fetch_impl.hh revision 10231:cb2e6950956d
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#ifndef __CPU_O3_FETCH_IMPL_HH__
45#define __CPU_O3_FETCH_IMPL_HH__
46
47#include <algorithm>
48#include <cstring>
49#include <list>
50#include <map>
51#include <queue>
52
53#include "arch/isa_traits.hh"
54#include "arch/tlb.hh"
55#include "arch/utility.hh"
56#include "arch/vtophys.hh"
57#include "base/types.hh"
58#include "config/the_isa.hh"
59#include "cpu/base.hh"
60//#include "cpu/checker/cpu.hh"
61#include "cpu/o3/fetch.hh"
62#include "cpu/exetrace.hh"
63#include "debug/Activity.hh"
64#include "debug/Drain.hh"
65#include "debug/Fetch.hh"
66#include "debug/O3PipeView.hh"
67#include "mem/packet.hh"
68#include "params/DerivO3CPU.hh"
69#include "sim/byteswap.hh"
70#include "sim/core.hh"
71#include "sim/eventq.hh"
72#include "sim/full_system.hh"
73#include "sim/system.hh"
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79    : cpu(_cpu),
80      decodeToFetchDelay(params->decodeToFetchDelay),
81      renameToFetchDelay(params->renameToFetchDelay),
82      iewToFetchDelay(params->iewToFetchDelay),
83      commitToFetchDelay(params->commitToFetchDelay),
84      fetchWidth(params->fetchWidth),
85      retryPkt(NULL),
86      retryTid(InvalidThreadID),
87      cacheBlkSize(cpu->cacheLineSize()),
88      fetchBufferSize(params->fetchBufferSize),
89      fetchBufferMask(fetchBufferSize - 1),
90      numThreads(params->numThreads),
91      numFetchingThreads(params->smtNumFetchingThreads),
92      finishTranslationEvent(this)
93{
94    if (numThreads > Impl::MaxThreads)
95        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
96              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
97              numThreads, static_cast<int>(Impl::MaxThreads));
98    if (fetchWidth > Impl::MaxWidth)
99        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
100             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
101             fetchWidth, static_cast<int>(Impl::MaxWidth));
102    if (fetchBufferSize > cacheBlkSize)
103        fatal("fetch buffer size (%u bytes) is greater than the cache "
104              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
105    if (cacheBlkSize % fetchBufferSize)
106        fatal("cache block (%u bytes) is not a multiple of the "
107              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
108
109    std::string policy = params->smtFetchPolicy;
110
111    // Convert string to lowercase
112    std::transform(policy.begin(), policy.end(), policy.begin(),
113                   (int(*)(int)) tolower);
114
115    // Figure out fetch policy
116    if (policy == "singlethread") {
117        fetchPolicy = SingleThread;
118        if (numThreads > 1)
119            panic("Invalid Fetch Policy for a SMT workload.");
120    } else if (policy == "roundrobin") {
121        fetchPolicy = RoundRobin;
122        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
123    } else if (policy == "branch") {
124        fetchPolicy = Branch;
125        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
126    } else if (policy == "iqcount") {
127        fetchPolicy = IQ;
128        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
129    } else if (policy == "lsqcount") {
130        fetchPolicy = LSQ;
131        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
132    } else {
133        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
134              " RoundRobin,LSQcount,IQcount}\n");
135    }
136
137    // Get the size of an instruction.
138    instSize = sizeof(TheISA::MachInst);
139
140    for (int i = 0; i < Impl::MaxThreads; i++) {
141        decoder[i] = NULL;
142        fetchBuffer[i] = NULL;
143        fetchBufferPC[i] = 0;
144        fetchBufferValid[i] = false;
145    }
146
147    branchPred = params->branchPred;
148
149    for (ThreadID tid = 0; tid < numThreads; tid++) {
150        decoder[tid] = new TheISA::Decoder;
151        // Create space to buffer the cache line data,
152        // which may not hold the entire cache line.
153        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
154    }
155}
156
157template <class Impl>
158std::string
159DefaultFetch<Impl>::name() const
160{
161    return cpu->name() + ".fetch";
162}
163
164template <class Impl>
165void
166DefaultFetch<Impl>::regProbePoints()
167{
168    ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
169}
170
171template <class Impl>
172void
173DefaultFetch<Impl>::regStats()
174{
175    icacheStallCycles
176        .name(name() + ".icacheStallCycles")
177        .desc("Number of cycles fetch is stalled on an Icache miss")
178        .prereq(icacheStallCycles);
179
180    fetchedInsts
181        .name(name() + ".Insts")
182        .desc("Number of instructions fetch has processed")
183        .prereq(fetchedInsts);
184
185    fetchedBranches
186        .name(name() + ".Branches")
187        .desc("Number of branches that fetch encountered")
188        .prereq(fetchedBranches);
189
190    predictedBranches
191        .name(name() + ".predictedBranches")
192        .desc("Number of branches that fetch has predicted taken")
193        .prereq(predictedBranches);
194
195    fetchCycles
196        .name(name() + ".Cycles")
197        .desc("Number of cycles fetch has run and was not squashing or"
198              " blocked")
199        .prereq(fetchCycles);
200
201    fetchSquashCycles
202        .name(name() + ".SquashCycles")
203        .desc("Number of cycles fetch has spent squashing")
204        .prereq(fetchSquashCycles);
205
206    fetchTlbCycles
207        .name(name() + ".TlbCycles")
208        .desc("Number of cycles fetch has spent waiting for tlb")
209        .prereq(fetchTlbCycles);
210
211    fetchIdleCycles
212        .name(name() + ".IdleCycles")
213        .desc("Number of cycles fetch was idle")
214        .prereq(fetchIdleCycles);
215
216    fetchBlockedCycles
217        .name(name() + ".BlockedCycles")
218        .desc("Number of cycles fetch has spent blocked")
219        .prereq(fetchBlockedCycles);
220
