fetch_impl.hh revision 10328:867b536a68be
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#ifndef __CPU_O3_FETCH_IMPL_HH__
45#define __CPU_O3_FETCH_IMPL_HH__
46
47#include <algorithm>
48#include <cstring>
49#include <list>
50#include <map>
51#include <queue>
52
53#include "arch/isa_traits.hh"
54#include "arch/tlb.hh"
55#include "arch/utility.hh"
56#include "arch/vtophys.hh"
57#include "base/types.hh"
58#include "config/the_isa.hh"
59#include "cpu/base.hh"
60//#include "cpu/checker/cpu.hh"
61#include "cpu/o3/fetch.hh"
62#include "cpu/exetrace.hh"
63#include "debug/Activity.hh"
64#include "debug/Drain.hh"
65#include "debug/Fetch.hh"
66#include "debug/O3PipeView.hh"
67#include "mem/packet.hh"
68#include "params/DerivO3CPU.hh"
69#include "sim/byteswap.hh"
70#include "sim/core.hh"
71#include "sim/eventq.hh"
72#include "sim/full_system.hh"
73#include "sim/system.hh"
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79    : cpu(_cpu),
80      decodeToFetchDelay(params->decodeToFetchDelay),
81      renameToFetchDelay(params->renameToFetchDelay),
82      iewToFetchDelay(params->iewToFetchDelay),
83      commitToFetchDelay(params->commitToFetchDelay),
84      fetchWidth(params->fetchWidth),
85      retryPkt(NULL),
86      retryTid(InvalidThreadID),
87      cacheBlkSize(cpu->cacheLineSize()),
88      fetchBufferSize(params->fetchBufferSize),
89      fetchBufferMask(fetchBufferSize - 1),
90      numThreads(params->numThreads),
91      numFetchingThreads(params->smtNumFetchingThreads),
92      finishTranslationEvent(this)
93{
94    if (numThreads > Impl::MaxThreads)
95        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
96              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
97              numThreads, static_cast<int>(Impl::MaxThreads));
98    if (fetchWidth > Impl::MaxWidth)
99        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
100             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
101             fetchWidth, static_cast<int>(Impl::MaxWidth));
102    if (fetchBufferSize > cacheBlkSize)
103        fatal("fetch buffer size (%u bytes) is greater than the cache "
104              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
105    if (cacheBlkSize % fetchBufferSize)
106        fatal("cache block (%u bytes) is not a multiple of the "
107              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
108
109    std::string policy = params->smtFetchPolicy;
110
111    // Convert string to lowercase
112    std::transform(policy.begin(), policy.end(), policy.begin(),
113                   (int(*)(int)) tolower);
114
115    // Figure out fetch policy
116    if (policy == "singlethread") {
117        fetchPolicy = SingleThread;
118        if (numThreads > 1)
119            panic("Invalid Fetch Policy for a SMT workload.");
120    } else if (policy == "roundrobin") {
121        fetchPolicy = RoundRobin;
122        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
123    } else if (policy == "branch") {
124        fetchPolicy = Branch;
125        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
126    } else if (policy == "iqcount") {
127        fetchPolicy = IQ;
128        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
129    } else if (policy == "lsqcount") {
130        fetchPolicy = LSQ;
131        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
132    } else {
133        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
134              " RoundRobin,LSQcount,IQcount}\n");
135    }
136
137    // Get the size of an instruction.
138    instSize = sizeof(TheISA::MachInst);
139
140    for (int i = 0; i < Impl::MaxThreads; i++) {
141        decoder[i] = NULL;
142        fetchBuffer[i] = NULL;
143        fetchBufferPC[i] = 0;
144        fetchBufferValid[i] = false;
145    }
146
147    branchPred = params->branchPred;
148
149    for (ThreadID tid = 0; tid < numThreads; tid++) {
150        decoder[tid] = new TheISA::Decoder;
151        // Create space to buffer the cache line data,
152        // which may not hold the entire cache line.
153        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
154    }
155}
156
157template <class Impl>
158std::string
159DefaultFetch<Impl>::name() const
160{
161    return cpu->name() + ".fetch";
162}
163
164template <class Impl>
165void
166DefaultFetch<Impl>::regProbePoints()
167{
168    ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
169}
170
171template <class Impl>
172void
173DefaultFetch<Impl>::regStats()
174{
175    icacheStallCycles
176        .name(name() + ".icacheStallCycles")
177        .desc("Number of cycles fetch is stalled on an Icache miss")
178        .prereq(icacheStallCycles);
179
180    fetchedInsts
181        .name(name() + ".Insts")
182        .desc("Number of instructions fetch has processed")
183        .prereq(fetchedInsts);
184
185    fetchedBranches
186        .name(name() + ".Branches")
187        .desc("Number of branches that fetch encountered")
188        .prereq(fetchedBranches);
189
190    predictedBranches
191        .name(name() + ".predictedBranches")
192        .desc("Number of branches that fetch has predicted taken")
193        .prereq(predictedBranches);
194
195    fetchCycles
196        .name(name() + ".Cycles")
197        .desc("Number of cycles fetch has run and was not squashing or"
198              " blocked")
199        .prereq(fetchCycles);
200
201    fetchSquashCycles
202        .name(name() + ".SquashCycles")
203        .desc("Number of cycles fetch has spent squashing")
204        .prereq(fetchSquashCycles);
205
206    fetchTlbCycles
207        .name(name() + ".TlbCycles")
208        .desc("Number of cycles fetch has spent waiting for tlb")
209        .prereq(fetchTlbCycles);
210
211    fetchIdleCycles
212        .name(name() + ".IdleCycles")
213        .desc("Number of cycles fetch was idle")
214        .prereq(fetchIdleCycles);
215
216    fetchBlockedCycles
217        .name(name() + ".BlockedCycles")
218        .desc("Number of cycles fetch has spent blocked")
