commit_impl.hh revision 9516:8bb2deb544a5
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <set>
46#include <string>
47
48#include "arch/utility.hh"
49#include "base/loader/symtab.hh"
50#include "base/cp_annotate.hh"
51#include "config/the_isa.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/o3/commit.hh"
54#include "cpu/o3/thread_state.hh"
55#include "cpu/base.hh"
56#include "cpu/exetrace.hh"
57#include "cpu/timebuf.hh"
58#include "debug/Activity.hh"
59#include "debug/Commit.hh"
60#include "debug/CommitRate.hh"
61#include "debug/Drain.hh"
62#include "debug/ExecFaulting.hh"
63#include "params/DerivO3CPU.hh"
64#include "sim/faults.hh"
65#include "sim/full_system.hh"
66
67using namespace std;
68
69template <class Impl>
70DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
71                                          ThreadID _tid)
72    : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
73{
74}
75
76template <class Impl>
77void
78DefaultCommit<Impl>::TrapEvent::process()
79{
80    // This will get reset by commit if it was switched out at the
81    // time of this event processing.
82    commit->trapSquash[tid] = true;
83}
84
85template <class Impl>
86const char *
87DefaultCommit<Impl>::TrapEvent::description() const
88{
89    return "Trap";
90}
91
92template <class Impl>
93DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
94    : cpu(_cpu),
95      squashCounter(0),
96      iewToCommitDelay(params->iewToCommitDelay),
97      commitToIEWDelay(params->commitToIEWDelay),
98      renameToROBDelay(params->renameToROBDelay),
99      fetchToCommitDelay(params->commitToFetchDelay),
100      renameWidth(params->renameWidth),
101      commitWidth(params->commitWidth),
102      numThreads(params->numThreads),
103      drainPending(false),
104      trapLatency(params->trapLatency),
105      canHandleInterrupts(true),
106      avoidQuiesceLiveLock(false)
107{
108    _status = Active;
109    _nextStatus = Inactive;
110    std::string policy = params->smtCommitPolicy;
111
112    //Convert string to lowercase
113    std::transform(policy.begin(), policy.end(), policy.begin(),
114                   (int(*)(int)) tolower);
115
116    //Assign commit policy
117    if (policy == "aggressive"){
118        commitPolicy = Aggressive;
119
120        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
121    } else if (policy == "roundrobin"){
122        commitPolicy = RoundRobin;
123
124        //Set-Up Priority List
125        for (ThreadID tid = 0; tid < numThreads; tid++) {
126            priority_list.push_back(tid);
127        }
128
129        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
130    } else if (policy == "oldestready"){
131        commitPolicy = OldestReady;
132
133        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
134    } else {
135        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
136               "RoundRobin,OldestReady}");
137    }
138
139    for (ThreadID tid = 0; tid < numThreads; tid++) {
140        commitStatus[tid] = Idle;
141        changedROBNumEntries[tid] = false;
142        checkEmptyROB[tid] = false;
143        trapInFlight[tid] = false;
144        committedStores[tid] = false;
145        trapSquash[tid] = false;
146        tcSquash[tid] = false;
147        pc[tid].set(0);
148        lastCommitedSeqNum[tid] = 0;
149        squashAfterInst[tid] = NULL;
150    }
151    interrupt = NoFault;
152}
153
154template <class Impl>
155std::string
156DefaultCommit<Impl>::name() const
157{
158    return cpu->name() + ".commit";
159}
160
161template <class Impl>
162void
163DefaultCommit<Impl>::regStats()
164{
165    using namespace Stats;
166    commitSquashedInsts
167        .name(name() + ".commitSquashedInsts")
168        .desc("The number of squashed insts skipped by commit")
169        .prereq(commitSquashedInsts);
170    commitSquashEvents
171        .name(name() + ".commitSquashEvents")
172        .desc("The number of times commit is told to squash")
173        .prereq(commitSquashEvents);
174    commitNonSpecStalls
175        .name(name() + ".commitNonSpecStalls")
176        .desc("The number of times commit has been forced to stall to "
177              "communicate backwards")
178        .prereq(commitNonSpecStalls);
179    branchMispredicts
180        .name(name() + ".branchMispredicts")
181        .desc("The number of times a branch was mispredicted")
182        .prereq(branchMispredicts);
183    numCommittedDist
184        .init(0,commitWidth,1)
185        .name(name() + ".committed_per_cycle")
186        .desc("Number of insts commited each cycle")
187        .flags(Stats::pdf)
188        ;
189
190    instsCommitted
191        .init(cpu->numThreads)
192        .name(name() + ".committedInsts")
193        .desc("Number of instructions committed")
194        .flags(total)
195        ;
196
197    opsCommitted
198        .init(cpu->numThreads)
199        .name(name() + ".committedOps")
200        .desc("Number of ops (including micro ops) committed")
201        .flags(total)
202        ;
203
204    statComSwp
205        .init(cpu->numThreads)
206        .name(name() + ".swp_count")
207        .desc("Number of s/w prefetches committed")
208        .flags(total)
209        ;
210
211    statComRefs
212        .init(cpu->numThreads)
213        .name(name() +  ".refs")
214        .desc("Number of memory references committed")
215        .flags(total)
216        ;
217
218    statComLoads
219        .init(cpu->numThreads)
220        .name(name() +  ".loads")
221        .desc("Number of loads committed")
222        .flags(total)
223        ;
224
225    statComMembars
226        .init(cpu->numThreads)
227        .name(name() +  ".membars")
228        .desc("Number of memory barriers committed")
229        .flags(total)
230        ;
231
232    statComBranches
233        .init(cpu->numThreads)
234        .name(name() + ".branches")
235        .desc("Number of branches committed")
236        .flags(total)
237        ;
238
239    statComFloating
240        .init(cpu->numThreads)
241        .name(name() + ".fp_insts")
242        .desc("Number of committed floating point instructions.")