221    fetchedCacheLines
222        .name(name() + ".CacheLines")
223        .desc("Number of cache lines fetched")
224        .prereq(fetchedCacheLines);
225
226    fetchMiscStallCycles
227        .name(name() + ".MiscStallCycles")
228        .desc("Number of cycles fetch has spent waiting on interrupts, or "
229              "bad addresses, or out of MSHRs")
230        .prereq(fetchMiscStallCycles);
231
232    fetchPendingDrainCycles
233        .name(name() + ".PendingDrainCycles")
234        .desc("Number of cycles fetch has spent waiting on pipes to drain")
235        .prereq(fetchPendingDrainCycles);
236
237    fetchNoActiveThreadStallCycles
238        .name(name() + ".NoActiveThreadStallCycles")
239        .desc("Number of stall cycles due to no active thread to fetch from")
240        .prereq(fetchNoActiveThreadStallCycles);
241
242    fetchPendingTrapStallCycles
243        .name(name() + ".PendingTrapStallCycles")
244        .desc("Number of stall cycles due to pending traps")
245        .prereq(fetchPendingTrapStallCycles);
246
247    fetchPendingQuiesceStallCycles
248        .name(name() + ".PendingQuiesceStallCycles")
249        .desc("Number of stall cycles due to pending quiesce instructions")
250        .prereq(fetchPendingQuiesceStallCycles);
251
252    fetchIcacheWaitRetryStallCycles
253        .name(name() + ".IcacheWaitRetryStallCycles")
254        .desc("Number of stall cycles due to full MSHR")
255        .prereq(fetchIcacheWaitRetryStallCycles);
256
257    fetchIcacheSquashes
258        .name(name() + ".IcacheSquashes")
259        .desc("Number of outstanding Icache misses that were squashed")
260        .prereq(fetchIcacheSquashes);
261
262    fetchTlbSquashes
263        .name(name() + ".ItlbSquashes")
264        .desc("Number of outstanding ITLB misses that were squashed")
265        .prereq(fetchTlbSquashes);
266
267    fetchNisnDist
268        .init(/* base value */ 0,
269              /* last value */ fetchWidth,
270              /* bucket size */ 1)
271        .name(name() + ".rateDist")
272        .desc("Number of instructions fetched each cycle (Total)")
273        .flags(Stats::pdf);
274
275    idleRate
276        .name(name() + ".idleRate")
277        .desc("Percent of cycles fetch was idle")
278        .prereq(idleRate);
279    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
280
281    branchRate
282        .name(name() + ".branchRate")
283        .desc("Number of branch fetches per cycle")
284        .flags(Stats::total);
285    branchRate = fetchedBranches / cpu->numCycles;
286
287    fetchRate
288        .name(name() + ".rate")
289        .desc("Number of inst fetches per cycle")
290        .flags(Stats::total);
291    fetchRate = fetchedInsts / cpu->numCycles;
292}
293
294template<class Impl>
295void
296DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
297{
298    timeBuffer = time_buffer;
299
300    // Create wires to get information from proper places in time buffer.
301    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
302    fromRename = timeBuffer->getWire(-renameToFetchDelay);
303    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
304    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
305}
306
307template<class Impl>
308void
309DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
310{
311    activeThreads = at_ptr;
312}
313
314template<class Impl>
315void
316DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
317{
318    fetchQueue = fq_ptr;
319
320    // Create wire to write information to proper place in fetch queue.
321    toDecode = fetchQueue->getWire(0);
322}
323
324template<class Impl>
325void
326DefaultFetch<Impl>::startupStage()
327{
328    assert(priorityList.empty());
329    resetStage();
330
331    // Fetch needs to start fetching instructions at the very beginning,
332    // so it must start up in active state.
333    switchToActive();
334}
335
336template<class Impl>
337void
338DefaultFetch<Impl>::resetStage()
339{
340    numInst = 0;
341    interruptPending = false;
342    cacheBlocked = false;
343
344    priorityList.clear();
345
346    // Setup PC and nextPC with initial state.
347    for (ThreadID tid = 0; tid < numThreads; ++tid) {
348        fetchStatus[tid] = Running;
349        pc[tid] = cpu->pcState(tid);
350        fetchOffset[tid] = 0;
351        macroop[tid] = NULL;
352
353        delayedCommit[tid] = false;
354        memReq[tid] = NULL;
355
356        stalls[tid].decode = false;
357        stalls[tid].rename = false;
358        stalls[tid].iew = false;
359        stalls[tid].commit = false;
360        stalls[tid].drain = false;
361
362        fetchBufferPC[tid] = 0;
363        fetchBufferValid[tid] = false;
364
365        priorityList.push_back(tid);
366    }
367
368    wroteToTimeBuffer = false;
369    _status = Inactive;
370}
371
372template<class Impl>
373void
374DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
375{
376    ThreadID tid = pkt->req->threadId();
377
378    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
379    assert(!cpu->switchedOut());
380
381    // Only change the status if it's still waiting on the icache access
382    // to return.
383    if (fetchStatus[tid] != IcacheWaitResponse ||
384        pkt->req != memReq[tid]) {
385        ++fetchIcacheSquashes;
386        delete pkt->req;
387        delete pkt;
388        return;
389    }
390
391    memcpy(fetchBuffer[tid], pkt->getPtr<uint8_t>(), fetchBufferSize);
392    fetchBufferValid[tid] = true;
393
394    // Wake up the CPU (if it went to sleep and was waiting on
395    // this completion event).
396    cpu->wakeCPU();
397
398    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
399            tid);
400
401    switchToActive();
402
403    // Only switch to IcacheAccessComplete if we're not stalled as well.
404    if (checkStall(tid)) {
405        fetchStatus[tid] = Blocked;
406    } else {
407        fetchStatus[tid] = IcacheAccessComplete;
408    }
409
410    pkt->req->setAccessLatency();
411    cpu->ppInstAccessComplete->notify(pkt);
412    // Reset the mem req to NULL.
