fetch_impl.hh revision 10020:2f33cb012383
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#ifndef __CPU_O3_FETCH_IMPL_HH__
45#define __CPU_O3_FETCH_IMPL_HH__
46
47#include <algorithm>
48#include <cstring>
49#include <list>
50#include <map>
51#include <queue>
52
53#include "arch/isa_traits.hh"
54#include "arch/tlb.hh"
55#include "arch/utility.hh"
56#include "arch/vtophys.hh"
57#include "base/types.hh"
58#include "config/the_isa.hh"
59#include "cpu/base.hh"
60//#include "cpu/checker/cpu.hh"
61#include "cpu/o3/fetch.hh"
62#include "cpu/exetrace.hh"
63#include "debug/Activity.hh"
64#include "debug/Drain.hh"
65#include "debug/Fetch.hh"
66#include "debug/O3PipeView.hh"
67#include "mem/packet.hh"
68#include "params/DerivO3CPU.hh"
69#include "sim/byteswap.hh"
70#include "sim/core.hh"
71#include "sim/eventq.hh"
72#include "sim/full_system.hh"
73#include "sim/system.hh"
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79    : cpu(_cpu),
80      decodeToFetchDelay(params->decodeToFetchDelay),
81      renameToFetchDelay(params->renameToFetchDelay),
82      iewToFetchDelay(params->iewToFetchDelay),
83      commitToFetchDelay(params->commitToFetchDelay),
84      fetchWidth(params->fetchWidth),
85      retryPkt(NULL),
86      retryTid(InvalidThreadID),
87      cacheBlkSize(cpu->cacheLineSize()),
88      fetchBufferSize(params->fetchBufferSize),
89      fetchBufferMask(fetchBufferSize - 1),
90      numThreads(params->numThreads),
91      numFetchingThreads(params->smtNumFetchingThreads),
92      finishTranslationEvent(this)
93{
94    if (numThreads > Impl::MaxThreads)
95        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
96              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
97              numThreads, static_cast<int>(Impl::MaxThreads));
98    if (fetchWidth > Impl::MaxWidth)
99        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
100             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
101             fetchWidth, static_cast<int>(Impl::MaxWidth));
102    if (fetchBufferSize > cacheBlkSize)
103        fatal("fetch buffer size (%u bytes) is greater than the cache "
104              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
105    if (cacheBlkSize % fetchBufferSize)
106        fatal("cache block (%u bytes) is not a multiple of the "
107              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
108
109    std::string policy = params->smtFetchPolicy;
110
111    // Convert string to lowercase
112    std::transform(policy.begin(), policy.end(), policy.begin(),
113                   (int(*)(int)) tolower);
114
115    // Figure out fetch policy
116    if (policy == "singlethread") {
117        fetchPolicy = SingleThread;
118        if (numThreads > 1)
119            panic("Invalid Fetch Policy for a SMT workload.");
120    } else if (policy == "roundrobin") {
121        fetchPolicy = RoundRobin;
122        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
123    } else if (policy == "branch") {
124        fetchPolicy = Branch;
125        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
126    } else if (policy == "iqcount") {
127        fetchPolicy = IQ;
128        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
129    } else if (policy == "lsqcount") {
130        fetchPolicy = LSQ;
131        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
132    } else {
133        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
134              " RoundRobin,LSQcount,IQcount}\n");
135    }
136
137    // Get the size of an instruction.
138    instSize = sizeof(TheISA::MachInst);
139
140    for (int i = 0; i < Impl::MaxThreads; i++) {
141        decoder[i] = NULL;
142        fetchBuffer[i] = NULL;
143        fetchBufferPC[i] = 0;
144        fetchBufferValid[i] = false;
145    }
146
147    branchPred = params->branchPred;
148
149    for (ThreadID tid = 0; tid < numThreads; tid++) {
150        decoder[tid] = new TheISA::Decoder;
151        // Create space to buffer the cache line data,
152        // which may not hold the entire cache line.
153        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
154    }
155}
156
157template <class Impl>
158std::string
159DefaultFetch<Impl>::name() const
160{
161    return cpu->name() + ".fetch";
162}
163
164template <class Impl>
165void
166DefaultFetch<Impl>::regStats()
167{
168    icacheStallCycles
169        .name(name() + ".icacheStallCycles")
170        .desc("Number of cycles fetch is stalled on an Icache miss")
171        .prereq(icacheStallCycles);
172
173    fetchedInsts
174        .name(name() + ".Insts")
175        .desc("Number of instructions fetch has processed")
176        .prereq(fetchedInsts);
177
178    fetchedBranches
179        .name(name() + ".Branches")
180        .desc("Number of branches that fetch encountered")
181        .prereq(fetchedBranches);
182
183    predictedBranches
184        .name(name() + ".predictedBranches")
185        .desc("Number of branches that fetch has predicted taken")
186        .prereq(predictedBranches);
187
188    fetchCycles
189        .name(name() + ".Cycles")
190        .desc("Number of cycles fetch has run and was not squashing or"
191              " blocked")
192        .prereq(fetchCycles);
193
194    fetchSquashCycles
195        .name(name() + ".SquashCycles")
196        .desc("Number of cycles fetch has spent squashing")
197        .prereq(fetchSquashCycles);
198
199    fetchTlbCycles
200        .name(name() + ".TlbCycles")
201        .desc("Number of cycles fetch has spent waiting for tlb")
202        .prereq(fetchTlbCycles);
203
204    fetchIdleCycles
205        .name(name() + ".IdleCycles")
206        .desc("Number of cycles fetch was idle")
207        .prereq(fetchIdleCycles);
208
209    fetchBlockedCycles
210        .name(name() + ".BlockedCycles")
211        .desc("Number of cycles fetch has spent blocked")
212        .prereq(fetchBlockedCycles);
213
