC and nextPC with initial state.
353    for (ThreadID tid = 0; tid < numThreads; ++tid) {
354        fetchStatus[tid] = Running;
355        pc[tid] = cpu->pcState(tid);
356        fetchOffset[tid] = 0;
357        macroop[tid] = NULL;
358
359        delayedCommit[tid] = false;
360        memReq[tid] = NULL;
361
362        stalls[tid].decode = false;
363        stalls[tid].drain = false;
364
365        fetchBufferPC[tid] = 0;
366        fetchBufferValid[tid] = false;
367
368        fetchQueue[tid].clear();
369
370        priorityList.push_back(tid);
371    }
372
373    wroteToTimeBuffer = false;
374    _status = Inactive;
375}
376
377template<class Impl>
378void
379DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
380{
381    ThreadID tid = cpu->contextToThread(pkt->req->contextId());
382
383    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
384    assert(!cpu->switchedOut());
385
386    // Only change the status if it's still waiting on the icache access
387    // to return.
388    if (fetchStatus[tid] != IcacheWaitResponse ||
389        pkt->req != memReq[tid]) {
390        ++fetchIcacheSquashes;
391        delete pkt;
392        return;
393    }
394
395    memcpy(fetchBuffer[tid], pkt->getConstPtr<uint8_t>(), fetchBufferSize);
396    fetchBufferValid[tid] = true;
397
398    // Wake up the CPU (if it went to sleep and was waiting on
399    // this completion event).
400    cpu->wakeCPU();
401
402    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
403            tid);
404
405    switchToActive();
406
407    // Only switch to IcacheAccessComplete if we're not stalled as well.
408    if (checkStall(tid)) {
409        fetchStatus[tid] = Blocked;
410    } else {
411        fetchStatus[tid] = IcacheAccessComplete;
412    }
413
414    pkt->req->setAccessLatency();
415    cpu->ppInstAccessComplete->notify(pkt);
416    // Reset the mem req to NULL.
417    delete pkt;
418    memReq[tid] = NULL;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::drainResume()
424{
425    for (ThreadID i = 0; i < numThreads; ++i) {
426        stalls[i].decode = false;
427        stalls[i].drain = false;
428    }
429}
430
431template <class Impl>
432void
433DefaultFetch<Impl>::drainSanityCheck() const
434{
435    assert(isDrained());
436    assert(retryPkt == NULL);
437    assert(retryTid == InvalidThreadID);
438    assert(!cacheBlocked);
439    assert(!interruptPending);
440
441    for (ThreadID i = 0; i < numThreads; ++i) {
442        assert(!memReq[i]);
443        assert(fetchStatus[i] == Idle || stalls[i].drain);
444    }
445
446    branchPred->drainSanityCheck();
447}
448
449template <class Impl>
450bool
451DefaultFetch<Impl>::isDrained() const
452{
453    /* Make sure that threads are either idle of that the commit stage
454     * has signaled that draining has completed by setting the drain
455     * stall flag. This effectively forces the pipeline to be disabled
456     * until the whole system is drained (simulation may continue to
457     * drain other components).
458     */
459    for (ThreadID i = 0; i < numThreads; ++i) {
460        // Verify fetch queues are drained
461        if (!fetchQueue[i].empty())
462            return false;
463
464        // Return false if not idle or drain stalled
465        if (fetchStatus[i] != Idle) {
466            if (fetchStatus[i] == Blocked && stalls[i].drain)
467                continue;
468            else
469                return false;
470        }
471    }
472
473    /* The pipeline might start up again in the middle of the drain
474     * cycle if the finish translation event is scheduled, so make
475     * sure that's not the case.
476     */
477    return !finishTranslationEvent.scheduled();
478}
479
480template <class Impl>
481void
482DefaultFetch<Impl>::takeOverFrom()
483{
484    assert(cpu->getInstPort().isConnected());
485    resetStage();
486
487}
488
489template <class Impl>
490void
491DefaultFetch<Impl>::drainStall(ThreadID tid)
492{
493    assert(cpu->isDraining());
494    assert(!stalls[tid].drain);
495    DPRINTF(Drain, "%i: Thread drained.\n", tid);
496    stalls[tid].drain = true;
497}
498
499template <class Impl>
500void
501DefaultFetch<Impl>::wakeFromQuiesce()
502{
503    DPRINTF(Fetch, "Waking up from quiesce\n");
504    // Hopefully this is safe
505    // @todo: Allow other threads to wake from quiesce.