413    delete pkt->req;
414    delete pkt;
415    memReq[tid] = NULL;
416}
417
418template <class Impl>
419void
420DefaultFetch<Impl>::drainResume()
421{
422    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
423        stalls[i].drain = false;
424}
425
426template <class Impl>
427void
428DefaultFetch<Impl>::drainSanityCheck() const
429{
430    assert(isDrained());
431    assert(retryPkt == NULL);
432    assert(retryTid == InvalidThreadID);
433    assert(!cacheBlocked);
434    assert(!interruptPending);
435
436    for (ThreadID i = 0; i < numThreads; ++i) {
437        assert(!memReq[i]);
438        assert(!stalls[i].decode);
439        assert(!stalls[i].rename);
440        assert(!stalls[i].iew);
441        assert(!stalls[i].commit);
442        assert(fetchStatus[i] == Idle || stalls[i].drain);
443    }
444
445    branchPred->drainSanityCheck();
446}
447
448template <class Impl>
449bool
450DefaultFetch<Impl>::isDrained() const
451{
452    /* Make sure that threads are either idle of that the commit stage
453     * has signaled that draining has completed by setting the drain
454     * stall flag. This effectively forces the pipeline to be disabled
455     * until the whole system is drained (simulation may continue to
456     * drain other components).
457     */
458    for (ThreadID i = 0; i < numThreads; ++i) {
459        if (!(fetchStatus[i] == Idle ||
460              (fetchStatus[i] == Blocked && stalls[i].drain)))
461            return false;
462    }
463
464    /* The pipeline might start up again in the middle of the drain
465     * cycle if the finish translation event is scheduled, so make
466     * sure that's not the case.
467     */
468    return !finishTranslationEvent.scheduled();
469}
470
471template <class Impl>
472void
473DefaultFetch<Impl>::takeOverFrom()
474{
475    assert(cpu->getInstPort().isConnected());
476    resetStage();
477
478}
479
480template <class Impl>
481void
482DefaultFetch<Impl>::drainStall(ThreadID tid)
483{
484    assert(cpu->isDraining());
485    assert(!stalls[tid].drain);
486    DPRINTF(Drain, "%i: Thread drained.\n", tid);
487    stalls[tid].drain = true;
488}
489
490template <class Impl>
491void
492DefaultFetch<Impl>::wakeFromQuiesce()
493{
494    DPRINTF(Fetch, "Waking up from quiesce\n");
495    // Hopefully this is safe
496    // @todo: Allow other threads to wake from quiesce.
497    fetchStatus[0] = Running;
498}
499
500template <class Impl>
501inline void
502DefaultFetch<Impl>::switchToActive()
503{
504    if (_status == Inactive) {
505        DPRINTF(Activity, "Activating stage.\n");
506
507        cpu->activateStage(O3CPU::FetchIdx);
508
509        _status = Active;
510    }
511}
512
513template <class Impl>
514inline void
515DefaultFetch<Impl>::switchToInactive()
516{
517    if (_status == Active) {
518        DPRINTF(Activity, "Deactivating stage.\n");
519
520        cpu->deactivateStage(O3CPU::FetchIdx);
521
522        _status = Inactive;
523    }
524}
525
526template <class Impl>
527bool
528DefaultFetch<Impl>::lookupAndUpdateNextPC(
529        DynInstPtr &inst, TheISA::PCState &nextPC)
530{
531    // Do branch prediction check here.
532    // A bit of a misnomer...next_PC is actually the current PC until
533    // this function updates it.
534    bool predict_taken;
535
536    if (!inst->isControl()) {
537        TheISA::advancePC(nextPC, inst->staticInst);
538        inst->setPredTarg(nextPC);
539        inst->setPredTaken(false);
540        return false;
541    }
542
543    ThreadID tid = inst->threadNumber;
544    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
545                                        nextPC, tid);
546
547    if (predict_taken) {
548        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
549                tid, inst->seqNum, nextPC);
550    } else {
551        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
552                tid, inst->seqNum);
553    }
554
555    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
556            tid, inst->seqNum, nextPC);
557    inst->setPredTarg(nextPC);
558    inst->setPredTaken(predict_taken);
559
560    ++fetchedBranches;
561
562    if (predict_taken) {
563        ++predictedBranches;
564    }
565
566    return predict_taken;
567}
568
569template <class Impl>
570bool
571DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
572{
573    Fault fault = NoFault;
574
575    assert(!cpu->switchedOut());
576
577    // @todo: not sure if these should block translation.
578    //AlphaDep
579    if (cacheBlocked) {
580        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
581                tid);
582        return false;
583    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
584        // Hold off fetch from getting new instructions when:
585        // Cache is blocked, or
586        // while an interrupt is pending and we're not in PAL mode, or
587        // fetch is switched out.
588        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
589                tid);
590        return false;
591    }
592
593    // Align the fetch address to the start of a fetch buffer segment.
594    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
595
596    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
597            tid, fetchBufferBlockPC, vaddr);
598
599    // Setup the memReq to do a read of the first instruction's address.
600    // Set the appropriate read size and flags as well.
601    // Build request here.
602    RequestPtr mem_req =
603        new Request(tid, fetchBufferBlockPC, fetchBufferSize,
604                    Request::INST_FETCH, cpu->instMasterId(), pc,
605                    cpu->thread[tid]->contextId(), tid);
606
607    mem_req->taskId(cpu->taskId());
608
609    memReq[tid] = mem_req;
610
611    // Initiate translation of the icache block
612    fetchStatus[tid] = ItlbWait;
613    FetchTranslation *trans = new FetchTranslation(this);
614    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
615                              trans, BaseTLB::Execute);
616    return true;
617}
618
619template <class Impl>
620void
621DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
622{
623    ThreadID tid = mem_req->threadId();
624    Addr fetchBufferBlockPC = mem_req->getVaddr();
625
626    assert(!cpu->switchedOut());
627
628    // Wake up CPU if it was idle
629    cpu->wakeCPU();
630
631    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
632        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
633        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
634                tid);
635        ++fetchTlbSquashes;
636        delete mem_req;
637        return;
638    }
639
640
641    // If translation was successful, attempt to read the icache block.