219        .prereq(fetchBlockedCycles);
220
221    fetchedCacheLines
222        .name(name() + ".CacheLines")
223        .desc("Number of cache lines fetched")
224        .prereq(fetchedCacheLines);
225
226    fetchMiscStallCycles
227        .name(name() + ".MiscStallCycles")
228        .desc("Number of cycles fetch has spent waiting on interrupts, or "
229              "bad addresses, or out of MSHRs")
230        .prereq(fetchMiscStallCycles);
231
232    fetchPendingDrainCycles
233        .name(name() + ".PendingDrainCycles")
234        .desc("Number of cycles fetch has spent waiting on pipes to drain")
235        .prereq(fetchPendingDrainCycles);
236
237    fetchNoActiveThreadStallCycles
238        .name(name() + ".NoActiveThreadStallCycles")
239        .desc("Number of stall cycles due to no active thread to fetch from")
240        .prereq(fetchNoActiveThreadStallCycles);
241
242    fetchPendingTrapStallCycles
243        .name(name() + ".PendingTrapStallCycles")
244        .desc("Number of stall cycles due to pending traps")
245        .prereq(fetchPendingTrapStallCycles);
246
247    fetchPendingQuiesceStallCycles
248        .name(name() + ".PendingQuiesceStallCycles")
249        .desc("Number of stall cycles due to pending quiesce instructions")
250        .prereq(fetchPendingQuiesceStallCycles);
251
252    fetchIcacheWaitRetryStallCycles
253        .name(name() + ".IcacheWaitRetryStallCycles")
254        .desc("Number of stall cycles due to full MSHR")
255        .prereq(fetchIcacheWaitRetryStallCycles);
256
257    fetchIcacheSquashes
258        .name(name() + ".IcacheSquashes")
259        .desc("Number of outstanding Icache misses that were squashed")
260        .prereq(fetchIcacheSquashes);
261
262    fetchTlbSquashes
263        .name(name() + ".ItlbSquashes")
264        .desc("Number of outstanding ITLB misses that were squashed")
265        .prereq(fetchTlbSquashes);
266
267    fetchNisnDist
268        .init(/* base value */ 0,
269              /* last value */ fetchWidth,
270              /* bucket size */ 1)
271        .name(name() + ".rateDist")
272        .desc("Number of instructions fetched each cycle (Total)")
273        .flags(Stats::pdf);
274
275    idleRate
276        .name(name() + ".idleRate")
277        .desc("Percent of cycles fetch was idle")
278        .prereq(idleRate);
279    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
280
281    branchRate
282        .name(name() + ".branchRate")
283        .desc("Number of branch fetches per cycle")
284        .flags(Stats::total);
285    branchRate = fetchedBranches / cpu->numCycles;
286
287    fetchRate
288        .name(name() + ".rate")
289        .desc("Number of inst fetches per cycle")
290        .flags(Stats::total);
291    fetchRate = fetchedInsts / cpu->numCycles;
292}
293
294template<class Impl>
295void
296DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
297{
298    timeBuffer = time_buffer;
299
300    // Create wires to get information from proper places in time buffer.
301    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
302    fromRename = timeBuffer->getWire(-renameToFetchDelay);
303    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
304    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
305}
306
307template<class Impl>
308void
309DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
310{
311    activeThreads = at_ptr;
312}
313
314template<class Impl>
315void
316DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
317{
318    fetchQueue = fq_ptr;
319
320    // Create wire to write information to proper place in fetch queue.
321    toDecode = fetchQueue->getWire(0);
322}
323
324template<class Impl>
325void
326DefaultFetch<Impl>::startupStage()
327{
328    assert(priorityList.empty());
329    resetStage();
330
331    // Fetch needs to start fetching instructions at the very beginning,
332    // so it must start up in active state.
333    switchToActive();
334}
335
336template<class Impl>
337void
338DefaultFetch<Impl>::resetStage()
339{
340    numInst = 0;
341    interruptPending = false;
342    cacheBlocked = false;
343
344    priorityList.clear();
345
346    // Setup PC and nextPC with initial state.
347    for (ThreadID tid = 0; tid < numThreads; ++tid) {
348        fetchStatus[tid] = Running;
349        pc[tid] = cpu->pcState(tid);
350        fetchOffset[tid] = 0;
351        macroop[tid] = NULL;
352
353        delayedCommit[tid] = false;
354        memReq[tid] = NULL;
355
356        stalls[tid].decode = false;
357        stalls[tid].drain = false;
358
359        fetchBufferPC[tid] = 0;
360        fetchBufferValid[tid] = false;
361
362        priorityList.push_back(tid);
363    }
364
365    wroteToTimeBuffer = false;
366    _status = Inactive;
367}
368
369template<class Impl>
370void
371DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
372{
373    ThreadID tid = pkt->req->threadId();
374
375    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
376    assert(!cpu->switchedOut());
377
378    // Only change the status if it's still waiting on the icache access
379    // to return.
380    if (fetchStatus[tid] != IcacheWaitResponse ||
381        pkt->req != memReq[tid]) {
382        ++fetchIcacheSquashes;
383        delete pkt->req;
384        delete pkt;
385        return;
386    }
387
388    memcpy(fetchBuffer[tid], pkt->getPtr<uint8_t>(), fetchBufferSize);
389    fetchBufferValid[tid] = true;
390
391    // Wake up the CPU (if it went to sleep and was waiting on
392    // this completion event).
393    cpu->wakeCPU();
394
395    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
396            tid);
397
398    switchToActive();
399
400    // Only switch to IcacheAccessComplete if we're not stalled as well.
401    if (checkStall(tid)) {
402        fetchStatus[tid] = Blocked;
403    } else {
404        fetchStatus[tid] = IcacheAccessComplete;
405    }
406
407    pkt->req->setAccessLatency();
408    cpu->ppInstAccessComplete->notify(pkt);
409    // Reset the mem req to NULL.