506    fetchStatus[0] = Running;
507}
508
509template <class Impl>
510inline void
511DefaultFetch<Impl>::switchToActive()
512{
513    if (_status == Inactive) {
514        DPRINTF(Activity, "Activating stage.\n");
515
516        cpu->activateStage(O3CPU::FetchIdx);
517
518        _status = Active;
519    }
520}
521
522template <class Impl>
523inline void
524DefaultFetch<Impl>::switchToInactive()
525{
526    if (_status == Active) {
527        DPRINTF(Activity, "Deactivating stage.\n");
528
529        cpu->deactivateStage(O3CPU::FetchIdx);
530
531        _status = Inactive;
532    }
533}
534
535template <class Impl>
536void
537DefaultFetch<Impl>::deactivateThread(ThreadID tid)
538{
539    // Update priority list
540    auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
541    if (thread_it != priorityList.end()) {
542        priorityList.erase(thread_it);
543    }
544}
545
546template <class Impl>
547bool
548DefaultFetch<Impl>::lookupAndUpdateNextPC(
549        DynInstPtr &inst, TheISA::PCState &nextPC)
550{
551    // Do branch prediction check here.
552    // A bit of a misnomer...next_PC is actually the current PC until
553    // this function updates it.
554    bool predict_taken;
555
556    if (!inst->isControl()) {
557        TheISA::advancePC(nextPC, inst->staticInst);
558        inst->setPredTarg(nextPC);
559        inst->setPredTaken(false);
560        return false;
561    }
562
563    ThreadID tid = inst->threadNumber;
564    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
565                                        nextPC, tid);
566
567    if (predict_taken) {
568        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
569                tid, inst->seqNum, nextPC);
570    } else {
571        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
572                tid, inst->seqNum);
573    }
574
575    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
576            tid, inst->seqNum, nextPC);
577    inst->setPredTarg(nextPC);
578    inst->setPredTaken(predict_taken);
579
580    ++fetchedBranches;
581
582    if (predict_taken) {
583        ++predictedBranches;
584    }
585
586    return predict_taken;
587}
588
589template <class Impl>
590bool
591DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
592{
593    Fault fault = NoFault;
594
595    assert(!cpu->switchedOut());
596
597    // @todo: not sure if these should block translation.
598    //AlphaDep
599    if (cacheBlocked) {
600        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
601                tid);
602        return false;
603    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
604        // Hold off fetch from getting new instructions when:
605        // Cache is blocked, or
606        // while an interrupt is pending and we're not in PAL mode, or
607        // fetch is switched out.
608        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
609                tid);
610        return false;
611    }
612
613    // Align the fetch address to the start of a fetch buffer segment.
614    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
615
616    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
617            tid, fetchBufferBlockPC, vaddr);
618
619    // Setup the memReq to do a read of the first instruction's address.
620    // Set the appropriate read size and flags as well.
621    // Build request here.
622    RequestPtr mem_req = std::make_shared<Request>(
623        tid, fetchBufferBlockPC, fetchBufferSize,
624        Request::INST_FETCH, cpu->instMasterId(), pc,
625        cpu->thread[tid]->contextId());
626
627    mem_req->taskId(cpu->taskId());
628
629    memReq[tid] = mem_req;
630
631    // Initiate translation of the icache block
632    fetchStatus[tid] = ItlbWait;
633    FetchTranslation *trans = new FetchTranslation(this);
634    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
635                              trans, BaseTLB::Execute);
636    return true;
637}
638
639template <class Impl>
640void
641DefaultFetch<Impl>::finishTranslation(const Fault &fault,
642                                      const RequestPtr &mem_req)
643{
644    ThreadID tid = cpu->contextToThread(mem_req->contextId());
645    Addr fetchBufferBlockPC = mem_req->getVaddr();
646
647    assert(!cpu->switchedOut());
648
649    // Wake up CPU if it was idle
650    cpu->wakeCPU();
651
652    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
653        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
654        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
655                tid);
656        ++fetchTlbSquashes;
657        return;
658    }
659
660
661    // If translation was successful, attempt to read the icache block.
662    if (fault == NoFault) {
663        // Check that we're not going off into random memory
664        // If we have, just wait around for commit to squash something and put
665        // us on the right track
666        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
667            warn("Address %#x is outside of physical memory, stopping fetch\n",
668                    mem_req->getPaddr());
669            fetchStatus[tid] = NoGoodAddr;
670            memReq[tid] = NULL;
671            return;
672        }
673
674        // Build packet here.
675        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
676        data_pkt->dataDynamic(new uint8_t[fetchBufferSize]);
677
678        fetchBufferPC[tid] = fetchBufferBlockPC;
679        fetchBufferValid[tid] = false;
680        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
681
682        fetchedCacheLines++;
683
684        // Access the cache.
685        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
686            assert(retryPkt == NULL);
687            assert(retryTid == InvalidThreadID);
688            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
689
690            fetchStatus[tid] = IcacheWaitRetry;
691            retryPkt = data_pkt;
692            retryTid = tid;
693            cacheBlocked = true;
694        } else {
695            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
696            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
697                    "response.\n", tid);
698            lastIcacheStall[tid] = curTick();
699            fetchStatus[tid] = IcacheWaitResponse;
700            // Notify Fetch Request probe when a packet containing a fetch
701            // request is successfully sent
702            ppFetchRequestSent->notify(mem_req);
703        }
704    } else {
705        // Don't send an instruction to decode if we can't handle it.