642    if (fault == NoFault) {
643        // Check that we're not going off into random memory
644        // If we have, just wait around for commit to squash something and put
645        // us on the right track
646        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
647            warn("Address %#x is outside of physical memory, stopping fetch\n",
648                    mem_req->getPaddr());
649            fetchStatus[tid] = NoGoodAddr;
650            delete mem_req;
651            memReq[tid] = NULL;
652            return;
653        }
654
655        // Build packet here.
656        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
657        data_pkt->dataDynamicArray(new uint8_t[fetchBufferSize]);
658
659        fetchBufferPC[tid] = fetchBufferBlockPC;
660        fetchBufferValid[tid] = false;
661        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
662
663        fetchedCacheLines++;
664
665        // Access the cache.
666        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
667            assert(retryPkt == NULL);
668            assert(retryTid == InvalidThreadID);
669            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
670
671            fetchStatus[tid] = IcacheWaitRetry;
672            retryPkt = data_pkt;
673            retryTid = tid;
674            cacheBlocked = true;
675        } else {
676            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
677            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
678                    "response.\n", tid);
679            lastIcacheStall[tid] = curTick();
680            fetchStatus[tid] = IcacheWaitResponse;
681        }
682    } else {
683        if (!(numInst < fetchWidth)) {
684            assert(!finishTranslationEvent.scheduled());
685            finishTranslationEvent.setFault(fault);
686            finishTranslationEvent.setReq(mem_req);
687            cpu->schedule(finishTranslationEvent,
688                          cpu->clockEdge(Cycles(1)));
689            return;
690        }
691        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
692                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
693        // Translation faulted, icache request won't be sent.
694        delete mem_req;
695        memReq[tid] = NULL;
696
697        // Send the fault to commit.  This thread will not do anything
698        // until commit handles the fault.  The only other way it can
699        // wake up is if a squash comes along and changes the PC.
700        TheISA::PCState fetchPC = pc[tid];
701
702        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
703        // We will use a nop in ordier to carry the fault.
704        DynInstPtr instruction = buildInst(tid,
705                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
706                NULL, fetchPC, fetchPC, false);
707
708        instruction->setPredTarg(fetchPC);
709        instruction->fault = fault;
710        wroteToTimeBuffer = true;
711
712        DPRINTF(Activity, "Activity this cycle.\n");
713        cpu->activityThisCycle();
714
715        fetchStatus[tid] = TrapPending;
716
717        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
718        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
719                tid, fault->name(), pc[tid]);
720    }
721    _status = updateFetchStatus();
722}
723
724template <class Impl>
725inline void
726DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
727                             const DynInstPtr squashInst, ThreadID tid)
728{
729    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
730            tid, newPC);
731
732    pc[tid] = newPC;
733    fetchOffset[tid] = 0;
734    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
735        macroop[tid] = squashInst->macroop;
736    else
737        macroop[tid] = NULL;
738    decoder[tid]->reset();
739
740    // Clear the icache miss if it's outstanding.
741    if (fetchStatus[tid] == IcacheWaitResponse) {
742        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
743                tid);
744        memReq[tid] = NULL;
745    } else if (fetchStatus[tid] == ItlbWait) {
746        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
747                tid);
748        memReq[tid] = NULL;
749    }
750
751    // Get rid of the retrying packet if it was from this thread.
752    if (retryTid == tid) {
753        assert(cacheBlocked);
754        if (retryPkt) {
755            delete retryPkt->req;
756            delete retryPkt;
757        }
758        retryPkt = NULL;
759        retryTid = InvalidThreadID;
760    }
761
762    fetchStatus[tid] = Squashing;
763
764    // microops are being squashed, it is not known wheather the
765    // youngest non-squashed microop was  marked delayed commit
766    // or not. Setting the flag to true ensures that the
767    // interrupts are not handled when they cannot be, though
768    // some opportunities to handle interrupts may be missed.
769    delayedCommit[tid] = true;
770
771    ++fetchSquashCycles;
772}
773
774template<class Impl>
775void
776DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
777                                     const DynInstPtr squashInst,
778                                     const InstSeqNum seq_num, ThreadID tid)
779{
780    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
781
782    doSquash(newPC, squashInst, tid);
783
784    // Tell the CPU to remove any instructions that are in flight between
785    // fetch and decode.
786    cpu->removeInstsUntil(seq_num, tid);
787}
788
789template<class Impl>
790bool
791DefaultFetch<Impl>::checkStall(ThreadID tid) const
792{
793    bool ret_val = false;
794
795    if (cpu->contextSwitch) {
796        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
797        ret_val = true;
798    } else if (stalls[tid].drain) {
799        assert(cpu->isDraining());
800        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
801        ret_val = true;
802    } else if (stalls[tid].decode) {
803        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
804        ret_val = true;
805    } else if (stalls[tid].rename) {
806        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
807        ret_val = true;
808    } else if (stalls[tid].iew) {
809        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
810        ret_val = true;
811    } else if (stalls[tid].commit) {
812        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
813        ret_val = true;
814    }
815
816    return ret_val;
817}
818
819template<class Impl>
820typename DefaultFetch<Impl>::FetchStatus
821DefaultFetch<Impl>::updateFetchStatus()
822{
823    //Check Running
824    list<ThreadID>::iterator threads = activeThreads->begin();
825    list<ThreadID>::iterator end = activeThreads->end();
826
827    while (threads != end) {
828        ThreadID tid = *threads++;
829
830        if (fetchStatus[tid] == Running ||
831            fetchStatus[tid] == Squashing ||
832            fetchStatus[tid] == IcacheAccessComplete) {
833
834            if (_status == Inactive) {
835                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
836
837                if (fetchStatus[tid] == IcacheAccessComplete) {
838                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
839                            "completion\n",tid);
840                }
841
842                cpu->activateStage(O3CPU::FetchIdx);
843            }
844
845            return Active;
846        }
847    }
848
849    // Stage is switching from active to inactive, notify CPU of it.