410    delete pkt->req;
411    delete pkt;
412    memReq[tid] = NULL;
413}
414
415template <class Impl>
416void
417DefaultFetch<Impl>::drainResume()
418{
419    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
420        stalls[i].drain = false;
421}
422
423template <class Impl>
424void
425DefaultFetch<Impl>::drainSanityCheck() const
426{
427    assert(isDrained());
428    assert(retryPkt == NULL);
429    assert(retryTid == InvalidThreadID);
430    assert(!cacheBlocked);
431    assert(!interruptPending);
432
433    for (ThreadID i = 0; i < numThreads; ++i) {
434        assert(!memReq[i]);
435        assert(fetchStatus[i] == Idle || stalls[i].drain);
436    }
437
438    branchPred->drainSanityCheck();
439}
440
441template <class Impl>
442bool
443DefaultFetch<Impl>::isDrained() const
444{
445    /* Make sure that threads are either idle of that the commit stage
446     * has signaled that draining has completed by setting the drain
447     * stall flag. This effectively forces the pipeline to be disabled
448     * until the whole system is drained (simulation may continue to
449     * drain other components).
450     */
451    for (ThreadID i = 0; i < numThreads; ++i) {
452        if (!(fetchStatus[i] == Idle ||
453              (fetchStatus[i] == Blocked && stalls[i].drain)))
454            return false;
455    }
456
457    /* The pipeline might start up again in the middle of the drain
458     * cycle if the finish translation event is scheduled, so make
459     * sure that's not the case.
460     */
461    return !finishTranslationEvent.scheduled();
462}
463
464template <class Impl>
465void
466DefaultFetch<Impl>::takeOverFrom()
467{
468    assert(cpu->getInstPort().isConnected());
469    resetStage();
470
471}
472
473template <class Impl>
474void
475DefaultFetch<Impl>::drainStall(ThreadID tid)
476{
477    assert(cpu->isDraining());
478    assert(!stalls[tid].drain);
479    DPRINTF(Drain, "%i: Thread drained.\n", tid);
480    stalls[tid].drain = true;
481}
482
483template <class Impl>
484void
485DefaultFetch<Impl>::wakeFromQuiesce()
486{
487    DPRINTF(Fetch, "Waking up from quiesce\n");
488    // Hopefully this is safe
489    // @todo: Allow other threads to wake from quiesce.
490    fetchStatus[0] = Running;
491}
492
493template <class Impl>
494inline void
495DefaultFetch<Impl>::switchToActive()
496{
497    if (_status == Inactive) {
498        DPRINTF(Activity, "Activating stage.\n");
499
500        cpu->activateStage(O3CPU::FetchIdx);
501
502        _status = Active;
503    }
504}
505
506template <class Impl>
507inline void
508DefaultFetch<Impl>::switchToInactive()
509{
510    if (_status == Active) {
511        DPRINTF(Activity, "Deactivating stage.\n");
512
513        cpu->deactivateStage(O3CPU::FetchIdx);
514
515        _status = Inactive;
516    }
517}
518
519template <class Impl>
520bool
521DefaultFetch<Impl>::lookupAndUpdateNextPC(
522        DynInstPtr &inst, TheISA::PCState &nextPC)
523{
524    // Do branch prediction check here.
525    // A bit of a misnomer...next_PC is actually the current PC until
526    // this function updates it.
527    bool predict_taken;
528
529    if (!inst->isControl()) {
530        TheISA::advancePC(nextPC, inst->staticInst);
531        inst->setPredTarg(nextPC);
532        inst->setPredTaken(false);
533        return false;
534    }
535
536    ThreadID tid = inst->threadNumber;
537    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
538                                        nextPC, tid);
539
540    if (predict_taken) {
541        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
542                tid, inst->seqNum, nextPC);
543    } else {
544        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
545                tid, inst->seqNum);
546    }
547
548    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
549            tid, inst->seqNum, nextPC);
550    inst->setPredTarg(nextPC);
551    inst->setPredTaken(predict_taken);
552
553    ++fetchedBranches;
554
555    if (predict_taken) {
556        ++predictedBranches;
557    }
558
559    return predict_taken;
560}
561
562template <class Impl>
563bool
564DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
565{
566    Fault fault = NoFault;
567
568    assert(!cpu->switchedOut());
569
570    // @todo: not sure if these should block translation.
571    //AlphaDep
572    if (cacheBlocked) {
573        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
574                tid);
575        return false;
576    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
577        // Hold off fetch from getting new instructions when:
578        // Cache is blocked, or
579        // while an interrupt is pending and we're not in PAL mode, or
580        // fetch is switched out.
581        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
582                tid);
583        return false;
584    }
585
586    // Align the fetch address to the start of a fetch buffer segment.
587    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
588
589    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
590            tid, fetchBufferBlockPC, vaddr);
591
592    // Setup the memReq to do a read of the first instruction's address.
593    // Set the appropriate read size and flags as well.
594    // Build request here.
595    RequestPtr mem_req =
596        new Request(tid, fetchBufferBlockPC, fetchBufferSize,
597                    Request::INST_FETCH, cpu->instMasterId(), pc,
598                    cpu->thread[tid]->contextId(), tid);
599
600    mem_req->taskId(cpu->taskId());
601
602    memReq[tid] = mem_req;
603
604    // Initiate translation of the icache block
605    fetchStatus[tid] = ItlbWait;
606    FetchTranslation *trans = new FetchTranslation(this);
607    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
608                              trans, BaseTLB::Execute);
609    return true;
610}
611
612template <class Impl>
613void
614DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
615{
616    ThreadID tid = mem_req->threadId();
617    Addr fetchBufferBlockPC = mem_req->getVaddr();
618
619    assert(!cpu->switchedOut());
620
621    // Wake up CPU if it was idle
622    cpu->wakeCPU();
623
624    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
625        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
626        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
627                tid);
628        ++fetchTlbSquashes;
629        delete mem_req;
630        return;
631    }
632
633
634    // If translation was successful, attempt to read the icache block.