243        .flags(total)
244        ;
245
246    statComInteger
247        .init(cpu->numThreads)
248        .name(name()+".int_insts")
249        .desc("Number of committed integer instructions.")
250        .flags(total)
251        ;
252
253    statComFunctionCalls
254        .init(cpu->numThreads)
255        .name(name()+".function_calls")
256        .desc("Number of function calls committed.")
257        .flags(total)
258        ;
259
260    commitEligible
261        .init(cpu->numThreads)
262        .name(name() + ".bw_limited")
263        .desc("number of insts not committed due to BW limits")
264        .flags(total)
265        ;
266
267    commitEligibleSamples
268        .name(name() + ".bw_lim_events")
269        .desc("number cycles where commit BW limit reached")
270        ;
271}
272
273template <class Impl>
274void
275DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
276{
277    thread = threads;
278}
279
280template <class Impl>
281void
282DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
283{
284    timeBuffer = tb_ptr;
285
286    // Setup wire to send information back to IEW.
287    toIEW = timeBuffer->getWire(0);
288
289    // Setup wire to read data from IEW (for the ROB).
290    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
291}
292
293template <class Impl>
294void
295DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
296{
297    fetchQueue = fq_ptr;
298
299    // Setup wire to get instructions from rename (for the ROB).
300    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
301}
302
303template <class Impl>
304void
305DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
306{
307    renameQueue = rq_ptr;
308
309    // Setup wire to get instructions from rename (for the ROB).
310    fromRename = renameQueue->getWire(-renameToROBDelay);
311}
312
313template <class Impl>
314void
315DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
316{
317    iewQueue = iq_ptr;
318
319    // Setup wire to get instructions from IEW.
320    fromIEW = iewQueue->getWire(-iewToCommitDelay);
321}
322
323template <class Impl>
324void
325DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
326{
327    iewStage = iew_stage;
328}
329
330template<class Impl>
331void
332DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
333{
334    activeThreads = at_ptr;
335}
336
337template <class Impl>
338void
339DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
340{
341    for (ThreadID tid = 0; tid < numThreads; tid++)
342        renameMap[tid] = &rm_ptr[tid];
343}
344
345template <class Impl>
346void
347DefaultCommit<Impl>::setROB(ROB *rob_ptr)
348{
349    rob = rob_ptr;
350}
351
352template <class Impl>
353void
354DefaultCommit<Impl>::startupStage()
355{
356    rob->setActiveThreads(activeThreads);
357    rob->resetEntries();
358
359    // Broadcast the number of free entries.
360    for (ThreadID tid = 0; tid < numThreads; tid++) {
361        toIEW->commitInfo[tid].usedROB = true;
362        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
363        toIEW->commitInfo[tid].emptyROB = true;
364    }
365
366    // Commit must broadcast the number of free entries it has at the
367    // start of the simulation, so it starts as active.
368    cpu->activateStage(O3CPU::CommitIdx);
369
370    cpu->activityThisCycle();
371}
372
373template <class Impl>
374void
375DefaultCommit<Impl>::drain()
376{
377    drainPending = true;
378}
379
380template <class Impl>
381void
382DefaultCommit<Impl>::drainResume()
383{
384    drainPending = false;
385}
386
387template <class Impl>
388void
389DefaultCommit<Impl>::drainSanityCheck() const
390{
391    assert(isDrained());
392    rob->drainSanityCheck();
393}
394
395template <class Impl>
396bool
397DefaultCommit<Impl>::isDrained() const
398{
399    /* Make sure no one is executing microcode. There are two reasons
400     * for this:
401     * - Hardware virtualized CPUs can't switch into the middle of a
402     *   microcode sequence.
403     * - The current fetch implementation will most likely get very
404     *   confused if it tries to start fetching an instruction that
405     *   is executing in the middle of a ucode sequence that changes
406     *   address mappings. This can happen on for example x86.
407     */
408    for (ThreadID tid = 0; tid < numThreads; tid++) {
409        if (pc[tid].microPC() != 0)
410            return false;
411    }
412
413    /* Make sure that all instructions have finished committing before
414     * declaring the system as drained. We want the pipeline to be
415     * completely empty when we declare the CPU to be drained. This
416     * makes debugging easier since CPU handover and restoring from a
417     * checkpoint with a different CPU should have the same timing.