214    fetchedCacheLines
215        .name(name() + ".CacheLines")
216        .desc("Number of cache lines fetched")
217        .prereq(fetchedCacheLines);
218
219    fetchMiscStallCycles
220        .name(name() + ".MiscStallCycles")
221        .desc("Number of cycles fetch has spent waiting on interrupts, or "
222              "bad addresses, or out of MSHRs")
223        .prereq(fetchMiscStallCycles);
224
225    fetchPendingDrainCycles
226        .name(name() + ".PendingDrainCycles")
227        .desc("Number of cycles fetch has spent waiting on pipes to drain")
228        .prereq(fetchPendingDrainCycles);
229
230    fetchNoActiveThreadStallCycles
231        .name(name() + ".NoActiveThreadStallCycles")
232        .desc("Number of stall cycles due to no active thread to fetch from")
233        .prereq(fetchNoActiveThreadStallCycles);
234
235    fetchPendingTrapStallCycles
236        .name(name() + ".PendingTrapStallCycles")
237        .desc("Number of stall cycles due to pending traps")
238        .prereq(fetchPendingTrapStallCycles);
239
240    fetchPendingQuiesceStallCycles
241        .name(name() + ".PendingQuiesceStallCycles")
242        .desc("Number of stall cycles due to pending quiesce instructions")
243        .prereq(fetchPendingQuiesceStallCycles);
244
245    fetchIcacheWaitRetryStallCycles
246        .name(name() + ".IcacheWaitRetryStallCycles")
247        .desc("Number of stall cycles due to full MSHR")
248        .prereq(fetchIcacheWaitRetryStallCycles);
249
250    fetchIcacheSquashes
251        .name(name() + ".IcacheSquashes")
252        .desc("Number of outstanding Icache misses that were squashed")
253        .prereq(fetchIcacheSquashes);
254
255    fetchTlbSquashes
256        .name(name() + ".ItlbSquashes")
257        .desc("Number of outstanding ITLB misses that were squashed")
258        .prereq(fetchTlbSquashes);
259
260    fetchNisnDist
261        .init(/* base value */ 0,
262              /* last value */ fetchWidth,
263              /* bucket size */ 1)
264        .name(name() + ".rateDist")
265        .desc("Number of instructions fetched each cycle (Total)")
266        .flags(Stats::pdf);
267
268    idleRate
269        .name(name() + ".idleRate")
270        .desc("Percent of cycles fetch was idle")
271        .prereq(idleRate);
272    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
273
274    branchRate
275        .name(name() + ".branchRate")
276        .desc("Number of branch fetches per cycle")
277        .flags(Stats::total);
278    branchRate = fetchedBranches / cpu->numCycles;
279
280    fetchRate
281        .name(name() + ".rate")
282        .desc("Number of inst fetches per cycle")
283        .flags(Stats::total);
284    fetchRate = fetchedInsts / cpu->numCycles;
285}
286
287template<class Impl>
288void
289DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
290{
291    timeBuffer = time_buffer;
292
293    // Create wires to get information from proper places in time buffer.
294    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
295    fromRename = timeBuffer->getWire(-renameToFetchDelay);
296    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
297    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
303{
304    activeThreads = at_ptr;
305}
306
307template<class Impl>
308void
309DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
310{
311    fetchQueue = fq_ptr;
312
313    // Create wire to write information to proper place in fetch queue.
314    toDecode = fetchQueue->getWire(0);
315}
316
317template<class Impl>
318void
319DefaultFetch<Impl>::startupStage()
320{
321    assert(priorityList.empty());
322    resetStage();
323
324    // Fetch needs to start fetching instructions at the very beginning,
325    // so it must start up in active state.
326    switchToActive();
327}
328
329template<class Impl>
330void
331DefaultFetch<Impl>::resetStage()
332{
333    numInst = 0;
334    interruptPending = false;
335    cacheBlocked = false;
336
337    priorityList.clear();
338
339    // Setup PC and nextPC with initial state.
340    for (ThreadID tid = 0; tid < numThreads; ++tid) {
341        fetchStatus[tid] = Running;
342        pc[tid] = cpu->pcState(tid);
343        fetchOffset[tid] = 0;
344        macroop[tid] = NULL;
345
346        delayedCommit[tid] = false;
347        memReq[tid] = NULL;
348
349        stalls[tid].decode = false;
350        stalls[tid].rename = false;
351        stalls[tid].iew = false;
352        stalls[tid].commit = false;
353        stalls[tid].drain = false;
354
355        fetchBufferPC[tid] = 0;
356        fetchBufferValid[tid] = false;
357
358        priorityList.push_back(tid);
359    }
360
361    wroteToTimeBuffer = false;
362    _status = Inactive;
363}
364
365template<class Impl>
366void
367DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
368{
369    ThreadID tid = pkt->req->threadId();
370
371    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
372    assert(!cpu->switchedOut());
373
374    // Only change the status if it's still waiting on the icache access
375    // to return.
376    if (fetchStatus[tid] != IcacheWaitResponse ||
377        pkt->req != memReq[tid]) {
378        ++fetchIcacheSquashes;
379        delete pkt->req;
380        delete pkt;
381        return;
382    }
383
384    memcpy(fetchBuffer[tid], pkt->getPtr<uint8_t>(), fetchBufferSize);
385    fetchBufferValid[tid] = true;
386
387    // Wake up the CPU (if it went to sleep and was waiting on
388    // this completion event).
389    cpu->wakeCPU();
390
391    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
392            tid);
393
394    switchToActive();
395
396    // Only switch to IcacheAccessComplete if we're not stalled as well.
397    if (checkStall(tid)) {
398        fetchStatus[tid] = Blocked;
399    } else {
400        fetchStatus[tid] = IcacheAccessComplete;
401    }
402
403    pkt->req->setAccessLatency();
404    // Reset the mem req to NULL.