635    if (fault == NoFault) {
636        // Check that we're not going off into random memory
637        // If we have, just wait around for commit to squash something and put
638        // us on the right track
639        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
640            warn("Address %#x is outside of physical memory, stopping fetch\n",
641                    mem_req->getPaddr());
642            fetchStatus[tid] = NoGoodAddr;
643            delete mem_req;
644            memReq[tid] = NULL;
645            return;
646        }
647
648        // Build packet here.
649        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
650        data_pkt->dataDynamicArray(new uint8_t[fetchBufferSize]);
651
652        fetchBufferPC[tid] = fetchBufferBlockPC;
653        fetchBufferValid[tid] = false;
654        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
655
656        fetchedCacheLines++;
657
658        // Access the cache.
659        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
660            assert(retryPkt == NULL);
661            assert(retryTid == InvalidThreadID);
662            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
663
664            fetchStatus[tid] = IcacheWaitRetry;
665            retryPkt = data_pkt;
666            retryTid = tid;
667            cacheBlocked = true;
668        } else {
669            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
670            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
671                    "response.\n", tid);
672            lastIcacheStall[tid] = curTick();
673            fetchStatus[tid] = IcacheWaitResponse;
674        }
675    } else {
676        // Don't send an instruction to decode if it can't handle it.
677        // Asynchronous nature of this function's calling means we have to
678        // check 2 signals to see if decode is stalled.
679        if (!(numInst < fetchWidth) || stalls[tid].decode ||
680            fromDecode->decodeBlock[tid]) {
681            assert(!finishTranslationEvent.scheduled());
682            finishTranslationEvent.setFault(fault);
683            finishTranslationEvent.setReq(mem_req);
684            cpu->schedule(finishTranslationEvent,
685                          cpu->clockEdge(Cycles(1)));
686            return;
687        }
688        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
689                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
690        // Translation faulted, icache request won't be sent.
691        delete mem_req;
692        memReq[tid] = NULL;
693
694        // Send the fault to commit.  This thread will not do anything
695        // until commit handles the fault.  The only other way it can
696        // wake up is if a squash comes along and changes the PC.
697        TheISA::PCState fetchPC = pc[tid];
698
699        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
700        // We will use a nop in ordier to carry the fault.
701        DynInstPtr instruction = buildInst(tid,
702                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
703                NULL, fetchPC, fetchPC, false);
704
705        instruction->setPredTarg(fetchPC);
706        instruction->fault = fault;
707        wroteToTimeBuffer = true;
708
709        DPRINTF(Activity, "Activity this cycle.\n");
710        cpu->activityThisCycle();
711
712        fetchStatus[tid] = TrapPending;
713
714        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
715        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
716                tid, fault->name(), pc[tid]);
717    }
718    _status = updateFetchStatus();
719}
720
721template <class Impl>
722inline void
723DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
724                             const DynInstPtr squashInst, ThreadID tid)
725{
726    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
727            tid, newPC);
728
729    pc[tid] = newPC;
730    fetchOffset[tid] = 0;
731    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
732        macroop[tid] = squashInst->macroop;
733    else
734        macroop[tid] = NULL;
735    decoder[tid]->reset();
736
737    // Clear the icache miss if it's outstanding.
738    if (fetchStatus[tid] == IcacheWaitResponse) {
739        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
740                tid);
741        memReq[tid] = NULL;
742    } else if (fetchStatus[tid] == ItlbWait) {
743        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
744                tid);
745        memReq[tid] = NULL;
746    }
747
748    // Get rid of the retrying packet if it was from this thread.
749    if (retryTid == tid) {
750        assert(cacheBlocked);
751        if (retryPkt) {
752            delete retryPkt->req;
753            delete retryPkt;
754        }
755        retryPkt = NULL;
756        retryTid = InvalidThreadID;
757    }
758
759    fetchStatus[tid] = Squashing;
760
761    // microops are being squashed, it is not known wheather the
762    // youngest non-squashed microop was  marked delayed commit
763    // or not. Setting the flag to true ensures that the
764    // interrupts are not handled when they cannot be, though
765    // some opportunities to handle interrupts may be missed.
766    delayedCommit[tid] = true;
767
768    ++fetchSquashCycles;
769}
770
771template<class Impl>
772void
773DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
774                                     const DynInstPtr squashInst,
775                                     const InstSeqNum seq_num, ThreadID tid)
776{
777    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
778
779    doSquash(newPC, squashInst, tid);
780
781    // Tell the CPU to remove any instructions that are in flight between
782    // fetch and decode.
783    cpu->removeInstsUntil(seq_num, tid);
784}
785
786template<class Impl>
787bool
788DefaultFetch<Impl>::checkStall(ThreadID tid) const
789{
790    bool ret_val = false;
791
792    if (cpu->contextSwitch) {
793        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
794        ret_val = true;
795    } else if (stalls[tid].drain) {
796        assert(cpu->isDraining());
797        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
798        ret_val = true;
799    } else if (stalls[tid].decode) {
800        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
801        ret_val = true;
802    }
803
804    return ret_val;
805}
806
807template<class Impl>
808typename DefaultFetch<Impl>::FetchStatus
809DefaultFetch<Impl>::updateFetchStatus()
810{
811    //Check Running
812    list<ThreadID>::iterator threads = activeThreads->begin();
813    list<ThreadID>::iterator end = activeThreads->end();
814
815    while (threads != end) {
816        ThreadID tid = *threads++;
817
818        if (fetchStatus[tid] == Running ||
819            fetchStatus[tid] == Squashing ||
820            fetchStatus[tid] == IcacheAccessComplete) {
821
822            if (_status == Inactive) {
823                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
824
825                if (fetchStatus[tid] == IcacheAccessComplete) {
826                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
827                            "completion\n",tid);
828                }
829
830                cpu->activateStage(O3CPU::FetchIdx);
831            }
832
833            return Active;
834        }
835    }
836
837    // Stage is switching from active to inactive, notify CPU of it.