418     */
419    return rob->isEmpty() &&
420        interrupt == NoFault;
421}
422
423template <class Impl>
424void
425DefaultCommit<Impl>::takeOverFrom()
426{
427    _status = Active;
428    _nextStatus = Inactive;
429    for (ThreadID tid = 0; tid < numThreads; tid++) {
430        commitStatus[tid] = Idle;
431        changedROBNumEntries[tid] = false;
432        trapSquash[tid] = false;
433        tcSquash[tid] = false;
434        squashAfterInst[tid] = NULL;
435    }
436    squashCounter = 0;
437    rob->takeOverFrom();
438}
439
440template <class Impl>
441void
442DefaultCommit<Impl>::updateStatus()
443{
444    // reset ROB changed variable
445    list<ThreadID>::iterator threads = activeThreads->begin();
446    list<ThreadID>::iterator end = activeThreads->end();
447
448    while (threads != end) {
449        ThreadID tid = *threads++;
450
451        changedROBNumEntries[tid] = false;
452
453        // Also check if any of the threads has a trap pending
454        if (commitStatus[tid] == TrapPending ||
455            commitStatus[tid] == FetchTrapPending) {
456            _nextStatus = Active;
457        }
458    }
459
460    if (_nextStatus == Inactive && _status == Active) {
461        DPRINTF(Activity, "Deactivating stage.\n");
462        cpu->deactivateStage(O3CPU::CommitIdx);
463    } else if (_nextStatus == Active && _status == Inactive) {
464        DPRINTF(Activity, "Activating stage.\n");
465        cpu->activateStage(O3CPU::CommitIdx);
466    }
467
468    _status = _nextStatus;
469}
470
471template <class Impl>
472void
473DefaultCommit<Impl>::setNextStatus()
474{
475    int squashes = 0;
476
477    list<ThreadID>::iterator threads = activeThreads->begin();
478    list<ThreadID>::iterator end = activeThreads->end();
479
480    while (threads != end) {
481        ThreadID tid = *threads++;
482
483        if (commitStatus[tid] == ROBSquashing) {
484            squashes++;
485        }
486    }
487
488    squashCounter = squashes;
489
490    // If commit is currently squashing, then it will have activity for the
491    // next cycle. Set its next status as active.
492    if (squashCounter) {
493        _nextStatus = Active;
494    }
495}
496
497template <class Impl>
498bool
499DefaultCommit<Impl>::changedROBEntries()
500{
501    list<ThreadID>::iterator threads = activeThreads->begin();
502    list<ThreadID>::iterator end = activeThreads->end();
503
504    while (threads != end) {
505        ThreadID tid = *threads++;
506
507        if (changedROBNumEntries[tid]) {
508            return true;
509        }
510    }
511
512    return false;
513}
514
515template <class Impl>
516size_t
517DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
518{
519    return rob->numFreeEntries(tid);
520}
521
522template <class Impl>
523void
524DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
525{
526    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
527
528    TrapEvent *trap = new TrapEvent(this, tid);
529
530    cpu->schedule(trap, cpu->clockEdge(trapLatency));
531    trapInFlight[tid] = true;
532    thread[tid]->trapPending = true;
533}
534
535template <class Impl>
536void
537DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
538{
539    assert(!trapInFlight[tid]);
540    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
541
542    tcSquash[tid] = true;
543}
544
545template <class Impl>
546void
547DefaultCommit<Impl>::squashAll(ThreadID tid)
548{
549    // If we want to include the squashing instruction in the squash,
550    // then use one older sequence number.
551    // Hopefully this doesn't mess things up.  Basically I want to squash
552    // all instructions of this thread.
553    InstSeqNum squashed_inst = rob->isEmpty() ?
554        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
555
556    // All younger instructions will be squashed. Set the sequence
557    // number as the youngest instruction in the ROB (0 in this case.
558    // Hopefully nothing breaks.)
559    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
560
561    rob->squash(squashed_inst, tid);
562    changedROBNumEntries[tid] = true;
563
564    // Send back the sequence number of the squashed instruction.
565    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
566
567    // Send back the squash signal to tell stages that they should
568    // squash.
569    toIEW->commitInfo[tid].squash = true;
570
571    // Send back the rob squashing signal so other stages know that
572    // the ROB is in the process of squashing.
573    toIEW->commitInfo[tid].robSquashing = true;
574
575    toIEW->commitInfo[tid].mispredictInst = NULL;
576    toIEW->commitInfo[tid].squashInst = NULL;
577
578    toIEW->commitInfo[tid].pc = pc[tid];
579}
580
581template <class Impl>
582void
583DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
584{
585    squashAll(tid);
586
587    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
588
589    thread[tid]->trapPending = false;
590    thread[tid]->noSquashFromTC = false;
591    trapInFlight[tid] = false;
592
593    trapSquash[tid] = false;
594
595    commitStatus[tid] = ROBSquashing;
596    cpu->activityThisCycle();
597}
598
599template <class Impl>
600void
601DefaultCommit<Impl>::squashFromTC(ThreadID tid)
602{
603    squashAll(tid);
604
605    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
606
607    thread[tid]->noSquashFromTC = false;
608    assert(!thread[tid]->trapPending);
609
610    commitStatus[tid] = ROBSquashing;
611    cpu->activityThisCycle();
612
613    tcSquash[tid] = false;
614}
615
616template <class Impl>
617void
618DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
619{
620    DPRINTF(Commit, "Squashing after squash after request, "
621            "restarting at PC %s\n", pc[tid]);
622
623    squashAll(tid);
624    // Make sure to inform the fetch stage of which instruction caused
625    // the squash. It'll try to re-fetch an instruction executing in
626    // microcode unless this is set.