405    delete pkt->req;
406    delete pkt;
407    memReq[tid] = NULL;
408}
409
410template <class Impl>
411void
412DefaultFetch<Impl>::drainResume()
413{
414    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
415        stalls[i].drain = false;
416}
417
418template <class Impl>
419void
420DefaultFetch<Impl>::drainSanityCheck() const
421{
422    assert(isDrained());
423    assert(retryPkt == NULL);
424    assert(retryTid == InvalidThreadID);
425    assert(cacheBlocked == false);
426    assert(interruptPending == false);
427
428    for (ThreadID i = 0; i < numThreads; ++i) {
429        assert(!memReq[i]);
430        assert(!stalls[i].decode);
431        assert(!stalls[i].rename);
432        assert(!stalls[i].iew);
433        assert(!stalls[i].commit);
434        assert(fetchStatus[i] == Idle || stalls[i].drain);
435    }
436
437    branchPred->drainSanityCheck();
438}
439
440template <class Impl>
441bool
442DefaultFetch<Impl>::isDrained() const
443{
444    /* Make sure that threads are either idle of that the commit stage
445     * has signaled that draining has completed by setting the drain
446     * stall flag. This effectively forces the pipeline to be disabled
447     * until the whole system is drained (simulation may continue to
448     * drain other components).
449     */
450    for (ThreadID i = 0; i < numThreads; ++i) {
451        if (!(fetchStatus[i] == Idle ||
452              (fetchStatus[i] == Blocked && stalls[i].drain)))
453            return false;
454    }
455
456    /* The pipeline might start up again in the middle of the drain
457     * cycle if the finish translation event is scheduled, so make
458     * sure that's not the case.
459     */
460    return !finishTranslationEvent.scheduled();
461}
462
463template <class Impl>
464void
465DefaultFetch<Impl>::takeOverFrom()
466{
467    assert(cpu->getInstPort().isConnected());
468    resetStage();
469
470}
471
472template <class Impl>
473void
474DefaultFetch<Impl>::drainStall(ThreadID tid)
475{
476    assert(cpu->isDraining());
477    assert(!stalls[tid].drain);
478    DPRINTF(Drain, "%i: Thread drained.\n", tid);
479    stalls[tid].drain = true;
480}
481
482template <class Impl>
483void
484DefaultFetch<Impl>::wakeFromQuiesce()
485{
486    DPRINTF(Fetch, "Waking up from quiesce\n");
487    // Hopefully this is safe
488    // @todo: Allow other threads to wake from quiesce.
489    fetchStatus[0] = Running;
490}
491
492template <class Impl>
493inline void
494DefaultFetch<Impl>::switchToActive()
495{
496    if (_status == Inactive) {
497        DPRINTF(Activity, "Activating stage.\n");
498
499        cpu->activateStage(O3CPU::FetchIdx);
500
501        _status = Active;
502    }
503}
504
505template <class Impl>
506inline void
507DefaultFetch<Impl>::switchToInactive()
508{
509    if (_status == Active) {
510        DPRINTF(Activity, "Deactivating stage.\n");
511
512        cpu->deactivateStage(O3CPU::FetchIdx);
513
514        _status = Inactive;
515    }
516}
517
518template <class Impl>
519bool
520DefaultFetch<Impl>::lookupAndUpdateNextPC(
521        DynInstPtr &inst, TheISA::PCState &nextPC)
522{
523    // Do branch prediction check here.
524    // A bit of a misnomer...next_PC is actually the current PC until
525    // this function updates it.
526    bool predict_taken;
527
528    if (!inst->isControl()) {
529        TheISA::advancePC(nextPC, inst->staticInst);
530        inst->setPredTarg(nextPC);
531        inst->setPredTaken(false);
532        return false;
533    }
534
535    ThreadID tid = inst->threadNumber;
536    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
537                                        nextPC, tid);
538
539    if (predict_taken) {
540        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
541                tid, inst->seqNum, nextPC);
542    } else {
543        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
544                tid, inst->seqNum);
545    }
546
547    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
548            tid, inst->seqNum, nextPC);
549    inst->setPredTarg(nextPC);
550    inst->setPredTaken(predict_taken);
551
552    ++fetchedBranches;
553
554    if (predict_taken) {
555        ++predictedBranches;
556    }
557
558    return predict_taken;
559}
560
561template <class Impl>
562bool
563DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
564{
565    Fault fault = NoFault;
566
567    assert(!cpu->switchedOut());
568
569    // @todo: not sure if these should block translation.
570    //AlphaDep
571    if (cacheBlocked) {
572        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
573                tid);
574        return false;
575    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
576        // Hold off fetch from getting new instructions when:
577        // Cache is blocked, or
578        // while an interrupt is pending and we're not in PAL mode, or
579        // fetch is switched out.
580        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
581                tid);
582        return false;
583    }
584
585    // Align the fetch address to the start of a fetch buffer segment.
586    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
587
588    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
589            tid, fetchBufferBlockPC, vaddr);
590
591    // Setup the memReq to do a read of the first instruction's address.
592    // Set the appropriate read size and flags as well.
593    // Build request here.
594    RequestPtr mem_req =
595        new Request(tid, fetchBufferBlockPC, fetchBufferSize,
596                    Request::INST_FETCH, cpu->instMasterId(), pc,
597                    cpu->thread[tid]->contextId(), tid);
598
599    memReq[tid] = mem_req;
600
601    // Initiate translation of the icache block
602    fetchStatus[tid] = ItlbWait;
603    FetchTranslation *trans = new FetchTranslation(this);
604    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
605                              trans, BaseTLB::Execute);
606    return true;
607}
608
609template <class Impl>
610void
611DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
612{
613    ThreadID tid = mem_req->threadId();
614    Addr fetchBufferBlockPC = mem_req->getVaddr();
615
616    assert(!cpu->switchedOut());
617
618    // Wake up CPU if it was idle
619    cpu->wakeCPU();
620
621    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
622        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
623        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
624                tid);
625        ++fetchTlbSquashes;
626        delete mem_req;
627        return;
628    }
629
630
631    // If translation was successful, attempt to read the icache block.