850    if (_status == Active) {
851        DPRINTF(Activity, "Deactivating stage.\n");
852
853        cpu->deactivateStage(O3CPU::FetchIdx);
854    }
855
856    return Inactive;
857}
858
859template <class Impl>
860void
861DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
862                           const InstSeqNum seq_num, DynInstPtr squashInst,
863                           ThreadID tid)
864{
865    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
866
867    doSquash(newPC, squashInst, tid);
868
869    // Tell the CPU to remove any instructions that are not in the ROB.
870    cpu->removeInstsNotInROB(tid);
871}
872
873template <class Impl>
874void
875DefaultFetch<Impl>::tick()
876{
877    list<ThreadID>::iterator threads = activeThreads->begin();
878    list<ThreadID>::iterator end = activeThreads->end();
879    bool status_change = false;
880
881    wroteToTimeBuffer = false;
882
883    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
884        issuePipelinedIfetch[i] = false;
885    }
886
887    while (threads != end) {
888        ThreadID tid = *threads++;
889
890        // Check the signals for each thread to determine the proper status
891        // for each thread.
892        bool updated_status = checkSignalsAndUpdate(tid);
893        status_change =  status_change || updated_status;
894    }
895
896    DPRINTF(Fetch, "Running stage.\n");
897
898    if (FullSystem) {
899        if (fromCommit->commitInfo[0].interruptPending) {
900            interruptPending = true;
901        }
902
903        if (fromCommit->commitInfo[0].clearInterrupt) {
904            interruptPending = false;
905        }
906    }
907
908    for (threadFetched = 0; threadFetched < numFetchingThreads;
909         threadFetched++) {
910        // Fetch each of the actively fetching threads.
911        fetch(status_change);
912    }
913
914    // Record number of instructions fetched this cycle for distribution.
915    fetchNisnDist.sample(numInst);
916
917    if (status_change) {
918        // Change the fetch stage status if there was a status change.
919        _status = updateFetchStatus();
920    }
921
922    // If there was activity this cycle, inform the CPU of it.
923    if (wroteToTimeBuffer || cpu->contextSwitch) {
924        DPRINTF(Activity, "Activity this cycle.\n");
925
926        cpu->activityThisCycle();
927    }
928
929    // Issue the next I-cache request if possible.
930    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
931        if (issuePipelinedIfetch[i]) {
932            pipelineIcacheAccesses(i);
933        }
934    }
935
936    // Reset the number of the instruction we've fetched.
937    numInst = 0;
938}
939
940template <class Impl>
941bool
942DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
943{
944    // Update the per thread stall statuses.
945    if (fromDecode->decodeBlock[tid]) {
946        stalls[tid].decode = true;
947    }
948
949    if (fromDecode->decodeUnblock[tid]) {
950        assert(stalls[tid].decode);
951        assert(!fromDecode->decodeBlock[tid]);
952        stalls[tid].decode = false;
953    }
954
955    if (fromRename->renameBlock[tid]) {
956        stalls[tid].rename = true;
957    }
958
959    if (fromRename->renameUnblock[tid]) {
960        assert(stalls[tid].rename);
961        assert(!fromRename->renameBlock[tid]);
962        stalls[tid].rename = false;
963    }
964
965    if (fromIEW->iewBlock[tid]) {
966        stalls[tid].iew = true;
967    }
968
969    if (fromIEW->iewUnblock[tid]) {
970        assert(stalls[tid].iew);
971        assert(!fromIEW->iewBlock[tid]);
972        stalls[tid].iew = false;
973    }
974
975    if (fromCommit->commitBlock[tid]) {
976        stalls[tid].commit = true;
977    }
978
979    if (fromCommit->commitUnblock[tid]) {
980        assert(stalls[tid].commit);
981        assert(!fromCommit->commitBlock[tid]);
982        stalls[tid].commit = false;
983    }
984
985    // Check squash signals from commit.
986    if (fromCommit->commitInfo[tid].squash) {
987
988        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
989                "from commit.\n",tid);
990        // In any case, squash.
991        squash(fromCommit->commitInfo[tid].pc,
992               fromCommit->commitInfo[tid].doneSeqNum,
993               fromCommit->commitInfo[tid].squashInst, tid);
994
995        // If it was a branch mispredict on a control instruction, update the
996        // branch predictor with that instruction, otherwise just kill the
997        // invalid state we generated in after sequence number
998        if (fromCommit->commitInfo[tid].mispredictInst &&
999            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1000            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1001                              fromCommit->commitInfo[tid].pc,
1002                              fromCommit->commitInfo[tid].branchTaken,
1003                              tid);
1004        } else {
1005            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1006                              tid);
1007        }
1008
1009        return true;
1010    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1011        // Update the branch predictor if it wasn't a squashed instruction
1012        // that was broadcasted.
1013        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1014    }
1015
1016    // Check ROB squash signals from commit.
1017    if (fromCommit->commitInfo[tid].robSquashing) {
1018        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1019
1020        // Continue to squash.
1021        fetchStatus[tid] = Squashing;
1022
1023        return true;
1024    }
1025
1026    // Check squash signals from decode.
1027    if (fromDecode->decodeInfo[tid].squash) {
1028        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1029                "from decode.\n",tid);
1030
1031        // Update the branch predictor.
1032        if (fromDecode->decodeInfo[tid].branchMispredict) {
1033            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1034                              fromDecode->decodeInfo[tid].nextPC,
1035                              fromDecode->decodeInfo[tid].branchTaken,
1036                              tid);
1037        } else {
1038            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1039                              tid);
1040        }
1041
1042        if (fetchStatus[tid] != Squashing) {
1043
1044            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1045                fromDecode->decodeInfo[tid].nextPC);
1046            // Squash unless we're already squashing
1047            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1048                             fromDecode->decodeInfo[tid].squashInst,
1049                             fromDecode->decodeInfo[tid].doneSeqNum,
1050                             tid);
1051
1052            return true;
1053        }
1054    }
1055
1056    if (checkStall(tid) &&
1057        fetchStatus[tid] != IcacheWaitResponse &&
1058        fetchStatus[tid] != IcacheWaitRetry &&
1059        fetchStatus[tid] != ItlbWait &&
1060        fetchStatus[tid] != QuiescePending) {
1061        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1062
1063        fetchStatus[tid] = Blocked;
1064
1065        return true;
1066    }
1067
1068    if (fetchStatus[tid] == Blocked ||
1069        fetchStatus[tid] == Squashing) {
1070        // Switch status to running if fetch isn't being told to block or
1071        // squash this cycle.