627    toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
628    squashAfterInst[tid] = NULL;
629
630    commitStatus[tid] = ROBSquashing;
631    cpu->activityThisCycle();
632}
633
634template <class Impl>
635void
636DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
637{
638    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
639            tid, head_inst->seqNum);
640
641    assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
642    commitStatus[tid] = SquashAfterPending;
643    squashAfterInst[tid] = head_inst;
644}
645
646template <class Impl>
647void
648DefaultCommit<Impl>::tick()
649{
650    wroteToTimeBuffer = false;
651    _nextStatus = Inactive;
652
653    if (activeThreads->empty())
654        return;
655
656    list<ThreadID>::iterator threads = activeThreads->begin();
657    list<ThreadID>::iterator end = activeThreads->end();
658
659    // Check if any of the threads are done squashing.  Change the
660    // status if they are done.
661    while (threads != end) {
662        ThreadID tid = *threads++;
663
664        // Clear the bit saying if the thread has committed stores
665        // this cycle.
666        committedStores[tid] = false;
667
668        if (commitStatus[tid] == ROBSquashing) {
669
670            if (rob->isDoneSquashing(tid)) {
671                commitStatus[tid] = Running;
672            } else {
673                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
674                        " insts this cycle.\n", tid);
675                rob->doSquash(tid);
676                toIEW->commitInfo[tid].robSquashing = true;
677                wroteToTimeBuffer = true;
678            }
679        }
680    }
681
682    commit();
683
684    markCompletedInsts();
685
686    threads = activeThreads->begin();
687
688    while (threads != end) {
689        ThreadID tid = *threads++;
690
691        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
692            // The ROB has more instructions it can commit. Its next status
693            // will be active.
694            _nextStatus = Active;
695
696            DynInstPtr inst = rob->readHeadInst(tid);
697
698            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
699                    " ROB and ready to commit\n",
700                    tid, inst->seqNum, inst->pcState());
701
702        } else if (!rob->isEmpty(tid)) {
703            DynInstPtr inst = rob->readHeadInst(tid);
704
705            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
706                    "%s is head of ROB and not ready\n",
707                    tid, inst->seqNum, inst->pcState());
708        }
709
710        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
711                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
712    }
713
714
715    if (wroteToTimeBuffer) {
716        DPRINTF(Activity, "Activity This Cycle.\n");
717        cpu->activityThisCycle();
718    }
719
720    updateStatus();
721}
722
723template <class Impl>
724void
725DefaultCommit<Impl>::handleInterrupt()
726{
727    // Verify that we still have an interrupt to handle
728    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
729        DPRINTF(Commit, "Pending interrupt is cleared by master before "
730                "it got handled. Restart fetching from the orig path.\n");
731        toIEW->commitInfo[0].clearInterrupt = true;
732        interrupt = NoFault;
733        avoidQuiesceLiveLock = true;
734        return;
735    }
736
737    // Wait until all in flight instructions are finished before enterring
738    // the interrupt.
739    if (canHandleInterrupts && cpu->instList.empty()) {
740        // Squash or record that I need to squash this cycle if
741        // an interrupt needed to be handled.
742        DPRINTF(Commit, "Interrupt detected.\n");
743
744        // Clear the interrupt now that it's going to be handled
745        toIEW->commitInfo[0].clearInterrupt = true;
746
747        assert(!thread[0]->noSquashFromTC);
748        thread[0]->noSquashFromTC = true;
749
750        if (cpu->checker) {
751            cpu->checker->handlePendingInt();
752        }
753
754        // CPU will handle interrupt.
755        cpu->processInterrupts(interrupt);
756
757        thread[0]->noSquashFromTC = false;
758
759        commitStatus[0] = TrapPending;
760
761        // Generate trap squash event.
762        generateTrapEvent(0);
763
764        interrupt = NoFault;
765        avoidQuiesceLiveLock = false;
766    } else {
767        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
768                "flight, ROB is %sempty\n",
769                canHandleInterrupts ? "not " : "",
770                cpu->instList.empty() ? "" : "not " );
771    }
772}
773
774template <class Impl>
775void
776DefaultCommit<Impl>::propagateInterrupt()
777{
778    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
779            tcSquash[0])
780        return;
781
782    // Process interrupts if interrupts are enabled, not in PAL
783    // mode, and no other traps or external squashes are currently
784    // pending.
785    // @todo: Allow other threads to handle interrupts.
786
787    // Get any interrupt that happened
788    interrupt = cpu->getInterrupts();
789
790    // Tell fetch that there is an interrupt pending.  This
791    // will make fetch wait until it sees a non PAL-mode PC,
792    // at which point it stops fetching instructions.
793    if (interrupt != NoFault)
794        toIEW->commitInfo[0].interruptPending = true;
795}
796
797template <class Impl>
798void
799DefaultCommit<Impl>::commit()
800{
801    if (FullSystem) {
802        // Check if we have a interrupt and get read to handle it
803        if (cpu->checkInterrupts(cpu->tcBase(0)))
804            propagateInterrupt();
805    }
806
807    ////////////////////////////////////
808    // Check for any possible squashes, handle them first
809    ////////////////////////////////////
810    list<ThreadID>::iterator threads = activeThreads->begin();
811    list<ThreadID>::iterator end = activeThreads->end();
812
813    while (threads != end) {
814        ThreadID tid = *threads++;
815
816        // Not sure which one takes priority.  I think if we have
817        // both, that's a bad sign.
818        if (trapSquash[tid] == true) {
819            assert(!tcSquash[tid]);
820            squashFromTrap(tid);
821        } else if (tcSquash[tid] == true) {
822            assert(commitStatus[tid] != TrapPending);
823            squashFromTC(tid);
824        } else if (commitStatus[tid] == SquashAfterPending) {
825            // A squash from the previous cycle of the commit stage (i.e.,
826            // commitInsts() called squashAfter) is pending. Squash the
827            // thread now.