632    if (fault == NoFault) {
633        // Check that we're not going off into random memory
634        // If we have, just wait around for commit to squash something and put
635        // us on the right track
636        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
637            warn("Address %#x is outside of physical memory, stopping fetch\n",
638                    mem_req->getPaddr());
639            fetchStatus[tid] = NoGoodAddr;
640            delete mem_req;
641            memReq[tid] = NULL;
642            return;
643        }
644
645        // Build packet here.
646        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
647        data_pkt->dataDynamicArray(new uint8_t[fetchBufferSize]);
648
649        fetchBufferPC[tid] = fetchBufferBlockPC;
650        fetchBufferValid[tid] = false;
651        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
652
653        fetchedCacheLines++;
654
655        // Access the cache.
656        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
657            assert(retryPkt == NULL);
658            assert(retryTid == InvalidThreadID);
659            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
660
661            fetchStatus[tid] = IcacheWaitRetry;
662            retryPkt = data_pkt;
663            retryTid = tid;
664            cacheBlocked = true;
665        } else {
666            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
667            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
668                    "response.\n", tid);
669
670            lastIcacheStall[tid] = curTick();
671            fetchStatus[tid] = IcacheWaitResponse;
672        }
673    } else {
674        if (!(numInst < fetchWidth)) {
675            assert(!finishTranslationEvent.scheduled());
676            finishTranslationEvent.setFault(fault);
677            finishTranslationEvent.setReq(mem_req);
678            cpu->schedule(finishTranslationEvent,
679                          cpu->clockEdge(Cycles(1)));
680            return;
681        }
682        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
683                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
684        // Translation faulted, icache request won't be sent.
685        delete mem_req;
686        memReq[tid] = NULL;
687
688        // Send the fault to commit.  This thread will not do anything
689        // until commit handles the fault.  The only other way it can
690        // wake up is if a squash comes along and changes the PC.
691        TheISA::PCState fetchPC = pc[tid];
692
693        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
694        // We will use a nop in ordier to carry the fault.
695        DynInstPtr instruction = buildInst(tid,
696                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
697                NULL, fetchPC, fetchPC, false);
698
699        instruction->setPredTarg(fetchPC);
700        instruction->fault = fault;
701        wroteToTimeBuffer = true;
702
703        DPRINTF(Activity, "Activity this cycle.\n");
704        cpu->activityThisCycle();
705
706        fetchStatus[tid] = TrapPending;
707
708        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
709        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
710                tid, fault->name(), pc[tid]);
711    }
712    _status = updateFetchStatus();
713}
714
715template <class Impl>
716inline void
717DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
718                             const DynInstPtr squashInst, ThreadID tid)
719{
720    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
721            tid, newPC);
722
723    pc[tid] = newPC;
724    fetchOffset[tid] = 0;
725    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
726        macroop[tid] = squashInst->macroop;
727    else
728        macroop[tid] = NULL;
729    decoder[tid]->reset();
730
731    // Clear the icache miss if it's outstanding.
732    if (fetchStatus[tid] == IcacheWaitResponse) {
733        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
734                tid);
735        memReq[tid] = NULL;
736    } else if (fetchStatus[tid] == ItlbWait) {
737        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
738                tid);
739        memReq[tid] = NULL;
740    }
741
742    // Get rid of the retrying packet if it was from this thread.
743    if (retryTid == tid) {
744        assert(cacheBlocked);
745        if (retryPkt) {
746            delete retryPkt->req;
747            delete retryPkt;
748        }
749        retryPkt = NULL;
750        retryTid = InvalidThreadID;
751    }
752
753    fetchStatus[tid] = Squashing;
754
755    // microops are being squashed, it is not known wheather the
756    // youngest non-squashed microop was  marked delayed commit
757    // or not. Setting the flag to true ensures that the
758    // interrupts are not handled when they cannot be, though
759    // some opportunities to handle interrupts may be missed.
760    delayedCommit[tid] = true;
761
762    ++fetchSquashCycles;
763}
764
765template<class Impl>
766void
767DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
768                                     const DynInstPtr squashInst,
769                                     const InstSeqNum seq_num, ThreadID tid)
770{
771    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
772
773    doSquash(newPC, squashInst, tid);
774
775    // Tell the CPU to remove any instructions that are in flight between
776    // fetch and decode.
777    cpu->removeInstsUntil(seq_num, tid);
778}
779
780template<class Impl>
781bool
782DefaultFetch<Impl>::checkStall(ThreadID tid) const
783{
784    bool ret_val = false;
785
786    if (cpu->contextSwitch) {
787        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
788        ret_val = true;
789    } else if (stalls[tid].drain) {
790        assert(cpu->isDraining());
791        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
792        ret_val = true;
793    } else if (stalls[tid].decode) {
794        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
795        ret_val = true;
796    } else if (stalls[tid].rename) {
797        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
798        ret_val = true;
799    } else if (stalls[tid].iew) {
800        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
801        ret_val = true;
802    } else if (stalls[tid].commit) {
803        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
804        ret_val = true;
805    }
806
807    return ret_val;
808}
809
810template<class Impl>
811typename DefaultFetch<Impl>::FetchStatus
812DefaultFetch<Impl>::updateFetchStatus()
813{
814    //Check Running
815    list<ThreadID>::iterator threads = activeThreads->begin();
816    list<ThreadID>::iterator end = activeThreads->end();
817
818    while (threads != end) {
819        ThreadID tid = *threads++;
820
821        if (fetchStatus[tid] == Running ||
822            fetchStatus[tid] == Squashing ||
823            fetchStatus[tid] == IcacheAccessComplete) {
824
825            if (_status == Inactive) {
826                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
827
828                if (fetchStatus[tid] == IcacheAccessComplete) {
829                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
830                            "completion\n",tid);
831                }
832
833                cpu->activateStage(O3CPU::FetchIdx);
834            }
835
836            return Active;
837        }
838    }
839
840    // Stage is switching from active to inactive, notify CPU of it.