838    if (_status == Active) {
839        DPRINTF(Activity, "Deactivating stage.\n");
840
841        cpu->deactivateStage(O3CPU::FetchIdx);
842    }
843
844    return Inactive;
845}
846
847template <class Impl>
848void
849DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
850                           const InstSeqNum seq_num, DynInstPtr squashInst,
851                           ThreadID tid)
852{
853    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
854
855    doSquash(newPC, squashInst, tid);
856
857    // Tell the CPU to remove any instructions that are not in the ROB.
858    cpu->removeInstsNotInROB(tid);
859}
860
861template <class Impl>
862void
863DefaultFetch<Impl>::tick()
864{
865    list<ThreadID>::iterator threads = activeThreads->begin();
866    list<ThreadID>::iterator end = activeThreads->end();
867    bool status_change = false;
868
869    wroteToTimeBuffer = false;
870
871    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
872        issuePipelinedIfetch[i] = false;
873    }
874
875    while (threads != end) {
876        ThreadID tid = *threads++;
877
878        // Check the signals for each thread to determine the proper status
879        // for each thread.
880        bool updated_status = checkSignalsAndUpdate(tid);
881        status_change =  status_change || updated_status;
882    }
883
884    DPRINTF(Fetch, "Running stage.\n");
885
886    if (FullSystem) {
887        if (fromCommit->commitInfo[0].interruptPending) {
888            interruptPending = true;
889        }
890
891        if (fromCommit->commitInfo[0].clearInterrupt) {
892            interruptPending = false;
893        }
894    }
895
896    for (threadFetched = 0; threadFetched < numFetchingThreads;
897         threadFetched++) {
898        // Fetch each of the actively fetching threads.
899        fetch(status_change);
900    }
901
902    // Record number of instructions fetched this cycle for distribution.
903    fetchNisnDist.sample(numInst);
904
905    if (status_change) {
906        // Change the fetch stage status if there was a status change.
907        _status = updateFetchStatus();
908    }
909
910    // If there was activity this cycle, inform the CPU of it.
911    if (wroteToTimeBuffer || cpu->contextSwitch) {
912        DPRINTF(Activity, "Activity this cycle.\n");
913
914        cpu->activityThisCycle();
915    }
916
917    // Issue the next I-cache request if possible.
918    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
919        if (issuePipelinedIfetch[i]) {
920            pipelineIcacheAccesses(i);
921        }
922    }
923
924    // Reset the number of the instruction we've fetched.
925    numInst = 0;
926}
927
928template <class Impl>
929bool
930DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
931{
932    // Update the per thread stall statuses.
933    if (fromDecode->decodeBlock[tid]) {
934        stalls[tid].decode = true;
935    }
936
937    if (fromDecode->decodeUnblock[tid]) {
938        assert(stalls[tid].decode);
939        assert(!fromDecode->decodeBlock[tid]);
940        stalls[tid].decode = false;
941    }
942
943    // Check squash signals from commit.
944    if (fromCommit->commitInfo[tid].squash) {
945
946        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
947                "from commit.\n",tid);
948        // In any case, squash.
949        squash(fromCommit->commitInfo[tid].pc,
950               fromCommit->commitInfo[tid].doneSeqNum,
951               fromCommit->commitInfo[tid].squashInst, tid);
952
953        // If it was a branch mispredict on a control instruction, update the
954        // branch predictor with that instruction, otherwise just kill the
955        // invalid state we generated in after sequence number
956        if (fromCommit->commitInfo[tid].mispredictInst &&
957            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
958            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
959                              fromCommit->commitInfo[tid].pc,
960                              fromCommit->commitInfo[tid].branchTaken,
961                              tid);
962        } else {
963            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
964                              tid);
965        }
966
967        return true;
968    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
969        // Update the branch predictor if it wasn't a squashed instruction
970        // that was broadcasted.
971        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
972    }
973
974    // Check squash signals from decode.
975    if (fromDecode->decodeInfo[tid].squash) {
976        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
977                "from decode.\n",tid);
978
979        // Update the branch predictor.
980        if (fromDecode->decodeInfo[tid].branchMispredict) {
981            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
982                              fromDecode->decodeInfo[tid].nextPC,
983                              fromDecode->decodeInfo[tid].branchTaken,
984                              tid);
985        } else {
986            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
987                              tid);
988        }
989
990        if (fetchStatus[tid] != Squashing) {
991
992            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
993                fromDecode->decodeInfo[tid].nextPC);
994            // Squash unless we're already squashing
995            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
996                             fromDecode->decodeInfo[tid].squashInst,
997                             fromDecode->decodeInfo[tid].doneSeqNum,
998                             tid);
999
1000            return true;
1001        }
1002    }
1003
1004    if (checkStall(tid) &&
1005        fetchStatus[tid] != IcacheWaitResponse &&
1006        fetchStatus[tid] != IcacheWaitRetry &&
1007        fetchStatus[tid] != ItlbWait &&
1008        fetchStatus[tid] != QuiescePending) {
1009        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1010
1011        fetchStatus[tid] = Blocked;
1012
1013        return true;
1014    }
1015
1016    if (fetchStatus[tid] == Blocked ||
1017        fetchStatus[tid] == Squashing) {
1018        // Switch status to running if fetch isn't being told to block or
1019        // squash this cycle.