706        if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
707            assert(!finishTranslationEvent.scheduled());
708            finishTranslationEvent.setFault(fault);
709            finishTranslationEvent.setReq(mem_req);
710            cpu->schedule(finishTranslationEvent,
711                          cpu->clockEdge(Cycles(1)));
712            return;
713        }
714        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
715                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
716        // Translation faulted, icache request won't be sent.
717        memReq[tid] = NULL;
718
719        // Send the fault to commit.  This thread will not do anything
720        // until commit handles the fault.  The only other way it can
721        // wake up is if a squash comes along and changes the PC.
722        TheISA::PCState fetchPC = pc[tid];
723
724        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
725        // We will use a nop in ordier to carry the fault.
726        DynInstPtr instruction = buildInst(tid, StaticInst::nopStaticInstPtr,
727                                           NULL, fetchPC, fetchPC, false);
728        instruction->setNotAnInst();
729
730        instruction->setPredTarg(fetchPC);
731        instruction->fault = fault;
732        wroteToTimeBuffer = true;
733
734        DPRINTF(Activity, "Activity this cycle.\n");
735        cpu->activityThisCycle();
736
737        fetchStatus[tid] = TrapPending;
738
739        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
740        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
741                tid, fault->name(), pc[tid]);
742    }
743    _status = updateFetchStatus();
744}
745
746template <class Impl>
747inline void
748DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
749                             const DynInstPtr squashInst, ThreadID tid)
750{
751    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
752            tid, newPC);
753
754    pc[tid] = newPC;
755    fetchOffset[tid] = 0;
756    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
757        macroop[tid] = squashInst->macroop;
758    else
759        macroop[tid] = NULL;
760    decoder[tid]->reset();
761
762    // Clear the icache miss if it's outstanding.
763    if (fetchStatus[tid] == IcacheWaitResponse) {
764        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
765                tid);
766        memReq[tid] = NULL;
767    } else if (fetchStatus[tid] == ItlbWait) {
768        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
769                tid);
770        memReq[tid] = NULL;
771    }
772
773    // Get rid of the retrying packet if it was from this thread.
774    if (retryTid == tid) {
775        assert(cacheBlocked);
776        if (retryPkt) {
777            delete retryPkt;
778        }
779        retryPkt = NULL;
780        retryTid = InvalidThreadID;
781    }
782
783    fetchStatus[tid] = Squashing;
784
785    // Empty fetch queue
786    fetchQueue[tid].clear();
787
788    // microops are being squashed, it is not known wheather the
789    // youngest non-squashed microop was  marked delayed commit
790    // or not. Setting the flag to true ensures that the
791    // interrupts are not handled when they cannot be, though
792    // some opportunities to handle interrupts may be missed.
793    delayedCommit[tid] = true;
794
795    ++fetchSquashCycles;
796}
797
798template<class Impl>
799void
800DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
801                                     const DynInstPtr squashInst,
802                                     const InstSeqNum seq_num, ThreadID tid)
803{
804    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
805
806    doSquash(newPC, squashInst, tid);
807
808    // Tell the CPU to remove any instructions that are in flight between
809    // fetch and decode.
810    cpu->removeInstsUntil(seq_num, tid);
811}
812
813template<class Impl>
814bool
815DefaultFetch<Impl>::checkStall(ThreadID tid) const
816{
817    bool ret_val = false;
818
819    if (stalls[tid].drain) {
820        assert(cpu->isDraining());
821        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
822        ret_val = true;
823    }
824
825    return ret_val;
826}
827
828template<class Impl>
829typename DefaultFetch<Impl>::FetchStatus
830DefaultFetch<Impl>::updateFetchStatus()
831{
832    //Check Running
833    list<ThreadID>::iterator threads = activeThreads->begin();
834    list<ThreadID>::iterator end = activeThreads->end();
835
836    while (threads != end) {
837        ThreadID tid = *threads++;
838
839        if (fetchStatus[tid] == Running ||
840            fetchStatus[tid] == Squashing ||
841            fetchStatus[tid] == IcacheAccessComplete) {
842
843            if (_status == Inactive) {
844                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
845
846                if (fetchStatus[tid] == IcacheAccessComplete) {
847                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
848                            "completion\n",tid);
849                }
850
851                cpu->activateStage(O3CPU::FetchIdx);
852            }
853
854            return Active;
855        }
856    }
857
858    // Stage is switching from active to inactive, notify CPU of it.
859    if (_status == Active) {
860        DPRINTF(Activity, "Deactivating stage.\n");
861
862        cpu->deactivateStage(O3CPU::FetchIdx);
863    }
864
865    return Inactive;
866}
867
868template <class Impl>
869void
870DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
871                           const InstSeqNum seq_num, DynInstPtr squashInst,
872                           ThreadID tid)
873{
874    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
875
876    doSquash(newPC, squashInst, tid);
877
878    // Tell the CPU to remove any instructions that are not in the ROB.