841    if (_status == Active) {
842        DPRINTF(Activity, "Deactivating stage.\n");
843
844        cpu->deactivateStage(O3CPU::FetchIdx);
845    }
846
847    return Inactive;
848}
849
850template <class Impl>
851void
852DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
853                           const InstSeqNum seq_num, DynInstPtr squashInst,
854                           ThreadID tid)
855{
856    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
857
858    doSquash(newPC, squashInst, tid);
859
860    // Tell the CPU to remove any instructions that are not in the ROB.
861    cpu->removeInstsNotInROB(tid);
862}
863
864template <class Impl>
865void
866DefaultFetch<Impl>::tick()
867{
868    list<ThreadID>::iterator threads = activeThreads->begin();
869    list<ThreadID>::iterator end = activeThreads->end();
870    bool status_change = false;
871
872    wroteToTimeBuffer = false;
873
874    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
875        issuePipelinedIfetch[i] = false;
876    }
877
878    while (threads != end) {
879        ThreadID tid = *threads++;
880
881        // Check the signals for each thread to determine the proper status
882        // for each thread.
883        bool updated_status = checkSignalsAndUpdate(tid);
884        status_change =  status_change || updated_status;
885    }
886
887    DPRINTF(Fetch, "Running stage.\n");
888
889    if (FullSystem) {
890        if (fromCommit->commitInfo[0].interruptPending) {
891            interruptPending = true;
892        }
893
894        if (fromCommit->commitInfo[0].clearInterrupt) {
895            interruptPending = false;
896        }
897    }
898
899    for (threadFetched = 0; threadFetched < numFetchingThreads;
900         threadFetched++) {
901        // Fetch each of the actively fetching threads.
902        fetch(status_change);
903    }
904
905    // Record number of instructions fetched this cycle for distribution.
906    fetchNisnDist.sample(numInst);
907
908    if (status_change) {
909        // Change the fetch stage status if there was a status change.
910        _status = updateFetchStatus();
911    }
912
913    // If there was activity this cycle, inform the CPU of it.
914    if (wroteToTimeBuffer || cpu->contextSwitch) {
915        DPRINTF(Activity, "Activity this cycle.\n");
916
917        cpu->activityThisCycle();
918    }
919
920    // Issue the next I-cache request if possible.
921    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
922        if (issuePipelinedIfetch[i]) {
923            pipelineIcacheAccesses(i);
924        }
925    }
926
927    // Reset the number of the instruction we've fetched.
928    numInst = 0;
929}
930
931template <class Impl>
932bool
933DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
934{
935    // Update the per thread stall statuses.
936    if (fromDecode->decodeBlock[tid]) {
937        stalls[tid].decode = true;
938    }
939
940    if (fromDecode->decodeUnblock[tid]) {
941        assert(stalls[tid].decode);
942        assert(!fromDecode->decodeBlock[tid]);
943        stalls[tid].decode = false;
944    }
945
946    if (fromRename->renameBlock[tid]) {
947        stalls[tid].rename = true;
948    }
949
950    if (fromRename->renameUnblock[tid]) {
951        assert(stalls[tid].rename);
952        assert(!fromRename->renameBlock[tid]);
953        stalls[tid].rename = false;
954    }
955
956    if (fromIEW->iewBlock[tid]) {
957        stalls[tid].iew = true;
958    }
959
960    if (fromIEW->iewUnblock[tid]) {
961        assert(stalls[tid].iew);
962        assert(!fromIEW->iewBlock[tid]);
963        stalls[tid].iew = false;
964    }
965
966    if (fromCommit->commitBlock[tid]) {
967        stalls[tid].commit = true;
968    }
969
970    if (fromCommit->commitUnblock[tid]) {
971        assert(stalls[tid].commit);
972        assert(!fromCommit->commitBlock[tid]);
973        stalls[tid].commit = false;
974    }
975
976    // Check squash signals from commit.
977    if (fromCommit->commitInfo[tid].squash) {
978
979        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
980                "from commit.\n",tid);
981        // In any case, squash.
982        squash(fromCommit->commitInfo[tid].pc,
983               fromCommit->commitInfo[tid].doneSeqNum,
984               fromCommit->commitInfo[tid].squashInst, tid);
985
986        // If it was a branch mispredict on a control instruction, update the
987        // branch predictor with that instruction, otherwise just kill the
988        // invalid state we generated in after sequence number
989        if (fromCommit->commitInfo[tid].mispredictInst &&
990            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
991            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
992                              fromCommit->commitInfo[tid].pc,
993                              fromCommit->commitInfo[tid].branchTaken,
994                              tid);
995        } else {
996            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
997                              tid);
998        }
999
1000        return true;
1001    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1002        // Update the branch predictor if it wasn't a squashed instruction
1003        // that was broadcasted.
1004        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1005    }
1006
1007    // Check ROB squash signals from commit.
1008    if (fromCommit->commitInfo[tid].robSquashing) {
1009        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1010
1011        // Continue to squash.
1012        fetchStatus[tid] = Squashing;
1013
1014        return true;
1015    }
1016
1017    // Check squash signals from decode.
1018    if (fromDecode->decodeInfo[tid].squash) {
1019        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1020                "from decode.\n",tid);
1021
1022        // Update the branch predictor.
1023        if (fromDecode->decodeInfo[tid].branchMispredict) {
1024            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1025                              fromDecode->decodeInfo[tid].nextPC,
1026                              fromDecode->decodeInfo[tid].branchTaken,
1027                              tid);
1028        } else {
1029            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1030                              tid);
1031        }
1032
1033        if (fetchStatus[tid] != Squashing) {
1034
1035            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1036                fromDecode->decodeInfo[tid].nextPC);
1037            // Squash unless we're already squashing
1038            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1039                             fromDecode->decodeInfo[tid].squashInst,
1040                             fromDecode->decodeInfo[tid].doneSeqNum,
1041                             tid);
1042
1043            return true;
1044        }
1045    }
1046
1047    if (checkStall(tid) &&
1048        fetchStatus[tid] != IcacheWaitResponse &&
1049        fetchStatus[tid] != IcacheWaitRetry &&
1050        fetchStatus[tid] != ItlbWait &&
1051        fetchStatus[tid] != QuiescePending) {
1052        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1053
1054        fetchStatus[tid] = Blocked;
1055
1056        return true;
1057    }
1058
1059    if (fetchStatus[tid] == Blocked ||
1060        fetchStatus[tid] == Squashing) {
1061        // Switch status to running if fetch isn't being told to block or
1062        // squash this cycle.