1020        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1021                tid);
1022
1023        fetchStatus[tid] = Running;
1024
1025        return true;
1026    }
1027
1028    // If we've reached this point, we have not gotten any signals that
1029    // cause fetch to change its status.  Fetch remains the same as before.
1030    return false;
1031}
1032
1033template<class Impl>
1034typename Impl::DynInstPtr
1035DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1036                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1037                              TheISA::PCState nextPC, bool trace)
1038{
1039    // Get a sequence number.
1040    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1041
1042    // Create a new DynInst from the instruction fetched.
1043    DynInstPtr instruction =
1044        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1045    instruction->setTid(tid);
1046
1047    instruction->setASID(tid);
1048
1049    instruction->setThreadState(cpu->thread[tid]);
1050
1051    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1052            "[sn:%lli].\n", tid, thisPC.instAddr(),
1053            thisPC.microPC(), seq);
1054
1055    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1056            instruction->staticInst->
1057            disassemble(thisPC.instAddr()));
1058
1059#if TRACING_ON
1060    if (trace) {
1061        instruction->traceData =
1062            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1063                    instruction->staticInst, thisPC, curMacroop);
1064    }
1065#else
1066    instruction->traceData = NULL;
1067#endif
1068
1069    // Add instruction to the CPU's list of instructions.
1070    instruction->setInstListIt(cpu->addInst(instruction));
1071
1072    // Write the instruction to the first slot in the queue
1073    // that heads to decode.
1074    assert(numInst < fetchWidth);
1075    toDecode->insts[toDecode->size++] = instruction;
1076
1077    // Keep track of if we can take an interrupt at this boundary
1078    delayedCommit[tid] = instruction->isDelayedCommit();
1079
1080    return instruction;
1081}
1082
1083template<class Impl>
1084void
1085DefaultFetch<Impl>::fetch(bool &status_change)
1086{
1087    //////////////////////////////////////////
1088    // Start actual fetch
1089    //////////////////////////////////////////
1090    ThreadID tid = getFetchingThread(fetchPolicy);
1091
1092    assert(!cpu->switchedOut());
1093
1094    if (tid == InvalidThreadID) {
1095        // Breaks looping condition in tick()
1096        threadFetched = numFetchingThreads;
1097
1098        if (numThreads == 1) {  // @todo Per-thread stats
1099            profileStall(0);
1100        }
1101
1102        return;
1103    }
1104
1105    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1106
1107    // The current PC.
1108    TheISA::PCState thisPC = pc[tid];
1109
1110    Addr pcOffset = fetchOffset[tid];
1111    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1112
1113    bool inRom = isRomMicroPC(thisPC.microPC());
1114
1115    // If returning from the delay of a cache miss, then update the status
1116    // to running, otherwise do the cache access.  Possibly move this up
1117    // to tick() function.
1118    if (fetchStatus[tid] == IcacheAccessComplete) {
1119        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1120
1121        fetchStatus[tid] = Running;
1122        status_change = true;
1123    } else if (fetchStatus[tid] == Running) {
1124        // Align the fetch PC so its at the start of a fetch buffer segment.
1125        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1126
1127        // If buffer is no longer valid or fetchAddr has moved to point
1128        // to the next cache block, AND we have no remaining ucode
1129        // from a macro-op, then start fetch from icache.
1130        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1131            && !inRom && !macroop[tid]) {
1132            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1133                    "instruction, starting at PC %s.\n", tid, thisPC);
1134
1135            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1136
1137            if (fetchStatus[tid] == IcacheWaitResponse)
1138                ++icacheStallCycles;
1139            else if (fetchStatus[tid] == ItlbWait)
1140                ++fetchTlbCycles;
1141            else
1142                ++fetchMiscStallCycles;
1143            return;
1144        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1145            // Stall CPU if an interrupt is posted and we're not issuing
1146            // an delayed commit micro-op currently (delayed commit instructions
1147            // are not interruptable by interrupts, only faults)
1148            ++fetchMiscStallCycles;
1149            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1150            return;
1151        }
1152    } else {
1153        if (fetchStatus[tid] == Idle) {
1154            ++fetchIdleCycles;
1155            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1156        }
1157
1158        // Status is Idle, so fetch should do nothing.
1159        return;
1160    }
1161
1162    ++fetchCycles;
1163
1164    TheISA::PCState nextPC = thisPC;
1165
1166    StaticInstPtr staticInst = NULL;
1167    StaticInstPtr curMacroop = macroop[tid];
1168
1169    // If the read of the first instruction was successful, then grab the
1170    // instructions from the rest of the cache line and put them into the
1171    // queue heading to decode.
1172
1173    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1174            "decode.\n", tid);
1175
1176    // Need to keep track of whether or not a predicted branch
1177    // ended this fetch block.
1178    bool predictedBranch = false;
1179
1180    TheISA::MachInst *cacheInsts =
1181        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1182
1183    const unsigned numInsts = fetchBufferSize / instSize;
1184    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1185
1186    // Loop through instruction memory from the cache.
1187    // Keep issuing while fetchWidth is available and branch is not
1188    // predicted taken
1189    while (numInst < fetchWidth && !predictedBranch) {
1190
1191        // We need to process more memory if we aren't going to get a
1192        // StaticInst from the rom, the current macroop, or what's already
1193        // in the decoder.
1194        bool needMem = !inRom && !curMacroop &&
1195            !decoder[tid]->instReady();
1196        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1197        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1198
1199        if (needMem) {
1200            // If buffer is no longer valid or fetchAddr has moved to point
1201            // to the next cache block then start fetch from icache.
1202            if (!fetchBufferValid[tid] ||
1203                fetchBufferBlockPC != fetchBufferPC[tid])
1204                break;
1205
1206            if (blkOffset >= numInsts) {
1207                // We need to process more memory, but we've run out of the
1208                // current block.