828            squashFromSquashAfter(tid);
829        }
830
831        // Squashed sequence number must be older than youngest valid
832        // instruction in the ROB. This prevents squashes from younger
833        // instructions overriding squashes from older instructions.
834        if (fromIEW->squash[tid] &&
835            commitStatus[tid] != TrapPending &&
836            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
837
838            if (fromIEW->mispredictInst[tid]) {
839                DPRINTF(Commit,
840                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
841                    tid,
842                    fromIEW->mispredictInst[tid]->instAddr(),
843                    fromIEW->squashedSeqNum[tid]);
844            } else {
845                DPRINTF(Commit,
846                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
847                    tid, fromIEW->squashedSeqNum[tid]);
848            }
849
850            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
851                    tid,
852                    fromIEW->pc[tid].nextInstAddr());
853
854            commitStatus[tid] = ROBSquashing;
855
856            // If we want to include the squashing instruction in the squash,
857            // then use one older sequence number.
858            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
859
860            if (fromIEW->includeSquashInst[tid] == true) {
861                squashed_inst--;
862            }
863
864            // All younger instructions will be squashed. Set the sequence
865            // number as the youngest instruction in the ROB.
866            youngestSeqNum[tid] = squashed_inst;
867
868            rob->squash(squashed_inst, tid);
869            changedROBNumEntries[tid] = true;
870
871            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
872
873            toIEW->commitInfo[tid].squash = true;
874
875            // Send back the rob squashing signal so other stages know that
876            // the ROB is in the process of squashing.
877            toIEW->commitInfo[tid].robSquashing = true;
878
879            toIEW->commitInfo[tid].mispredictInst =
880                fromIEW->mispredictInst[tid];
881            toIEW->commitInfo[tid].branchTaken =
882                fromIEW->branchTaken[tid];
883            toIEW->commitInfo[tid].squashInst =
884                                    rob->findInst(tid, squashed_inst);
885            if (toIEW->commitInfo[tid].mispredictInst) {
886                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
887                     toIEW->commitInfo[tid].branchTaken = true;
888                }
889            }
890
891            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
892
893            if (toIEW->commitInfo[tid].mispredictInst) {
894                ++branchMispredicts;
895            }
896        }
897
898    }
899
900    setNextStatus();
901
902    if (squashCounter != numThreads) {
903        // If we're not currently squashing, then get instructions.
904        getInsts();
905
906        // Try to commit any instructions.
907        commitInsts();
908    }
909
910    //Check for any activity
911    threads = activeThreads->begin();
912
913    while (threads != end) {
914        ThreadID tid = *threads++;
915
916        if (changedROBNumEntries[tid]) {
917            toIEW->commitInfo[tid].usedROB = true;
918            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
919
920            wroteToTimeBuffer = true;
921            changedROBNumEntries[tid] = false;
922            if (rob->isEmpty(tid))
923                checkEmptyROB[tid] = true;
924        }
925
926        // ROB is only considered "empty" for previous stages if: a)
927        // ROB is empty, b) there are no outstanding stores, c) IEW
928        // stage has received any information regarding stores that
929        // committed.
930        // c) is checked by making sure to not consider the ROB empty
931        // on the same cycle as when stores have been committed.
932        // @todo: Make this handle multi-cycle communication between
933        // commit and IEW.
934        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
935            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
936            checkEmptyROB[tid] = false;
937            toIEW->commitInfo[tid].usedROB = true;
938            toIEW->commitInfo[tid].emptyROB = true;
939            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
940            wroteToTimeBuffer = true;
941        }
942
943    }
944}
945
946template <class Impl>
947void
948DefaultCommit<Impl>::commitInsts()
949{
950    ////////////////////////////////////
951    // Handle commit
952    // Note that commit will be handled prior to putting new
953    // instructions in the ROB so that the ROB only tries to commit
954    // instructions it has in this current cycle, and not instructions
955    // it is writing in during this cycle.  Can't commit and squash
956    // things at the same time...
957    ////////////////////////////////////
958
959    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
960
961    unsigned num_committed = 0;
962
963    DynInstPtr head_inst;
964
965    // Commit as many instructions as possible until the commit bandwidth
966    // limit is reached, or it becomes impossible to commit any more.
967    while (num_committed < commitWidth) {
968        // Check for any interrupt that we've already squashed for
969        // and start processing it.
970        if (interrupt != NoFault)
971            handleInterrupt();
972
973        int commit_thread = getCommittingThread();
974
975        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
976            break;
977
978        head_inst = rob->readHeadInst(commit_thread);
979
980        ThreadID tid = head_inst->threadNumber;
981
982        assert(tid == commit_thread);
983
984        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
985                head_inst->seqNum, tid);
986
987        // If the head instruction is squashed, it is ready to retire
988        // (be removed from the ROB) at any time.
989        if (head_inst->isSquashed()) {
990
991            DPRINTF(Commit, "Retiring squashed instruction from "
992                    "ROB.\n");
993
994            rob->retireHead(commit_thread);
995
996            ++commitSquashedInsts;
997
998            // Record that the number of ROB entries has changed.
999            changedROBNumEntries[tid] = true;
1000        } else {
1001            pc[tid] = head_inst->pcState();
1002
1003            // Increment the total number of non-speculative instructions
1004            // executed.