879    cpu->removeInstsNotInROB(tid);
880}
881
882template <class Impl>
883void
884DefaultFetch<Impl>::tick()
885{
886    list<ThreadID>::iterator threads = activeThreads->begin();
887    list<ThreadID>::iterator end = activeThreads->end();
888    bool status_change = false;
889
890    wroteToTimeBuffer = false;
891
892    for (ThreadID i = 0; i < numThreads; ++i) {
893        issuePipelinedIfetch[i] = false;
894    }
895
896    while (threads != end) {
897        ThreadID tid = *threads++;
898
899        // Check the signals for each thread to determine the proper status
900        // for each thread.
901        bool updated_status = checkSignalsAndUpdate(tid);
902        status_change =  status_change || updated_status;
903    }
904
905    DPRINTF(Fetch, "Running stage.\n");
906
907    if (FullSystem) {
908        if (fromCommit->commitInfo[0].interruptPending) {
909            interruptPending = true;
910        }
911
912        if (fromCommit->commitInfo[0].clearInterrupt) {
913            interruptPending = false;
914        }
915    }
916
917    for (threadFetched = 0; threadFetched < numFetchingThreads;
918         threadFetched++) {
919        // Fetch each of the actively fetching threads.
920        fetch(status_change);
921    }
922
923    // Record number of instructions fetched this cycle for distribution.
924    fetchNisnDist.sample(numInst);
925
926    if (status_change) {
927        // Change the fetch stage status if there was a status change.
928        _status = updateFetchStatus();
929    }
930
931    // Issue the next I-cache request if possible.
932    for (ThreadID i = 0; i < numThreads; ++i) {
933        if (issuePipelinedIfetch[i]) {
934            pipelineIcacheAccesses(i);
935        }
936    }
937
938    // Send instructions enqueued into the fetch queue to decode.
939    // Limit rate by fetchWidth.  Stall if decode is stalled.
940    unsigned insts_to_decode = 0;
941    unsigned available_insts = 0;
942
943    for (auto tid : *activeThreads) {
944        if (!stalls[tid].decode) {
945            available_insts += fetchQueue[tid].size();
946        }
947    }
948
949    // Pick a random thread to start trying to grab instructions from
950    auto tid_itr = activeThreads->begin();
951    std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
952
953    while (available_insts != 0 && insts_to_decode < decodeWidth) {
954        ThreadID tid = *tid_itr;
955        if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
956            auto inst = fetchQueue[tid].front();
957            toDecode->insts[toDecode->size++] = inst;
958            DPRINTF(Fetch, "[tid:%i][sn:%i]: Sending instruction to decode from "
959                    "fetch queue. Fetch queue size: %i.\n",
960                    tid, inst->seqNum, fetchQueue[tid].size());
961
962            wroteToTimeBuffer = true;
963            fetchQueue[tid].pop_front();
964            insts_to_decode++;
965            available_insts--;
966        }
967
968        tid_itr++;
969        // Wrap around if at end of active threads list
970        if (tid_itr == activeThreads->end())
971            tid_itr = activeThreads->begin();
972    }
973
974    // If there was activity this cycle, inform the CPU of it.
975    if (wroteToTimeBuffer) {
976        DPRINTF(Activity, "Activity this cycle.\n");
977        cpu->activityThisCycle();
978    }
979
980    // Reset the number of the instruction we've fetched.
981    numInst = 0;
982}
983
984template <class Impl>
985bool
986DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
987{
988    // Update the per thread stall statuses.
989    if (fromDecode->decodeBlock[tid]) {
990        stalls[tid].decode = true;
991    }
992
993    if (fromDecode->decodeUnblock[tid]) {
994        assert(stalls[tid].decode);
995        assert(!fromDecode->decodeBlock[tid]);
996        stalls[tid].decode = false;
997    }
998
999    // Check squash signals from commit.
1000    if (fromCommit->commitInfo[tid].squash) {
1001
1002        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1003                "from commit.\n",tid);
1004        // In any case, squash.
1005        squash(fromCommit->commitInfo[tid].pc,
1006               fromCommit->commitInfo[tid].doneSeqNum,
1007               fromCommit->commitInfo[tid].squashInst, tid);
1008
1009        // If it was a branch mispredict on a control instruction, update the
1010        // branch predictor with that instruction, otherwise just kill the
1011        // invalid state we generated in after sequence number
1012        if (fromCommit->commitInfo[tid].mispredictInst &&
1013            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1014            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1015                              fromCommit->commitInfo[tid].pc,
1016                              fromCommit->commitInfo[tid].branchTaken,
1017                              tid);
1018        } else {
1019            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1020                              tid);
1021        }
1022
1023        return true;
1024    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1025        // Update the branch predictor if it wasn't a squashed instruction
1026        // that was broadcasted.
1027        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1028    }
1029
1030    // Check squash signals from decode.
1031    if (fromDecode->decodeInfo[tid].squash) {
1032        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1033                "from decode.\n",tid);
1034
1035        // Update the branch predictor.