1209                break;
1210            }
1211
1212            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1213                // Walk past any annulled delay slot instructions.
1214                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1215                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1216                    blkOffset++;
1217                    fetchAddr += instSize;
1218                }
1219                if (blkOffset >= numInsts)
1220                    break;
1221            }
1222
1223            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1224            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1225
1226            if (decoder[tid]->needMoreBytes()) {
1227                blkOffset++;
1228                fetchAddr += instSize;
1229                pcOffset += instSize;
1230            }
1231        }
1232
1233        // Extract as many instructions and/or microops as we can from
1234        // the memory we've processed so far.
1235        do {
1236            if (!(curMacroop || inRom)) {
1237                if (decoder[tid]->instReady()) {
1238                    staticInst = decoder[tid]->decode(thisPC);
1239
1240                    // Increment stat of fetched instructions.
1241                    ++fetchedInsts;
1242
1243                    if (staticInst->isMacroop()) {
1244                        curMacroop = staticInst;
1245                    } else {
1246                        pcOffset = 0;
1247                    }
1248                } else {
1249                    // We need more bytes for this instruction so blkOffset and
1250                    // pcOffset will be updated
1251                    break;
1252                }
1253            }
1254            // Whether we're moving to a new macroop because we're at the
1255            // end of the current one, or the branch predictor incorrectly
1256            // thinks we are...
1257            bool newMacro = false;
1258            if (curMacroop || inRom) {
1259                if (inRom) {
1260                    staticInst = cpu->microcodeRom.fetchMicroop(
1261                            thisPC.microPC(), curMacroop);
1262                } else {
1263                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1264                }
1265                newMacro |= staticInst->isLastMicroop();
1266            }
1267
1268            DynInstPtr instruction =
1269                buildInst(tid, staticInst, curMacroop,
1270                          thisPC, nextPC, true);
1271
1272            ppFetch->notify(instruction);
1273            numInst++;
1274
1275#if TRACING_ON
1276            if (DTRACE(O3PipeView)) {
1277                instruction->fetchTick = curTick();
1278            }
1279#endif
1280
1281            nextPC = thisPC;
1282
1283            // If we're branching after this instruction, quit fetching
1284            // from the same block.
1285            predictedBranch |= thisPC.branching();
1286            predictedBranch |=
1287                lookupAndUpdateNextPC(instruction, nextPC);
1288            if (predictedBranch) {
1289                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1290            }
1291
1292            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1293
1294            // Move to the next instruction, unless we have a branch.
1295            thisPC = nextPC;
1296            inRom = isRomMicroPC(thisPC.microPC());
1297
1298            if (newMacro) {
1299                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1300                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1301                pcOffset = 0;
1302                curMacroop = NULL;
1303            }
1304
1305            if (instruction->isQuiesce()) {
1306                DPRINTF(Fetch,
1307                        "Quiesce instruction encountered, halting fetch!");
1308                fetchStatus[tid] = QuiescePending;
1309                status_change = true;
1310                break;
1311            }
1312        } while ((curMacroop || decoder[tid]->instReady()) &&
1313                 numInst < fetchWidth);
1314    }
1315
1316    if (predictedBranch) {
1317        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1318                "instruction encountered.\n", tid);
1319    } else if (numInst >= fetchWidth) {
1320        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1321                "for this cycle.\n", tid);
1322    } else if (blkOffset >= fetchBufferSize) {
1323        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1324                "fetch buffer.\n", tid);
1325    }
1326
1327    macroop[tid] = curMacroop;
1328    fetchOffset[tid] = pcOffset;
1329
1330    if (numInst > 0) {
1331        wroteToTimeBuffer = true;
1332    }
1333
1334    pc[tid] = thisPC;
1335
1336    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1337    // a state that would preclude fetching
1338    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1339    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1340    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1341        fetchStatus[tid] != IcacheWaitResponse &&
1342        fetchStatus[tid] != ItlbWait &&
1343        fetchStatus[tid] != IcacheWaitRetry &&
1344        fetchStatus[tid] != QuiescePending &&
1345        !curMacroop;
1346}
1347
1348template<class Impl>
1349void
1350DefaultFetch<Impl>::recvRetry()
1351{
1352    if (retryPkt != NULL) {
1353        assert(cacheBlocked);
1354        assert(retryTid != InvalidThreadID);
1355        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1356
1357        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1358            fetchStatus[retryTid] = IcacheWaitResponse;
1359            retryPkt = NULL;
1360            retryTid = InvalidThreadID;
1361            cacheBlocked = false;
1362        }
1363    } else {
1364        assert(retryTid == InvalidThreadID);
1365        // Access has been squashed since it was sent out.  Just clear
1366        // the cache being blocked.