1063        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1064                tid);
1065
1066        fetchStatus[tid] = Running;
1067
1068        return true;
1069    }
1070
1071    // If we've reached this point, we have not gotten any signals that
1072    // cause fetch to change its status.  Fetch remains the same as before.
1073    return false;
1074}
1075
1076template<class Impl>
1077typename Impl::DynInstPtr
1078DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1079                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1080                              TheISA::PCState nextPC, bool trace)
1081{
1082    // Get a sequence number.
1083    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1084
1085    // Create a new DynInst from the instruction fetched.
1086    DynInstPtr instruction =
1087        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1088    instruction->setTid(tid);
1089
1090    instruction->setASID(tid);
1091
1092    instruction->setThreadState(cpu->thread[tid]);
1093
1094    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1095            "[sn:%lli].\n", tid, thisPC.instAddr(),
1096            thisPC.microPC(), seq);
1097
1098    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1099            instruction->staticInst->
1100            disassemble(thisPC.instAddr()));
1101
1102#if TRACING_ON
1103    if (trace) {
1104        instruction->traceData =
1105            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1106                    instruction->staticInst, thisPC, curMacroop);
1107    }
1108#else
1109    instruction->traceData = NULL;
1110#endif
1111
1112    // Add instruction to the CPU's list of instructions.
1113    instruction->setInstListIt(cpu->addInst(instruction));
1114
1115    // Write the instruction to the first slot in the queue
1116    // that heads to decode.
1117    assert(numInst < fetchWidth);
1118    toDecode->insts[toDecode->size++] = instruction;
1119
1120    // Keep track of if we can take an interrupt at this boundary
1121    delayedCommit[tid] = instruction->isDelayedCommit();
1122
1123    return instruction;
1124}
1125
1126template<class Impl>
1127void
1128DefaultFetch<Impl>::fetch(bool &status_change)
1129{
1130    //////////////////////////////////////////
1131    // Start actual fetch
1132    //////////////////////////////////////////
1133    ThreadID tid = getFetchingThread(fetchPolicy);
1134
1135    assert(!cpu->switchedOut());
1136
1137    if (tid == InvalidThreadID) {
1138        // Breaks looping condition in tick()
1139        threadFetched = numFetchingThreads;
1140
1141        if (numThreads == 1) {  // @todo Per-thread stats
1142            profileStall(0);
1143        }
1144
1145        return;
1146    }
1147
1148    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1149
1150    // The current PC.
1151    TheISA::PCState thisPC = pc[tid];
1152
1153    Addr pcOffset = fetchOffset[tid];
1154    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1155
1156    bool inRom = isRomMicroPC(thisPC.microPC());
1157
1158    // If returning from the delay of a cache miss, then update the status
1159    // to running, otherwise do the cache access.  Possibly move this up
1160    // to tick() function.
1161    if (fetchStatus[tid] == IcacheAccessComplete) {
1162        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1163
1164        fetchStatus[tid] = Running;
1165        status_change = true;
1166    } else if (fetchStatus[tid] == Running) {
1167        // Align the fetch PC so its at the start of a fetch buffer segment.
1168        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1169
1170        // If buffer is no longer valid or fetchAddr has moved to point
1171        // to the next cache block, AND we have no remaining ucode
1172        // from a macro-op, then start fetch from icache.
1173        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1174            && !inRom && !macroop[tid]) {
1175            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1176                    "instruction, starting at PC %s.\n", tid, thisPC);
1177
1178            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1179
1180            if (fetchStatus[tid] == IcacheWaitResponse)
1181                ++icacheStallCycles;
1182            else if (fetchStatus[tid] == ItlbWait)
1183                ++fetchTlbCycles;
1184            else
1185                ++fetchMiscStallCycles;
1186            return;
1187        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1188            // Stall CPU if an interrupt is posted and we're not issuing
1189            // an delayed commit micro-op currently (delayed commit instructions
1190            // are not interruptable by interrupts, only faults)
1191            ++fetchMiscStallCycles;
1192            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1193            return;
1194        }
1195    } else {
1196        if (fetchStatus[tid] == Idle) {
1197            ++fetchIdleCycles;
1198            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1199        }
1200
1201        // Status is Idle, so fetch should do nothing.
1202        return;
1203    }
1204
1205    ++fetchCycles;
1206
1207    TheISA::PCState nextPC = thisPC;
1208
1209    StaticInstPtr staticInst = NULL;
1210    StaticInstPtr curMacroop = macroop[tid];
1211
1212    // If the read of the first instruction was successful, then grab the
1213    // instructions from the rest of the cache line and put them into the
1214    // queue heading to decode.
1215
1216    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1217            "decode.\n", tid);
1218
1219    // Need to keep track of whether or not a predicted branch
1220    // ended this fetch block.
1221    bool predictedBranch = false;
1222
1223    TheISA::MachInst *cacheInsts =
1224        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1225
1226    const unsigned numInsts = fetchBufferSize / instSize;
1227    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1228
1229    // Loop through instruction memory from the cache.
1230    // Keep issuing while fetchWidth is available and branch is not
1231    // predicted taken
1232    while (numInst < fetchWidth && !predictedBranch) {
1233
1234        // We need to process more memory if we aren't going to get a
1235        // StaticInst from the rom, the current macroop, or what's already
1236        // in the decoder.
1237        bool needMem = !inRom && !curMacroop &&
1238            !decoder[tid]->instReady();
1239        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1240        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1241
1242        if (needMem) {
1243            // If buffer is no longer valid or fetchAddr has moved to point
1244            // to the next cache block then start fetch from icache.