1036        if (fromDecode->decodeInfo[tid].branchMispredict) {
1037            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1038                              fromDecode->decodeInfo[tid].nextPC,
1039                              fromDecode->decodeInfo[tid].branchTaken,
1040                              tid);
1041        } else {
1042            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1043                              tid);
1044        }
1045
1046        if (fetchStatus[tid] != Squashing) {
1047
1048            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1049                fromDecode->decodeInfo[tid].nextPC);
1050            // Squash unless we're already squashing
1051            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1052                             fromDecode->decodeInfo[tid].squashInst,
1053                             fromDecode->decodeInfo[tid].doneSeqNum,
1054                             tid);
1055
1056            return true;
1057        }
1058    }
1059
1060    if (checkStall(tid) &&
1061        fetchStatus[tid] != IcacheWaitResponse &&
1062        fetchStatus[tid] != IcacheWaitRetry &&
1063        fetchStatus[tid] != ItlbWait &&
1064        fetchStatus[tid] != QuiescePending) {
1065        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1066
1067        fetchStatus[tid] = Blocked;
1068
1069        return true;
1070    }
1071
1072    if (fetchStatus[tid] == Blocked ||
1073        fetchStatus[tid] == Squashing) {
1074        // Switch status to running if fetch isn't being told to block or
1075        // squash this cycle.
1076        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1077                tid);
1078
1079        fetchStatus[tid] = Running;
1080
1081        return true;
1082    }
1083
1084    // If we've reached this point, we have not gotten any signals that
1085    // cause fetch to change its status.  Fetch remains the same as before.
1086    return false;
1087}
1088
1089template<class Impl>
1090typename Impl::DynInstPtr
1091DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1092                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1093                              TheISA::PCState nextPC, bool trace)
1094{
1095    // Get a sequence number.
1096    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1097
1098    // Create a new DynInst from the instruction fetched.
1099    DynInstPtr instruction =
1100        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1101    instruction->setTid(tid);
1102
1103    instruction->setASID(tid);
1104
1105    instruction->setThreadState(cpu->thread[tid]);
1106
1107    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1108            "[sn:%lli].\n", tid, thisPC.instAddr(),
1109            thisPC.microPC(), seq);
1110
1111    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1112            instruction->staticInst->
1113            disassemble(thisPC.instAddr()));
1114
1115#if TRACING_ON
1116    if (trace) {
1117        instruction->traceData =
1118            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1119                    instruction->staticInst, thisPC, curMacroop);
1120    }
1121#else
1122    instruction->traceData = NULL;
1123#endif
1124
1125    // Add instruction to the CPU's list of instructions.
1126    instruction->setInstListIt(cpu->addInst(instruction));
1127
1128    // Write the instruction to the first slot in the queue
1129    // that heads to decode.
1130    assert(numInst < fetchWidth);
1131    fetchQueue[tid].push_back(instruction);
1132    assert(fetchQueue[tid].size() <= fetchQueueSize);
1133    DPRINTF(Fetch, "[tid:%i]: Fetch queue entry created (%i/%i).\n",
1134            tid, fetchQueue[tid].size(), fetchQueueSize);
1135    //toDecode->insts[toDecode->size++] = instruction;
1136
1137    // Keep track of if we can take an interrupt at this boundary
1138    delayedCommit[tid] = instruction->isDelayedCommit();
1139
1140    return instruction;
1141}
1142
1143template<class Impl>
1144void
1145DefaultFetch<Impl>::fetch(bool &status_change)
1146{
1147    //////////////////////////////////////////
1148    // Start actual fetch
1149    //////////////////////////////////////////
1150    ThreadID tid = getFetchingThread(fetchPolicy);
1151
1152    assert(!cpu->switchedOut());
1153
1154    if (tid == InvalidThreadID) {
1155        // Breaks looping condition in tick()
1156        threadFetched = numFetchingThreads;
1157
1158        if (numThreads == 1) {  // @todo Per-thread stats
1159            profileStall(0);
1160        }
1161
1162        return;
1163    }
1164
1165    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1166
1167    // The current PC.
1168    TheISA::PCState thisPC = pc[tid];
1169
1170    Addr pcOffset = fetchOffset[tid];
1171    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1172
1173    bool inRom = isRomMicroPC(thisPC.microPC());
1174
1175    // If returning from the delay of a cache miss, then update the status
1176    // to running, otherwise do the cache access.  Possibly move this up
1177    // to tick() function.
1178    if (fetchStatus[tid] == IcacheAccessComplete) {
1179        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1180
1181        fetchStatus[tid] = Running;
1182        status_change = true;
1183    } else if (fetchStatus[tid] == Running) {
1184        // Align the fetch PC so its at the start of a fetch buffer segment.
1185        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1186
1187        // If buffer is no longer valid or fetchAddr has moved to point
1188        // to the next cache block, AND we have no remaining ucode
1189        // from a macro-op, then start fetch from icache.