1367        cacheBlocked = false;
1368    }
1369}
1370
1371///////////////////////////////////////
1372//                                   //
1373//  SMT FETCH POLICY MAINTAINED HERE //
1374//                                   //
1375///////////////////////////////////////
1376template<class Impl>
1377ThreadID
1378DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1379{
1380    if (numThreads > 1) {
1381        switch (fetch_priority) {
1382
1383          case SingleThread:
1384            return 0;
1385
1386          case RoundRobin:
1387            return roundRobin();
1388
1389          case IQ:
1390            return iqCount();
1391
1392          case LSQ:
1393            return lsqCount();
1394
1395          case Branch:
1396            return branchCount();
1397
1398          default:
1399            return InvalidThreadID;
1400        }
1401    } else {
1402        list<ThreadID>::iterator thread = activeThreads->begin();
1403        if (thread == activeThreads->end()) {
1404            return InvalidThreadID;
1405        }
1406
1407        ThreadID tid = *thread;
1408
1409        if (fetchStatus[tid] == Running ||
1410            fetchStatus[tid] == IcacheAccessComplete ||
1411            fetchStatus[tid] == Idle) {
1412            return tid;
1413        } else {
1414            return InvalidThreadID;
1415        }
1416    }
1417}
1418
1419
1420template<class Impl>
1421ThreadID
1422DefaultFetch<Impl>::roundRobin()
1423{
1424    list<ThreadID>::iterator pri_iter = priorityList.begin();
1425    list<ThreadID>::iterator end      = priorityList.end();
1426
1427    ThreadID high_pri;
1428
1429    while (pri_iter != end) {
1430        high_pri = *pri_iter;
1431
1432        assert(high_pri <= numThreads);
1433
1434        if (fetchStatus[high_pri] == Running ||
1435            fetchStatus[high_pri] == IcacheAccessComplete ||
1436            fetchStatus[high_pri] == Idle) {
1437
1438            priorityList.erase(pri_iter);
1439            priorityList.push_back(high_pri);
1440
1441            return high_pri;
1442        }
1443
1444        pri_iter++;
1445    }
1446
1447    return InvalidThreadID;
1448}
1449
1450template<class Impl>
1451ThreadID
1452DefaultFetch<Impl>::iqCount()
1453{
1454    std::priority_queue<unsigned> PQ;
1455    std::map<unsigned, ThreadID> threadMap;
1456
1457    list<ThreadID>::iterator threads = activeThreads->begin();
1458    list<ThreadID>::iterator end = activeThreads->end();
1459
1460    while (threads != end) {
1461        ThreadID tid = *threads++;
1462        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1463
1464        PQ.push(iqCount);
1465        threadMap[iqCount] = tid;
1466    }
1467
1468    while (!PQ.empty()) {
1469        ThreadID high_pri = threadMap[PQ.top()];
1470
1471        if (fetchStatus[high_pri] == Running ||
1472            fetchStatus[high_pri] == IcacheAccessComplete ||
1473            fetchStatus[high_pri] == Idle)
1474            return high_pri;
1475        else
1476            PQ.pop();
1477
1478    }
1479
1480    return InvalidThreadID;
1481}
1482
1483template<class Impl>
1484ThreadID
1485DefaultFetch<Impl>::lsqCount()
1486{
1487    std::priority_queue<unsigned> PQ;
1488    std::map<unsigned, ThreadID> threadMap;
1489
1490    list<ThreadID>::iterator threads = activeThreads->begin();
1491    list<ThreadID>::iterator end = activeThreads->end();
1492
1493    while (threads != end) {
1494        ThreadID tid = *threads++;
1495        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1496
1497        PQ.push(ldstqCount);
1498        threadMap[ldstqCount] = tid;
1499    }
1500
1501    while (!PQ.empty()) {
1502        ThreadID high_pri = threadMap[PQ.top()];
1503
1504        if (fetchStatus[high_pri] == Running ||
1505            fetchStatus[high_pri] == IcacheAccessComplete ||
1506            fetchStatus[high_pri] == Idle)
1507            return high_pri;
1508        else
1509            PQ.pop();
1510    }
1511
1512    return InvalidThreadID;
1513}
1514
1515template<class Impl>
1516ThreadID
1517DefaultFetch<Impl>::branchCount()
1518{
1519#if 0
1520    list<ThreadID>::iterator thread = activeThreads->begin();
1521    assert(thread != activeThreads->end());
1522    ThreadID tid = *thread;
1523#endif
1524
1525    panic("Branch Count Fetch policy unimplemented\n");
1526    return InvalidThreadID;
1527}
1528
1529template<class Impl>
1530void
1531DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1532{
1533    if (!issuePipelinedIfetch[tid]) {
1534        return;
1535    }
1536
1537    // The next PC to access.
1538    TheISA::PCState thisPC = pc[tid];
1539
1540    if (isRomMicroPC(thisPC.microPC())) {
1541        return;
1542    }
1543
1544    Addr pcOffset = fetchOffset[tid];
1545    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1546
1547    // Align the fetch PC so its at the start of a fetch buffer segment.
1548    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1549
1550    // Unless buffer already got the block, fetch it from icache.
1551    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1552        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1553                "starting at PC %s.\n", tid, thisPC);
1554
1555        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1556    }
1557}
1558
1559template<class Impl>
1560void
1561DefaultFetch<Impl>::profileStall(ThreadID tid) {
1562    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1563
1564    // @todo Per-thread stats
1565
1566    if (stalls[tid].drain) {
1567        ++fetchPendingDrainCycles;
1568        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1569    } else if (activeThreads->empty()) {
1570        ++fetchNoActiveThreadStallCycles;
1571        DPRINTF(Fetch, "Fetch has no active thread!\n");
1572    } else if (fetchStatus[tid] == Blocked) {
1573        ++fetchBlockedCycles;
1574        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1575    } else if (fetchStatus[tid] == Squashing) {
1576        ++fetchSquashCycles;
1577        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1578    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1579        ++icacheStallCycles;
1580        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1581                tid);
1582    } else if (fetchStatus[tid] == ItlbWait) {
1583        ++fetchTlbCycles;
1584        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1585                "finish!\n", tid);
1586    } else if (fetchStatus[tid] == TrapPending) {
1587        ++fetchPendingTrapStallCycles;
1588        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1589                tid);
1590    } else if (fetchStatus[tid] == QuiescePending) {
1591        ++fetchPendingQuiesceStallCycles;
1592        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1593                "instruction!\n", tid);
1594    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1595        ++fetchIcacheWaitRetryStallCycles;
1596        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1597                tid);
1598    } else if (fetchStatus[tid] == NoGoodAddr) {
1599            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1600                    tid);
1601    } else {
1602        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1603             tid, fetchStatus[tid]);
1604    }
1605}
1606
1607#endif//__CPU_O3_FETCH_IMPL_HH__
1608