1245            if (!fetchBufferValid[tid] ||
1246                fetchBufferBlockPC != fetchBufferPC[tid])
1247                break;
1248
1249            if (blkOffset >= numInsts) {
1250                // We need to process more memory, but we've run out of the
1251                // current block.
1252                break;
1253            }
1254
1255            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1256                // Walk past any annulled delay slot instructions.
1257                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1258                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1259                    blkOffset++;
1260                    fetchAddr += instSize;
1261                }
1262                if (blkOffset >= numInsts)
1263                    break;
1264            }
1265
1266            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1267            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1268
1269            if (decoder[tid]->needMoreBytes()) {
1270                blkOffset++;
1271                fetchAddr += instSize;
1272                pcOffset += instSize;
1273            }
1274        }
1275
1276        // Extract as many instructions and/or microops as we can from
1277        // the memory we've processed so far.
1278        do {
1279            if (!(curMacroop || inRom)) {
1280                if (decoder[tid]->instReady()) {
1281                    staticInst = decoder[tid]->decode(thisPC);
1282
1283                    // Increment stat of fetched instructions.
1284                    ++fetchedInsts;
1285
1286                    if (staticInst->isMacroop()) {
1287                        curMacroop = staticInst;
1288                    } else {
1289                        pcOffset = 0;
1290                    }
1291                } else {
1292                    // We need more bytes for this instruction so blkOffset and
1293                    // pcOffset will be updated
1294                    break;
1295                }
1296            }
1297            // Whether we're moving to a new macroop because we're at the
1298            // end of the current one, or the branch predictor incorrectly
1299            // thinks we are...
1300            bool newMacro = false;
1301            if (curMacroop || inRom) {
1302                if (inRom) {
1303                    staticInst = cpu->microcodeRom.fetchMicroop(
1304                            thisPC.microPC(), curMacroop);
1305                } else {
1306                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1307                }
1308                newMacro |= staticInst->isLastMicroop();
1309            }
1310
1311            DynInstPtr instruction =
1312                buildInst(tid, staticInst, curMacroop,
1313                          thisPC, nextPC, true);
1314
1315            numInst++;
1316
1317#if TRACING_ON
1318            if (DTRACE(O3PipeView)) {
1319                instruction->fetchTick = curTick();
1320            }
1321#endif
1322
1323            nextPC = thisPC;
1324
1325            // If we're branching after this instruction, quite fetching
1326            // from the same block then.
1327            predictedBranch |= thisPC.branching();
1328            predictedBranch |=
1329                lookupAndUpdateNextPC(instruction, nextPC);
1330            if (predictedBranch) {
1331                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1332            }
1333
1334            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1335
1336            // Move to the next instruction, unless we have a branch.
1337            thisPC = nextPC;
1338            inRom = isRomMicroPC(thisPC.microPC());
1339
1340            if (newMacro) {
1341                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1342                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1343                pcOffset = 0;
1344                curMacroop = NULL;
1345            }
1346
1347            if (instruction->isQuiesce()) {
1348                DPRINTF(Fetch,
1349                        "Quiesce instruction encountered, halting fetch!");
1350                fetchStatus[tid] = QuiescePending;
1351                status_change = true;
1352                break;
1353            }
1354        } while ((curMacroop || decoder[tid]->instReady()) &&
1355                 numInst < fetchWidth);
1356    }
1357
1358    if (predictedBranch) {
1359        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1360                "instruction encountered.\n", tid);
1361    } else if (numInst >= fetchWidth) {
1362        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1363                "for this cycle.\n", tid);
1364    } else if (blkOffset >= fetchBufferSize) {
1365        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1366                "fetch buffer.\n", tid);
1367    }
1368
1369    macroop[tid] = curMacroop;
1370    fetchOffset[tid] = pcOffset;
1371
1372    if (numInst > 0) {
1373        wroteToTimeBuffer = true;
1374    }
1375
1376    pc[tid] = thisPC;
1377
1378    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1379    // a state that would preclude fetching
1380    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1381    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1382    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1383        fetchStatus[tid] != IcacheWaitResponse &&
1384        fetchStatus[tid] != ItlbWait &&
1385        fetchStatus[tid] != IcacheWaitRetry &&
1386        fetchStatus[tid] != QuiescePending &&
1387        !curMacroop;
1388}
1389
1390template<class Impl>
1391void
1392DefaultFetch<Impl>::recvRetry()
1393{
1394    if (retryPkt != NULL) {
1395        assert(cacheBlocked);
1396        assert(retryTid != InvalidThreadID);
1397        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1398
1399        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1400            fetchStatus[retryTid] = IcacheWaitResponse;
1401            retryPkt = NULL;
1402            retryTid = InvalidThreadID;
1403            cacheBlocked = false;
1404        }
1405    } else {
1406        assert(retryTid == InvalidThreadID);
1407        // Access has been squashed since it was sent out.  Just clear
1408        // the cache being blocked.