1005            // Hack for now: it really shouldn't happen until after the
1006            // commit is deemed to be successful, but this count is needed
1007            // for syscalls.
1008            thread[tid]->funcExeInst++;
1009
1010            // Try to commit the head instruction.
1011            bool commit_success = commitHead(head_inst, num_committed);
1012
1013            if (commit_success) {
1014                ++num_committed;
1015
1016                changedROBNumEntries[tid] = true;
1017
1018                // Set the doneSeqNum to the youngest committed instruction.
1019                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1020
1021                if (tid == 0) {
1022                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1023                                           ((THE_ISA != ALPHA_ISA) ||
1024                                             (!(pc[0].instAddr() & 0x3)));
1025                }
1026
1027                // Updates misc. registers.
1028                head_inst->updateMiscRegs();
1029
1030                cpu->traceFunctions(pc[tid].instAddr());
1031
1032                TheISA::advancePC(pc[tid], head_inst->staticInst);
1033
1034                // Keep track of the last sequence number commited
1035                lastCommitedSeqNum[tid] = head_inst->seqNum;
1036
1037                // If this is an instruction that doesn't play nicely with
1038                // others squash everything and restart fetch
1039                if (head_inst->isSquashAfter())
1040                    squashAfter(tid, head_inst);
1041
1042                if (drainPending) {
1043                    DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1044                    if (pc[tid].microPC() == 0 && interrupt == NoFault) {
1045                        squashAfter(tid, head_inst);
1046                        cpu->commitDrained(tid);
1047                    }
1048                }
1049
1050                int count = 0;
1051                Addr oldpc;
1052                // Debug statement.  Checks to make sure we're not
1053                // currently updating state while handling PC events.
1054                assert(!thread[tid]->noSquashFromTC && !thread[tid]->trapPending);
1055                do {
1056                    oldpc = pc[tid].instAddr();
1057                    cpu->system->pcEventQueue.service(thread[tid]->getTC());
1058                    count++;
1059                } while (oldpc != pc[tid].instAddr());
1060                if (count > 1) {
1061                    DPRINTF(Commit,
1062                            "PC skip function event, stopping commit\n");
1063                    break;
1064                }
1065
1066                // Check if an instruction just enabled interrupts and we've
1067                // previously had an interrupt pending that was not handled
1068                // because interrupts were subsequently disabled before the
1069                // pipeline reached a place to handle the interrupt. In that
1070                // case squash now to make sure the interrupt is handled.
1071                //
1072                // If we don't do this, we might end up in a live lock situation
1073                if (!interrupt  && avoidQuiesceLiveLock &&
1074                   (!head_inst->isMicroop() || head_inst->isLastMicroop()) &&
1075                   cpu->checkInterrupts(cpu->tcBase(0)))
1076                    squashAfter(tid, head_inst);
1077            } else {
1078                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1079                        "[tid:%i] [sn:%i].\n",
1080                        head_inst->pcState(), tid ,head_inst->seqNum);
1081                break;
1082            }
1083        }
1084    }
1085
1086    DPRINTF(CommitRate, "%i\n", num_committed);
1087    numCommittedDist.sample(num_committed);
1088
1089    if (num_committed == commitWidth) {
1090        commitEligibleSamples++;
1091    }
1092}
1093
1094template <class Impl>
1095bool
1096DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1097{
1098    assert(head_inst);
1099
1100    ThreadID tid = head_inst->threadNumber;
1101
1102    // If the instruction is not executed yet, then it will need extra
1103    // handling.  Signal backwards that it should be executed.
1104    if (!head_inst->isExecuted()) {
1105        // Keep this number correct.  We have not yet actually executed
1106        // and committed this instruction.
1107        thread[tid]->funcExeInst--;
1108
1109        if (head_inst->isNonSpeculative() ||
1110            head_inst->isStoreConditional() ||
1111            head_inst->isMemBarrier() ||
1112            head_inst->isWriteBarrier()) {
1113
1114            DPRINTF(Commit, "Encountered a barrier or non-speculative "
1115                    "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1116                    head_inst->seqNum, head_inst->pcState());
1117
1118            if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1119                DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1120                return false;
1121            }
1122
1123            toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1124
1125            // Change the instruction so it won't try to commit again until
1126            // it is executed.
1127            head_inst->clearCanCommit();
1128
1129            ++commitNonSpecStalls;
1130
1131            return false;
1132        } else if (head_inst->isLoad()) {
1133            if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1134                DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1135                return false;
1136            }
1137
1138            assert(head_inst->uncacheable());
1139            DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1140                    head_inst->seqNum, head_inst->pcState());
1141
1142            // Send back the non-speculative instruction's sequence
1143            // number.  Tell the lsq to re-execute the load.
1144            toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1145            toIEW->commitInfo[tid].uncached = true;
1146            toIEW->commitInfo[tid].uncachedLoad = head_inst;
1147
1148            head_inst->clearCanCommit();
1149
1150            return false;
1151        } else {
1152            panic("Trying to commit un-executed instruction "
1153                  "of unknown type!\n");
1154        }
1155    }
1156
1157    if (head_inst->isThreadSync()) {
1158        // Not handled for now.
1159        panic("Thread sync instructions are not handled yet.\n");
1160    }
1161
1162    // Check if the instruction caused a fault.  If so, trap.
1163    Fault inst_fault = head_inst->getFault();
1164
1165    // Stores mark themselves as completed.