1072        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1073                tid);
1074
1075        fetchStatus[tid] = Running;
1076
1077        return true;
1078    }
1079
1080    // If we've reached this point, we have not gotten any signals that
1081    // cause fetch to change its status.  Fetch remains the same as before.
1082    return false;
1083}
1084
1085template<class Impl>
1086typename Impl::DynInstPtr
1087DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1088                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1089                              TheISA::PCState nextPC, bool trace)
1090{
1091    // Get a sequence number.
1092    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1093
1094    // Create a new DynInst from the instruction fetched.
1095    DynInstPtr instruction =
1096        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1097    instruction->setTid(tid);
1098
1099    instruction->setASID(tid);
1100
1101    instruction->setThreadState(cpu->thread[tid]);
1102
1103    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1104            "[sn:%lli].\n", tid, thisPC.instAddr(),
1105            thisPC.microPC(), seq);
1106
1107    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1108            instruction->staticInst->
1109            disassemble(thisPC.instAddr()));
1110
1111#if TRACING_ON
1112    if (trace) {
1113        instruction->traceData =
1114            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1115                    instruction->staticInst, thisPC, curMacroop);
1116    }
1117#else
1118    instruction->traceData = NULL;
1119#endif
1120
1121    // Add instruction to the CPU's list of instructions.
1122    instruction->setInstListIt(cpu->addInst(instruction));
1123
1124    // Write the instruction to the first slot in the queue
1125    // that heads to decode.
1126    assert(numInst < fetchWidth);
1127    toDecode->insts[toDecode->size++] = instruction;
1128
1129    // Keep track of if we can take an interrupt at this boundary
1130    delayedCommit[tid] = instruction->isDelayedCommit();
1131
1132    return instruction;
1133}
1134
1135template<class Impl>
1136void
1137DefaultFetch<Impl>::fetch(bool &status_change)
1138{
1139    //////////////////////////////////////////
1140    // Start actual fetch
1141    //////////////////////////////////////////
1142    ThreadID tid = getFetchingThread(fetchPolicy);
1143
1144    assert(!cpu->switchedOut());
1145
1146    if (tid == InvalidThreadID) {
1147        // Breaks looping condition in tick()
1148        threadFetched = numFetchingThreads;
1149
1150        if (numThreads == 1) {  // @todo Per-thread stats
1151            profileStall(0);
1152        }
1153
1154        return;
1155    }
1156
1157    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1158
1159    // The current PC.
1160    TheISA::PCState thisPC = pc[tid];
1161
1162    Addr pcOffset = fetchOffset[tid];
1163    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1164
1165    bool inRom = isRomMicroPC(thisPC.microPC());
1166
1167    // If returning from the delay of a cache miss, then update the status
1168    // to running, otherwise do the cache access.  Possibly move this up
1169    // to tick() function.
1170    if (fetchStatus[tid] == IcacheAccessComplete) {
1171        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1172
1173        fetchStatus[tid] = Running;
1174        status_change = true;
1175    } else if (fetchStatus[tid] == Running) {
1176        // Align the fetch PC so its at the start of a fetch buffer segment.
1177        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1178
1179        // If buffer is no longer valid or fetchAddr has moved to point
1180        // to the next cache block, AND we have no remaining ucode
1181        // from a macro-op, then start fetch from icache.
1182        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1183            && !inRom && !macroop[tid]) {
1184            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1185                    "instruction, starting at PC %s.\n", tid, thisPC);
1186
1187            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1188
1189            if (fetchStatus[tid] == IcacheWaitResponse)
1190                ++icacheStallCycles;
1191            else if (fetchStatus[tid] == ItlbWait)
1192                ++fetchTlbCycles;
1193            else
1194                ++fetchMiscStallCycles;
1195            return;
1196        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1197            // Stall CPU if an interrupt is posted and we're not issuing
1198            // an delayed commit micro-op currently (delayed commit instructions
1199            // are not interruptable by interrupts, only faults)
1200            ++fetchMiscStallCycles;
1201            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1202            return;
1203        }
1204    } else {
1205        if (fetchStatus[tid] == Idle) {
1206            ++fetchIdleCycles;
1207            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1208        }
1209
1210        // Status is Idle, so fetch should do nothing.
1211        return;
1212    }
1213
1214    ++fetchCycles;
1215
1216    TheISA::PCState nextPC = thisPC;
1217
1218    StaticInstPtr staticInst = NULL;
1219    StaticInstPtr curMacroop = macroop[tid];
1220
1221    // If the read of the first instruction was successful, then grab the
1222    // instructions from the rest of the cache line and put them into the
1223    // queue heading to decode.
1224
1225    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1226            "decode.\n", tid);
1227
1228    // Need to keep track of whether or not a predicted branch
1229    // ended this fetch block.
1230    bool predictedBranch = false;
1231
1232    TheISA::MachInst *cacheInsts =
1233        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1234
1235    const unsigned numInsts = fetchBufferSize / instSize;
1236    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1237
1238    // Loop through instruction memory from the cache.
1239    // Keep issuing while fetchWidth is available and branch is not
1240    // predicted taken
1241    while (numInst < fetchWidth && !predictedBranch) {
1242
1243        // We need to process more memory if we aren't going to get a
1244        // StaticInst from the rom, the current macroop, or what's already
1245        // in the decoder.