1409        cacheBlocked = false;
1410    }
1411}
1412
1413///////////////////////////////////////
1414//                                   //
1415//  SMT FETCH POLICY MAINTAINED HERE //
1416//                                   //
1417///////////////////////////////////////
1418template<class Impl>
1419ThreadID
1420DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1421{
1422    if (numThreads > 1) {
1423        switch (fetch_priority) {
1424
1425          case SingleThread:
1426            return 0;
1427
1428          case RoundRobin:
1429            return roundRobin();
1430
1431          case IQ:
1432            return iqCount();
1433
1434          case LSQ:
1435            return lsqCount();
1436
1437          case Branch:
1438            return branchCount();
1439
1440          default:
1441            return InvalidThreadID;
1442        }
1443    } else {
1444        list<ThreadID>::iterator thread = activeThreads->begin();
1445        if (thread == activeThreads->end()) {
1446            return InvalidThreadID;
1447        }
1448
1449        ThreadID tid = *thread;
1450
1451        if (fetchStatus[tid] == Running ||
1452            fetchStatus[tid] == IcacheAccessComplete ||
1453            fetchStatus[tid] == Idle) {
1454            return tid;
1455        } else {
1456            return InvalidThreadID;
1457        }
1458    }
1459}
1460
1461
1462template<class Impl>
1463ThreadID
1464DefaultFetch<Impl>::roundRobin()
1465{
1466    list<ThreadID>::iterator pri_iter = priorityList.begin();
1467    list<ThreadID>::iterator end      = priorityList.end();
1468
1469    ThreadID high_pri;
1470
1471    while (pri_iter != end) {
1472        high_pri = *pri_iter;
1473
1474        assert(high_pri <= numThreads);
1475
1476        if (fetchStatus[high_pri] == Running ||
1477            fetchStatus[high_pri] == IcacheAccessComplete ||
1478            fetchStatus[high_pri] == Idle) {
1479
1480            priorityList.erase(pri_iter);
1481            priorityList.push_back(high_pri);
1482
1483            return high_pri;
1484        }
1485
1486        pri_iter++;
1487    }
1488
1489    return InvalidThreadID;
1490}
1491
1492template<class Impl>
1493ThreadID
1494DefaultFetch<Impl>::iqCount()
1495{
1496    std::priority_queue<unsigned> PQ;
1497    std::map<unsigned, ThreadID> threadMap;
1498
1499    list<ThreadID>::iterator threads = activeThreads->begin();
1500    list<ThreadID>::iterator end = activeThreads->end();
1501
1502    while (threads != end) {
1503        ThreadID tid = *threads++;
1504        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1505
1506        PQ.push(iqCount);
1507        threadMap[iqCount] = tid;
1508    }
1509
1510    while (!PQ.empty()) {
1511        ThreadID high_pri = threadMap[PQ.top()];
1512
1513        if (fetchStatus[high_pri] == Running ||
1514            fetchStatus[high_pri] == IcacheAccessComplete ||
1515            fetchStatus[high_pri] == Idle)
1516            return high_pri;
1517        else
1518            PQ.pop();
1519
1520    }
1521
1522    return InvalidThreadID;
1523}
1524
1525template<class Impl>
1526ThreadID
1527DefaultFetch<Impl>::lsqCount()
1528{
1529    std::priority_queue<unsigned> PQ;
1530    std::map<unsigned, ThreadID> threadMap;
1531
1532    list<ThreadID>::iterator threads = activeThreads->begin();
1533    list<ThreadID>::iterator end = activeThreads->end();
1534
1535    while (threads != end) {
1536        ThreadID tid = *threads++;
1537        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1538
1539        PQ.push(ldstqCount);
1540        threadMap[ldstqCount] = tid;
1541    }
1542
1543    while (!PQ.empty()) {
1544        ThreadID high_pri = threadMap[PQ.top()];
1545
1546        if (fetchStatus[high_pri] == Running ||
1547            fetchStatus[high_pri] == IcacheAccessComplete ||
1548            fetchStatus[high_pri] == Idle)
1549            return high_pri;
1550        else
1551            PQ.pop();
1552    }
1553
1554    return InvalidThreadID;
1555}
1556
1557template<class Impl>
1558ThreadID
1559DefaultFetch<Impl>::branchCount()
1560{
1561#if 0
1562    list<ThreadID>::iterator thread = activeThreads->begin();
1563    assert(thread != activeThreads->end());
1564    ThreadID tid = *thread;
1565#endif
1566
1567    panic("Branch Count Fetch policy unimplemented\n");
1568    return InvalidThreadID;
1569}
1570
1571template<class Impl>
1572void
1573DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1574{
1575    if (!issuePipelinedIfetch[tid]) {
1576        return;
1577    }
1578
1579    // The next PC to access.
1580    TheISA::PCState thisPC = pc[tid];
1581
1582    if (isRomMicroPC(thisPC.microPC())) {
1583        return;
1584    }
1585
1586    Addr pcOffset = fetchOffset[tid];
1587    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1588
1589    // Align the fetch PC so its at the start of a fetch buffer segment.
1590    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1591
1592    // Unless buffer already got the block, fetch it from icache.
1593    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1594        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1595                "starting at PC %s.\n", tid, thisPC);
1596
1597        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1598    }
1599}
1600
1601template<class Impl>
1602void
1603DefaultFetch<Impl>::profileStall(ThreadID tid) {
1604    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1605
1606    // @todo Per-thread stats
1607
1608    if (stalls[tid].drain) {
1609        ++fetchPendingDrainCycles;
1610        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1611    } else if (activeThreads->empty()) {
1612        ++fetchNoActiveThreadStallCycles;
1613        DPRINTF(Fetch, "Fetch has no active thread!\n");
1614    } else if (fetchStatus[tid] == Blocked) {
1615        ++fetchBlockedCycles;
1616        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1617    } else if (fetchStatus[tid] == Squashing) {
1618        ++fetchSquashCycles;
1619        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1620    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1621        ++icacheStallCycles;
1622        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1623                tid);
1624    } else if (fetchStatus[tid] == ItlbWait) {
1625        ++fetchTlbCycles;
1626        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1627                "finish!\n", tid);
1628    } else if (fetchStatus[tid] == TrapPending) {
1629        ++fetchPendingTrapStallCycles;
1630        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1631                tid);
1632    } else if (fetchStatus[tid] == QuiescePending) {
1633        ++fetchPendingQuiesceStallCycles;
1634        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1635                "instruction!\n", tid);
1636    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1637        ++fetchIcacheWaitRetryStallCycles;
1638        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1639                tid);
1640    } else if (fetchStatus[tid] == NoGoodAddr) {
1641            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1642                    tid);
1643    } else {
1644        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1645             tid, fetchStatus[tid]);
1646    }
1647}
1648
1649#endif//__CPU_O3_FETCH_IMPL_HH__
1650