1190        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1191            && !inRom && !macroop[tid]) {
1192            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1193                    "instruction, starting at PC %s.\n", tid, thisPC);
1194
1195            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1196
1197            if (fetchStatus[tid] == IcacheWaitResponse)
1198                ++icacheStallCycles;
1199            else if (fetchStatus[tid] == ItlbWait)
1200                ++fetchTlbCycles;
1201            else
1202                ++fetchMiscStallCycles;
1203            return;
1204        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1205            // Stall CPU if an interrupt is posted and we're not issuing
1206            // an delayed commit micro-op currently (delayed commit instructions
1207            // are not interruptable by interrupts, only faults)
1208            ++fetchMiscStallCycles;
1209            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1210            return;
1211        }
1212    } else {
1213        if (fetchStatus[tid] == Idle) {
1214            ++fetchIdleCycles;
1215            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1216        }
1217
1218        // Status is Idle, so fetch should do nothing.
1219        return;
1220    }
1221
1222    ++fetchCycles;
1223
1224    TheISA::PCState nextPC = thisPC;
1225
1226    StaticInstPtr staticInst = NULL;
1227    StaticInstPtr curMacroop = macroop[tid];
1228
1229    // If the read of the first instruction was successful, then grab the
1230    // instructions from the rest of the cache line and put them into the
1231    // queue heading to decode.
1232
1233    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1234            "decode.\n", tid);
1235
1236    // Need to keep track of whether or not a predicted branch
1237    // ended this fetch block.
1238    bool predictedBranch = false;
1239
1240    // Need to halt fetch if quiesce instruction detected
1241    bool quiesce = false;
1242
1243    TheISA::MachInst *cacheInsts =
1244        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1245
1246    const unsigned numInsts = fetchBufferSize / instSize;
1247    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1248
1249    // Loop through instruction memory from the cache.
1250    // Keep issuing while fetchWidth is available and branch is not
1251    // predicted taken
1252    while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1253           && !predictedBranch && !quiesce) {
1254        // We need to process more memory if we aren't going to get a
1255        // StaticInst from the rom, the current macroop, or what's already
1256        // in the decoder.
1257        bool needMem = !inRom && !curMacroop &&
1258            !decoder[tid]->instReady();
1259        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1260        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1261
1262        if (needMem) {
1263            // If buffer is no longer valid or fetchAddr has moved to point
1264            // to the next cache block then start fetch from icache.
1265            if (!fetchBufferValid[tid] ||
1266                fetchBufferBlockPC != fetchBufferPC[tid])
1267                break;
1268
1269            if (blkOffset >= numInsts) {
1270                // We need to process more memory, but we've run out of the
1271                // current block.
1272                break;
1273            }
1274
1275            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1276            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1277
1278            if (decoder[tid]->needMoreBytes()) {
1279                blkOffset++;
1280                fetchAddr += instSize;
1281                pcOffset += instSize;
1282            }
1283        }
1284
1285        // Extract as many instructions and/or microops as we can from
1286        // the memory we've processed so far.
1287        do {
1288            if (!(curMacroop || inRom)) {
1289                if (decoder[tid]->instReady()) {
1290                    staticInst = decoder[tid]->decode(thisPC);
1291
1292                    // Increment stat of fetched instructions.
1293                    ++fetchedInsts;
1294
1295                    if (staticInst->isMacroop()) {
1296                        curMacroop = staticInst;
1297                    } else {
1298                        pcOffset = 0;
1299                    }
1300                } else {
1301                    // We need more bytes for this instruction so blkOffset and
1302                    // pcOffset will be updated
1303                    break;
1304                }
1305            }
1306            // Whether we're moving to a new macroop because we're at the
1307            // end of the current one, or the branch predictor incorrectly
1308            // thinks we are...
1309            bool newMacro = false;
1310            if (curMacroop || inRom) {
1311                if (inRom) {
1312                    staticInst = cpu->microcodeRom.fetchMicroop(
1313                            thisPC.microPC(), curMacroop);
1314                } else {
1315                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1316                }
1317                newMacro |= staticInst->isLastMicroop();
1318            }
1319
1320            DynInstPtr instruction =
1321                buildInst(tid, staticInst, curMacroop,
1322                          thisPC, nextPC, true);
1323
1324            ppFetch->notify(instruction);
1325            numInst++;
1326
1327#if TRACING_ON
1328            if (DTRACE(O3PipeView)) {
1329                instruction->fetchTick = curTick();
1330            }
1331#endif
1332
1333            nextPC = thisPC;
1334
1335            // If we're branching after this instruction, quit fetching
1336            // from the same block.
1337            predictedBranch |= thisPC.branching();
1338            predictedBranch |=
1339                lookupAndUpdateNextPC(instruction, nextPC);
1340            if (predictedBranch) {
1341                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1342            }
1343
1344            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1345
1346            // Move to the next instruction, unless we have a branch.