1246        bool needMem = !inRom && !curMacroop &&
1247            !decoder[tid]->instReady();
1248        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1249        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1250
1251        if (needMem) {
1252            // If buffer is no longer valid or fetchAddr has moved to point
1253            // to the next cache block then start fetch from icache.
1254            if (!fetchBufferValid[tid] ||
1255                fetchBufferBlockPC != fetchBufferPC[tid])
1256                break;
1257
1258            if (blkOffset >= numInsts) {
1259                // We need to process more memory, but we've run out of the
1260                // current block.
1261                break;
1262            }
1263
1264            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1265                // Walk past any annulled delay slot instructions.
1266                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1267                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1268                    blkOffset++;
1269                    fetchAddr += instSize;
1270                }
1271                if (blkOffset >= numInsts)
1272                    break;
1273            }
1274
1275            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1276            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1277
1278            if (decoder[tid]->needMoreBytes()) {
1279                blkOffset++;
1280                fetchAddr += instSize;
1281                pcOffset += instSize;
1282            }
1283        }
1284
1285        // Extract as many instructions and/or microops as we can from
1286        // the memory we've processed so far.
1287        do {
1288            if (!(curMacroop || inRom)) {
1289                if (decoder[tid]->instReady()) {
1290                    staticInst = decoder[tid]->decode(thisPC);
1291
1292                    // Increment stat of fetched instructions.
1293                    ++fetchedInsts;
1294
1295                    if (staticInst->isMacroop()) {
1296                        curMacroop = staticInst;
1297                    } else {
1298                        pcOffset = 0;
1299                    }
1300                } else {
1301                    // We need more bytes for this instruction so blkOffset and
1302                    // pcOffset will be updated
1303                    break;
1304                }
1305            }
1306            // Whether we're moving to a new macroop because we're at the
1307            // end of the current one, or the branch predictor incorrectly
1308            // thinks we are...
1309            bool newMacro = false;
1310            if (curMacroop || inRom) {
1311                if (inRom) {
1312                    staticInst = cpu->microcodeRom.fetchMicroop(
1313                            thisPC.microPC(), curMacroop);
1314                } else {
1315                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1316                }
1317                newMacro |= staticInst->isLastMicroop();
1318            }
1319
1320            DynInstPtr instruction =
1321                buildInst(tid, staticInst, curMacroop,
1322                          thisPC, nextPC, true);
1323
1324            ppFetch->notify(instruction);
1325            numInst++;
1326
1327#if TRACING_ON
1328            if (DTRACE(O3PipeView)) {
1329                instruction->fetchTick = curTick();
1330            }
1331#endif
1332
1333            nextPC = thisPC;
1334
1335            // If we're branching after this instruction, quite fetching
1336            // from the same block then.
1337            predictedBranch |= thisPC.branching();
1338            predictedBranch |=
1339                lookupAndUpdateNextPC(instruction, nextPC);
1340            if (predictedBranch) {
1341                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1342            }
1343
1344            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1345
1346            // Move to the next instruction, unless we have a branch.
1347            thisPC = nextPC;
1348            inRom = isRomMicroPC(thisPC.microPC());
1349
1350            if (newMacro) {
1351                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1352                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1353                pcOffset = 0;
1354                curMacroop = NULL;
1355            }
1356
1357            if (instruction->isQuiesce()) {
1358                DPRINTF(Fetch,
1359                        "Quiesce instruction encountered, halting fetch!");
1360                fetchStatus[tid] = QuiescePending;
1361                status_change = true;
1362                break;
1363            }
1364        } while ((curMacroop || decoder[tid]->instReady()) &&
1365                 numInst < fetchWidth);
1366    }
1367
1368    if (predictedBranch) {
1369        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1370                "instruction encountered.\n", tid);
1371    } else if (numInst >= fetchWidth) {
1372        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1373                "for this cycle.\n", tid);
1374    } else if (blkOffset >= fetchBufferSize) {
1375        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1376                "fetch buffer.\n", tid);
1377    }
1378
1379    macroop[tid] = curMacroop;
1380    fetchOffset[tid] = pcOffset;
1381
1382    if (numInst > 0) {
1383        wroteToTimeBuffer = true;
1384    }
1385
1386    pc[tid] = thisPC;
1387
1388    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1389    // a state that would preclude fetching
1390    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1391    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1392    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1393        fetchStatus[tid] != IcacheWaitResponse &&
1394        fetchStatus[tid] != ItlbWait &&
1395        fetchStatus[tid] != IcacheWaitRetry &&
1396        fetchStatus[tid] != QuiescePending &&
1397        !curMacroop;
1398}
1399
1400template<class Impl>
1401void
1402DefaultFetch<Impl>::recvRetry()
1403{
1404    if (retryPkt != NULL) {
1405        assert(cacheBlocked);
1406        assert(retryTid != InvalidThreadID);
1407        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1408
1409        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1410            fetchStatus[retryTid] = IcacheWaitResponse;
1411            retryPkt = NULL;
1412            retryTid = InvalidThreadID;
1413            cacheBlocked = false;
1414        }
1415    } else {
1416        assert(retryTid == InvalidThreadID);
1417        // Access has been squashed since it was sent out.  Just clear
1418        // the cache being blocked.