1166    if (!head_inst->isStore() && inst_fault == NoFault) {
1167        head_inst->setCompleted();
1168    }
1169
1170    // Use checker prior to updating anything due to traps or PC
1171    // based events.
1172    if (cpu->checker) {
1173        cpu->checker->verify(head_inst);
1174    }
1175
1176    if (inst_fault != NoFault) {
1177        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1178                head_inst->seqNum, head_inst->pcState());
1179
1180        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1181            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1182            return false;
1183        }
1184
1185        head_inst->setCompleted();
1186
1187        if (cpu->checker) {
1188            // Need to check the instruction before its fault is processed
1189            cpu->checker->verify(head_inst);
1190        }
1191
1192        assert(!thread[tid]->noSquashFromTC);
1193
1194        // Mark that we're in state update mode so that the trap's
1195        // execution doesn't generate extra squashes.
1196        thread[tid]->noSquashFromTC = true;
1197
1198        // Execute the trap.  Although it's slightly unrealistic in
1199        // terms of timing (as it doesn't wait for the full timing of
1200        // the trap event to complete before updating state), it's
1201        // needed to update the state as soon as possible.  This
1202        // prevents external agents from changing any specific state
1203        // that the trap need.
1204        cpu->trap(inst_fault, tid, head_inst->staticInst);
1205
1206        // Exit state update mode to avoid accidental updating.
1207        thread[tid]->noSquashFromTC = false;
1208
1209        commitStatus[tid] = TrapPending;
1210
1211        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1212            head_inst->seqNum);
1213        if (head_inst->traceData) {
1214            if (DTRACE(ExecFaulting)) {
1215                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1216                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1217                head_inst->traceData->dump();
1218            }
1219            delete head_inst->traceData;
1220            head_inst->traceData = NULL;
1221        }
1222
1223        // Generate trap squash event.
1224        generateTrapEvent(tid);
1225        return false;
1226    }
1227
1228    updateComInstStats(head_inst);
1229
1230    if (FullSystem) {
1231        if (thread[tid]->profile) {
1232            thread[tid]->profilePC = head_inst->instAddr();
1233            ProfileNode *node = thread[tid]->profile->consume(
1234                    thread[tid]->getTC(), head_inst->staticInst);
1235
1236            if (node)
1237                thread[tid]->profileNode = node;
1238        }
1239        if (CPA::available()) {
1240            if (head_inst->isControl()) {
1241                ThreadContext *tc = thread[tid]->getTC();
1242                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1243            }
1244        }
1245    }
1246    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1247            head_inst->seqNum, head_inst->pcState());
1248    if (head_inst->traceData) {
1249        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1250        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1251        head_inst->traceData->dump();
1252        delete head_inst->traceData;
1253        head_inst->traceData = NULL;
1254    }
1255    if (head_inst->isReturn()) {
1256        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1257                        head_inst->seqNum, head_inst->pcState());
1258    }
1259
1260    // Update the commit rename map
1261    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1262        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1263                                 head_inst->renamedDestRegIdx(i));
1264    }
1265
1266    // Finally clear the head ROB entry.
1267    rob->retireHead(tid);
1268
1269#if TRACING_ON
1270    head_inst->commitTick = curTick() - head_inst->fetchTick;
1271#endif
1272
1273    // If this was a store, record it for this cycle.
1274    if (head_inst->isStore())
1275        committedStores[tid] = true;
1276
1277    // Return true to indicate that we have committed an instruction.
1278    return true;
1279}
1280
1281template <class Impl>
1282void
1283DefaultCommit<Impl>::getInsts()
1284{
1285    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1286
1287    // Read any renamed instructions and place them into the ROB.
1288    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1289
1290    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1291        DynInstPtr inst;
1292
1293        inst = fromRename->insts[inst_num];
1294        ThreadID tid = inst->threadNumber;
1295
1296        if (!inst->isSquashed() &&
1297            commitStatus[tid] != ROBSquashing &&
1298            commitStatus[tid] != TrapPending) {
1299            changedROBNumEntries[tid] = true;
1300
1301            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1302                    inst->pcState(), inst->seqNum, tid);
1303
1304            rob->insertInst(inst);
1305
1306            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1307
1308            youngestSeqNum[tid] = inst->seqNum;
1309        } else {
1310            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1311                    "squashed, skipping.\n",
1312                    inst->pcState(), inst->seqNum, tid);
1313        }
1314    }
1315}
1316
1317template <class Impl>
1318void
1319DefaultCommit<Impl>::skidInsert()
1320{
1321    DPRINTF(Commit, "Attempting to any instructions from rename into "
1322            "skidBuffer.\n");
1323
1324    for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1325        DynInstPtr inst = fromRename->insts[inst_num];
1326
1327        if (!inst->isSquashed()) {
1328            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1329                    "skidBuffer.\n", inst->pcState(), inst->seqNum,
1330                    inst->threadNumber);
1331            skidBuffer.push(inst);
1332        } else {
1333            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1334                    "squashed, skipping.\n",
1335                    inst->pcState(), inst->seqNum, inst->threadNumber);
1336        }
1337    }
1338}
1339
1340template <class Impl>
1341void
1342DefaultCommit<Impl>::markCompletedInsts()
1343{
1344    // Grab completed insts out of the IEW instruction queue, and mark
1345    // instructions completed within the ROB.