1347            thisPC = nextPC;
1348            inRom = isRomMicroPC(thisPC.microPC());
1349
1350            if (newMacro) {
1351                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1352                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1353                pcOffset = 0;
1354                curMacroop = NULL;
1355            }
1356
1357            if (instruction->isQuiesce()) {
1358                DPRINTF(Fetch,
1359                        "Quiesce instruction encountered, halting fetch!\n");
1360                fetchStatus[tid] = QuiescePending;
1361                status_change = true;
1362                quiesce = true;
1363                break;
1364            }
1365        } while ((curMacroop || decoder[tid]->instReady()) &&
1366                 numInst < fetchWidth &&
1367                 fetchQueue[tid].size() < fetchQueueSize);
1368
1369        // Re-evaluate whether the next instruction to fetch is in micro-op ROM
1370        // or not.
1371        inRom = isRomMicroPC(thisPC.microPC());
1372    }
1373
1374    if (predictedBranch) {
1375        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1376                "instruction encountered.\n", tid);
1377    } else if (numInst >= fetchWidth) {
1378        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1379                "for this cycle.\n", tid);
1380    } else if (blkOffset >= fetchBufferSize) {
1381        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1382                "fetch buffer.\n", tid);
1383    }
1384
1385    macroop[tid] = curMacroop;
1386    fetchOffset[tid] = pcOffset;
1387
1388    if (numInst > 0) {
1389        wroteToTimeBuffer = true;
1390    }
1391
1392    pc[tid] = thisPC;
1393
1394    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1395    // a state that would preclude fetching
1396    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1397    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1398    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1399        fetchStatus[tid] != IcacheWaitResponse &&
1400        fetchStatus[tid] != ItlbWait &&
1401        fetchStatus[tid] != IcacheWaitRetry &&
1402        fetchStatus[tid] != QuiescePending &&
1403        !curMacroop;
1404}
1405
1406template<class Impl>
1407void
1408DefaultFetch<Impl>::recvReqRetry()
1409{
1410    if (retryPkt != NULL) {
1411        assert(cacheBlocked);
1412        assert(retryTid != InvalidThreadID);
1413        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1414
1415        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1416            fetchStatus[retryTid] = IcacheWaitResponse;
1417            // Notify Fetch Request probe when a retryPkt is successfully sent.
1418            // Note that notify must be called before retryPkt is set to NULL.
1419            ppFetchRequestSent->notify(retryPkt->req);
1420            retryPkt = NULL;
1421            retryTid = InvalidThreadID;
1422            cacheBlocked = false;
1423        }
1424    } else {
1425        assert(retryTid == InvalidThreadID);
1426        // Access has been squashed since it was sent out.  Just clear
1427        // the cache being blocked.
1428        cacheBlocked = false;
1429    }
1430}
1431
1432///////////////////////////////////////
1433//                                   //
1434//  SMT FETCH POLICY MAINTAINED HERE //
1435//                                   //
1436///////////////////////////////////////
1437template<class Impl>
1438ThreadID
1439DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1440{
1441    if (numThreads > 1) {
1442        switch (fetch_priority) {
1443
1444          case SingleThread:
1445            return 0;
1446
1447          case RoundRobin:
1448            return roundRobin();
1449
1450          case IQ:
1451            return iqCount();
1452
1453          case LSQ:
1454            return lsqCount();
1455
1456          case Branch:
1457            return branchCount();
1458
1459          default:
1460            return InvalidThreadID;
1461        }
1462    } else {
1463        list<ThreadID>::iterator thread = activeThreads->begin();
1464        if (thread == activeThreads->end()) {
1465            return InvalidThreadID;
1466        }
1467
1468        ThreadID tid = *thread;
1469
1470        if (fetchStatus[tid] == Running ||
1471            fetchStatus[tid] == IcacheAccessComplete ||
1472            fetchStatus[tid] == Idle) {
1473            return tid;
1474        } else {
1475            return InvalidThreadID;
1476        }
1477    }
1478}
1479
1480
1481template<class Impl>
1482ThreadID
1483DefaultFetch<Impl>::roundRobin()
1484{
1485    list<ThreadID>::iterator pri_iter = priorityList.begin();
1486    list<ThreadID>::iterator end      = priorityList.end();
1487
1488    ThreadID high_pri;
1489
1490    while (pri_iter != end) {
1491        high_pri = *pri_iter;
1492
1493        assert(high_pri <= numThreads);
1494
1495        if (fetchStatus[high_pri] == Running ||
1496            fetchStatus[high_pri] == IcacheAccessComplete ||
1497            fetchStatus[high_pri] == Idle) {
1498
1499            priorityList.erase(pri_iter);
1500            priorityList.push_back(high_pri);
1501
1502            return high_pri;
1503        }
1504
1505        pri_iter++;
1506    }
1507
1508    return InvalidThreadID;
1509}
1510
1511template<class Impl>
1512ThreadID
1513DefaultFetch<Impl>::iqCount()
1514{
1515    //sorted from lowest->highest
1516    std::priority_queue<unsigned,vector<unsigned>,
1517                        std::greater<unsigned> > PQ;
1518    std::map<unsigned, ThreadID> threadMap;
1519
1520    list<ThreadID>::iterator threads = activeThreads->begin();
1521    list<ThreadID>::iterator end = activeThreads->end();
1522
1523    while (threads != end) {
1524        ThreadID tid = *threads++;
1525        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1526
1527        //we can potentially get tid collisions if two threads
1528        //have the same iqCount, but this should be rare.