1419        cacheBlocked = false;
1420    }
1421}
1422
1423///////////////////////////////////////
1424//                                   //
1425//  SMT FETCH POLICY MAINTAINED HERE //
1426//                                   //
1427///////////////////////////////////////
1428template<class Impl>
1429ThreadID
1430DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1431{
1432    if (numThreads > 1) {
1433        switch (fetch_priority) {
1434
1435          case SingleThread:
1436            return 0;
1437
1438          case RoundRobin:
1439            return roundRobin();
1440
1441          case IQ:
1442            return iqCount();
1443
1444          case LSQ:
1445            return lsqCount();
1446
1447          case Branch:
1448            return branchCount();
1449
1450          default:
1451            return InvalidThreadID;
1452        }
1453    } else {
1454        list<ThreadID>::iterator thread = activeThreads->begin();
1455        if (thread == activeThreads->end()) {
1456            return InvalidThreadID;
1457        }
1458
1459        ThreadID tid = *thread;
1460
1461        if (fetchStatus[tid] == Running ||
1462            fetchStatus[tid] == IcacheAccessComplete ||
1463            fetchStatus[tid] == Idle) {
1464            return tid;
1465        } else {
1466            return InvalidThreadID;
1467        }
1468    }
1469}
1470
1471
1472template<class Impl>
1473ThreadID
1474DefaultFetch<Impl>::roundRobin()
1475{
1476    list<ThreadID>::iterator pri_iter = priorityList.begin();
1477    list<ThreadID>::iterator end      = priorityList.end();
1478
1479    ThreadID high_pri;
1480
1481    while (pri_iter != end) {
1482        high_pri = *pri_iter;
1483
1484        assert(high_pri <= numThreads);
1485
1486        if (fetchStatus[high_pri] == Running ||
1487            fetchStatus[high_pri] == IcacheAccessComplete ||
1488            fetchStatus[high_pri] == Idle) {
1489
1490            priorityList.erase(pri_iter);
1491            priorityList.push_back(high_pri);
1492
1493            return high_pri;
1494        }
1495
1496        pri_iter++;
1497    }
1498
1499    return InvalidThreadID;
1500}
1501
1502template<class Impl>
1503ThreadID
1504DefaultFetch<Impl>::iqCount()
1505{
1506    std::priority_queue<unsigned> PQ;
1507    std::map<unsigned, ThreadID> threadMap;
1508
1509    list<ThreadID>::iterator threads = activeThreads->begin();
1510    list<ThreadID>::iterator end = activeThreads->end();
1511
1512    while (threads != end) {
1513        ThreadID tid = *threads++;
1514        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1515
1516        PQ.push(iqCount);
1517        threadMap[iqCount] = tid;
1518    }
1519
1520    while (!PQ.empty()) {
1521        ThreadID high_pri = threadMap[PQ.top()];
1522
1523        if (fetchStatus[high_pri] == Running ||
1524            fetchStatus[high_pri] == IcacheAccessComplete ||
1525            fetchStatus[high_pri] == Idle)
1526            return high_pri;
1527        else
1528            PQ.pop();
1529
1530    }
1531
1532    return InvalidThreadID;
1533}
1534
1535template<class Impl>
1536ThreadID
1537DefaultFetch<Impl>::lsqCount()
1538{
1539    std::priority_queue<unsigned> PQ;
1540    std::map<unsigned, ThreadID> threadMap;
1541
1542    list<ThreadID>::iterator threads = activeThreads->begin();
1543    list<ThreadID>::iterator end = activeThreads->end();
1544
1545    while (threads != end) {
1546        ThreadID tid = *threads++;
1547        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1548
1549        PQ.push(ldstqCount);
1550        threadMap[ldstqCount] = tid;
1551    }
1552
1553    while (!PQ.empty()) {
1554        ThreadID high_pri = threadMap[PQ.top()];
1555
1556        if (fetchStatus[high_pri] == Running ||
1557            fetchStatus[high_pri] == IcacheAccessComplete ||
1558            fetchStatus[high_pri] == Idle)
1559            return high_pri;
1560        else
1561            PQ.pop();
1562    }
1563
1564    return InvalidThreadID;
1565}
1566
1567template<class Impl>
1568ThreadID
1569DefaultFetch<Impl>::branchCount()
1570{
1571#if 0
1572    list<ThreadID>::iterator thread = activeThreads->begin();
1573    assert(thread != activeThreads->end());
1574    ThreadID tid = *thread;
1575#endif
1576
1577    panic("Branch Count Fetch policy unimplemented\n");
1578    return InvalidThreadID;
1579}
1580
1581template<class Impl>
1582void
1583DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1584{
1585    if (!issuePipelinedIfetch[tid]) {
1586        return;
1587    }
1588
1589    // The next PC to access.
1590    TheISA::PCState thisPC = pc[tid];
1591
1592    if (isRomMicroPC(thisPC.microPC())) {
1593        return;
1594    }
1595
1596    Addr pcOffset = fetchOffset[tid];
1597    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1598
1599    // Align the fetch PC so its at the start of a fetch buffer segment.
1600    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1601
1602    // Unless buffer already got the block, fetch it from icache.
1603    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1604        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1605                "starting at PC %s.\n", tid, thisPC);
1606
1607        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1608    }
1609}
1610
1611template<class Impl>
1612void
1613DefaultFetch<Impl>::profileStall(ThreadID tid) {
1614    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1615
1616    // @todo Per-thread stats
1617
1618    if (stalls[tid].drain) {
1619        ++fetchPendingDrainCycles;
1620        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1621    } else if (activeThreads->empty()) {
1622        ++fetchNoActiveThreadStallCycles;
1623        DPRINTF(Fetch, "Fetch has no active thread!\n");
1624    } else if (fetchStatus[tid] == Blocked) {
1625        ++fetchBlockedCycles;
1626        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1627    } else if (fetchStatus[tid] == Squashing) {
1628        ++fetchSquashCycles;
1629        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1630    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1631        ++icacheStallCycles;
1632        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1633                tid);
1634    } else if (fetchStatus[tid] == ItlbWait) {
1635        ++fetchTlbCycles;
1636        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1637                "finish!\n", tid);
1638    } else if (fetchStatus[tid] == TrapPending) {
1639        ++fetchPendingTrapStallCycles;
1640        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1641                tid);
1642    } else if (fetchStatus[tid] == QuiescePending) {
1643        ++fetchPendingQuiesceStallCycles;
1644        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1645                "instruction!\n", tid);
1646    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1647        ++fetchIcacheWaitRetryStallCycles;
1648        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1649                tid);
1650    } else if (fetchStatus[tid] == NoGoodAddr) {
1651            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1652                    tid);
1653    } else {
1654        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1655             tid, fetchStatus[tid]);
1656    }
1657}
1658
1659#endif//__CPU_O3_FETCH_IMPL_HH__
1660