1346    for (int inst_num = 0;
1347         inst_num < fromIEW->size && fromIEW->insts[inst_num];
1348         ++inst_num)
1349    {
1350        if (!fromIEW->insts[inst_num]->isSquashed()) {
1351            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1352                    "within ROB.\n",
1353                    fromIEW->insts[inst_num]->threadNumber,
1354                    fromIEW->insts[inst_num]->pcState(),
1355                    fromIEW->insts[inst_num]->seqNum);
1356
1357            // Mark the instruction as ready to commit.
1358            fromIEW->insts[inst_num]->setCanCommit();
1359        }
1360    }
1361}
1362
1363template <class Impl>
1364bool
1365DefaultCommit<Impl>::robDoneSquashing()
1366{
1367    list<ThreadID>::iterator threads = activeThreads->begin();
1368    list<ThreadID>::iterator end = activeThreads->end();
1369
1370    while (threads != end) {
1371        ThreadID tid = *threads++;
1372
1373        if (!rob->isDoneSquashing(tid))
1374            return false;
1375    }
1376
1377    return true;
1378}
1379
1380template <class Impl>
1381void
1382DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1383{
1384    ThreadID tid = inst->threadNumber;
1385
1386    if (!inst->isMicroop() || inst->isLastMicroop())
1387        instsCommitted[tid]++;
1388    opsCommitted[tid]++;
1389
1390    // To match the old model, don't count nops and instruction
1391    // prefetches towards the total commit count.
1392    if (!inst->isNop() && !inst->isInstPrefetch()) {
1393        cpu->instDone(tid, inst);
1394    }
1395
1396    //
1397    //  Control Instructions
1398    //
1399    if (inst->isControl())
1400        statComBranches[tid]++;
1401
1402    //
1403    //  Memory references
1404    //
1405    if (inst->isMemRef()) {
1406        statComRefs[tid]++;
1407
1408        if (inst->isLoad()) {
1409            statComLoads[tid]++;
1410        }
1411    }
1412
1413    if (inst->isMemBarrier()) {
1414        statComMembars[tid]++;
1415    }
1416
1417    // Integer Instruction
1418    if (inst->isInteger())
1419        statComInteger[tid]++;
1420
1421    // Floating Point Instruction
1422    if (inst->isFloating())
1423        statComFloating[tid]++;
1424
1425    // Function Calls
1426    if (inst->isCall())
1427        statComFunctionCalls[tid]++;
1428
1429}
1430
1431////////////////////////////////////////
1432//                                    //
1433//  SMT COMMIT POLICY MAINTAINED HERE //
1434//                                    //
1435////////////////////////////////////////
1436template <class Impl>
1437ThreadID
1438DefaultCommit<Impl>::getCommittingThread()
1439{
1440    if (numThreads > 1) {
1441        switch (commitPolicy) {
1442
1443          case Aggressive:
1444            //If Policy is Aggressive, commit will call
1445            //this function multiple times per
1446            //cycle
1447            return oldestReady();
1448
1449          case RoundRobin:
1450            return roundRobin();
1451
1452          case OldestReady:
1453            return oldestReady();
1454
1455          default:
1456            return InvalidThreadID;
1457        }
1458    } else {
1459        assert(!activeThreads->empty());
1460        ThreadID tid = activeThreads->front();
1461
1462        if (commitStatus[tid] == Running ||
1463            commitStatus[tid] == Idle ||
1464            commitStatus[tid] == FetchTrapPending) {
1465            return tid;
1466        } else {
1467            return InvalidThreadID;
1468        }
1469    }
1470}
1471
1472template<class Impl>
1473ThreadID
1474DefaultCommit<Impl>::roundRobin()
1475{
1476    list<ThreadID>::iterator pri_iter = priority_list.begin();
1477    list<ThreadID>::iterator end      = priority_list.end();
1478
1479    while (pri_iter != end) {
1480        ThreadID tid = *pri_iter;
1481
1482        if (commitStatus[tid] == Running ||
1483            commitStatus[tid] == Idle ||
1484            commitStatus[tid] == FetchTrapPending) {
1485
1486            if (rob->isHeadReady(tid)) {
1487                priority_list.erase(pri_iter);
1488                priority_list.push_back(tid);
1489
1490                return tid;
1491            }
1492        }
1493
1494        pri_iter++;
1495    }
1496
1497    return InvalidThreadID;
1498}
1499
1500template<class Impl>
1501ThreadID
1502DefaultCommit<Impl>::oldestReady()
1503{
1504    unsigned oldest = 0;
1505    bool first = true;
1506
1507    list<ThreadID>::iterator threads = activeThreads->begin();
1508    list<ThreadID>::iterator end = activeThreads->end();
1509
1510    while (threads != end) {
1511        ThreadID tid = *threads++;
1512
1513        if (!rob->isEmpty(tid) &&
1514            (commitStatus[tid] == Running ||
1515             commitStatus[tid] == Idle ||
1516             commitStatus[tid] == FetchTrapPending)) {
1517
1518            if (rob->isHeadReady(tid)) {
1519
1520                DynInstPtr head_inst = rob->readHeadInst(tid);
1521
1522                if (first) {
1523                    oldest = tid;
1524                    first = false;
1525                } else if (head_inst->seqNum < oldest) {
1526                    oldest = tid;
1527                }
1528            }
1529        }
1530    }
1531
1532    if (!first) {
1533        return oldest;
1534    } else {
1535        return InvalidThreadID;
1536    }
1537}
1538