1529        PQ.push(iqCount);
1530        threadMap[iqCount] = tid;
1531    }
1532
1533    while (!PQ.empty()) {
1534        ThreadID high_pri = threadMap[PQ.top()];
1535
1536        if (fetchStatus[high_pri] == Running ||
1537            fetchStatus[high_pri] == IcacheAccessComplete ||
1538            fetchStatus[high_pri] == Idle)
1539            return high_pri;
1540        else
1541            PQ.pop();
1542
1543    }
1544
1545    return InvalidThreadID;
1546}
1547
1548template<class Impl>
1549ThreadID
1550DefaultFetch<Impl>::lsqCount()
1551{
1552    //sorted from lowest->highest
1553    std::priority_queue<unsigned,vector<unsigned>,
1554                        std::greater<unsigned> > PQ;
1555    std::map<unsigned, ThreadID> threadMap;
1556
1557    list<ThreadID>::iterator threads = activeThreads->begin();
1558    list<ThreadID>::iterator end = activeThreads->end();
1559
1560    while (threads != end) {
1561        ThreadID tid = *threads++;
1562        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1563
1564        //we can potentially get tid collisions if two threads
1565        //have the same iqCount, but this should be rare.
1566        PQ.push(ldstqCount);
1567        threadMap[ldstqCount] = tid;
1568    }
1569
1570    while (!PQ.empty()) {
1571        ThreadID high_pri = threadMap[PQ.top()];
1572
1573        if (fetchStatus[high_pri] == Running ||
1574            fetchStatus[high_pri] == IcacheAccessComplete ||
1575            fetchStatus[high_pri] == Idle)
1576            return high_pri;
1577        else
1578            PQ.pop();
1579    }
1580
1581    return InvalidThreadID;
1582}
1583
1584template<class Impl>
1585ThreadID
1586DefaultFetch<Impl>::branchCount()
1587{
1588#if 0
1589    list<ThreadID>::iterator thread = activeThreads->begin();
1590    assert(thread != activeThreads->end());
1591    ThreadID tid = *thread;
1592#endif
1593
1594    panic("Branch Count Fetch policy unimplemented\n");
1595    return InvalidThreadID;
1596}
1597
1598template<class Impl>
1599void
1600DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1601{
1602    if (!issuePipelinedIfetch[tid]) {
1603        return;
1604    }
1605
1606    // The next PC to access.
1607    TheISA::PCState thisPC = pc[tid];
1608
1609    if (isRomMicroPC(thisPC.microPC())) {
1610        return;
1611    }
1612
1613    Addr pcOffset = fetchOffset[tid];
1614    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1615
1616    // Align the fetch PC so its at the start of a fetch buffer segment.
1617    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1618
1619    // Unless buffer already got the block, fetch it from icache.
1620    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1621        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1622                "starting at PC %s.\n", tid, thisPC);
1623
1624        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1625    }
1626}
1627
1628template<class Impl>
1629void
1630DefaultFetch<Impl>::profileStall(ThreadID tid) {
1631    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1632
1633    // @todo Per-thread stats
1634
1635    if (stalls[tid].drain) {
1636        ++fetchPendingDrainCycles;
1637        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1638    } else if (activeThreads->empty()) {
1639        ++fetchNoActiveThreadStallCycles;
1640        DPRINTF(Fetch, "Fetch has no active thread!\n");
1641    } else if (fetchStatus[tid] == Blocked) {
1642        ++fetchBlockedCycles;
1643        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1644    } else if (fetchStatus[tid] == Squashing) {
1645        ++fetchSquashCycles;
1646        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1647    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1648        ++icacheStallCycles;
1649        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1650                tid);
1651    } else if (fetchStatus[tid] == ItlbWait) {
1652        ++fetchTlbCycles;
1653        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1654                "finish!\n", tid);
1655    } else if (fetchStatus[tid] == TrapPending) {
1656        ++fetchPendingTrapStallCycles;
1657        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1658                tid);
1659    } else if (fetchStatus[tid] == QuiescePending) {
1660        ++fetchPendingQuiesceStallCycles;
1661        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1662                "instruction!\n", tid);
1663    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1664        ++fetchIcacheWaitRetryStallCycles;
1665        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1666                tid);
1667    } else if (fetchStatus[tid] == NoGoodAddr) {
1668            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1669                    tid);
1670    } else {
1671        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1672             tid, fetchStatus[tid]);
1673    }
1674}
1675
1676#endif//__CPU_O3_FETCH_IMPL_HH__
1677