commit_impl.hh revision 9152:86c0e6ca5e7c
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 *          Korey Sewell
42 */
43
44#include <algorithm>
45#include <string>
46
47#include "arch/utility.hh"
48#include "base/loader/symtab.hh"
49#include "base/cp_annotate.hh"
50#include "config/the_isa.hh"
51#include "cpu/checker/cpu.hh"
52#include "cpu/o3/commit.hh"
53#include "cpu/o3/thread_state.hh"
54#include "cpu/base.hh"
55#include "cpu/exetrace.hh"
56#include "cpu/timebuf.hh"
57#include "debug/Activity.hh"
58#include "debug/Commit.hh"
59#include "debug/CommitRate.hh"
60#include "debug/ExecFaulting.hh"
61#include "debug/O3PipeView.hh"
62#include "params/DerivO3CPU.hh"
63#include "sim/faults.hh"
64#include "sim/full_system.hh"
65
66using namespace std;
67
68template <class Impl>
69DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
70                                          ThreadID _tid)
71    : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
72{
73}
74
75template <class Impl>
76void
77DefaultCommit<Impl>::TrapEvent::process()
78{
79    // This will get reset by commit if it was switched out at the
80    // time of this event processing.
81    commit->trapSquash[tid] = true;
82}
83
84template <class Impl>
85const char *
86DefaultCommit<Impl>::TrapEvent::description() const
87{
88    return "Trap";
89}
90
91template <class Impl>
92DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
93    : cpu(_cpu),
94      squashCounter(0),
95      iewToCommitDelay(params->iewToCommitDelay),
96      commitToIEWDelay(params->commitToIEWDelay),
97      renameToROBDelay(params->renameToROBDelay),
98      fetchToCommitDelay(params->commitToFetchDelay),
99      renameWidth(params->renameWidth),
100      commitWidth(params->commitWidth),
101      numThreads(params->numThreads),
102      drainPending(false),
103      switchedOut(false),
104      trapLatency(params->trapLatency),
105      canHandleInterrupts(true)
106{
107    _status = Active;
108    _nextStatus = Inactive;
109    std::string policy = params->smtCommitPolicy;
110
111    //Convert string to lowercase
112    std::transform(policy.begin(), policy.end(), policy.begin(),
113                   (int(*)(int)) tolower);
114
115    //Assign commit policy
116    if (policy == "aggressive"){
117        commitPolicy = Aggressive;
118
119        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
120    } else if (policy == "roundrobin"){
121        commitPolicy = RoundRobin;
122
123        //Set-Up Priority List
124        for (ThreadID tid = 0; tid < numThreads; tid++) {
125            priority_list.push_back(tid);
126        }
127
128        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
129    } else if (policy == "oldestready"){
130        commitPolicy = OldestReady;
131
132        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
133    } else {
134        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
135               "RoundRobin,OldestReady}");
136    }
137
138    for (ThreadID tid = 0; tid < numThreads; tid++) {
139        commitStatus[tid] = Idle;
140        changedROBNumEntries[tid] = false;
141        checkEmptyROB[tid] = false;
142        trapInFlight[tid] = false;
143        committedStores[tid] = false;
144        trapSquash[tid] = false;
145        tcSquash[tid] = false;
146        pc[tid].set(0);
147        lastCommitedSeqNum[tid] = 0;
148    }
149    interrupt = NoFault;
150}
151
152template <class Impl>
153std::string
154DefaultCommit<Impl>::name() const
155{
156    return cpu->name() + ".commit";
157}
158
159template <class Impl>
160void
161DefaultCommit<Impl>::regStats()
162{
163    using namespace Stats;
164    commitCommittedInsts
165        .name(name() + ".commitCommittedInsts")
166        .desc("The number of committed instructions")
167        .prereq(commitCommittedInsts);
168    commitCommittedOps
169        .name(name() + ".commitCommittedOps")
170        .desc("The number of committed instructions")
171        .prereq(commitCommittedInsts);
172    commitSquashedInsts
173        .name(name() + ".commitSquashedInsts")
174        .desc("The number of squashed insts skipped by commit")
175        .prereq(commitSquashedInsts);
176    commitSquashEvents
177        .name(name() + ".commitSquashEvents")
178        .desc("The number of times commit is told to squash")
179        .prereq(commitSquashEvents);
180    commitNonSpecStalls
181        .name(name() + ".commitNonSpecStalls")
182        .desc("The number of times commit has been forced to stall to "
183              "communicate backwards")
184        .prereq(commitNonSpecStalls);
185    branchMispredicts
186        .name(name() + ".branchMispredicts")
187        .desc("The number of times a branch was mispredicted")
188        .prereq(branchMispredicts);
189    numCommittedDist
190        .init(0,commitWidth,1)
191        .name(name() + ".committed_per_cycle")
192        .desc("Number of insts commited each cycle")
193        .flags(Stats::pdf)
194        ;
195
196    instsCommitted
197        .init(cpu->numThreads)
198        .name(name() + ".committedInsts")
199        .desc("Number of instructions committed")
200        .flags(total)
201        ;
202
203    opsCommitted
204        .init(cpu->numThreads)
205        .name(name() + ".committedOps")
206        .desc("Number of ops (including micro ops) committed")
207        .flags(total)
208        ;
209
210    statComSwp
211        .init(cpu->numThreads)
212        .name(name() + ".swp_count")
213        .desc("Number of s/w prefetches committed")
214        .flags(total)
215        ;
216
217    statComRefs
218        .init(cpu->numThreads)
219        .name(name() +  ".refs")
220        .desc("Number of memory references committed")
221        .flags(total)
222        ;
223
224    statComLoads
225        .init(cpu->numThreads)
226        .name(name() +  ".loads")
227        .desc("Number of loads committed")
228        .flags(total)
229        ;
230
231    statComMembars
232        .init(cpu->numThreads)
233        .name(name() +  ".membars")
234        .desc("Number of memory barriers committed")
235        .flags(total)
236        ;
237
238    statComBranches
239        .init(cpu->numThreads)
240        .name(name() + ".branches")
241        .desc("Number of branches committed")
242        .flags(total)
243        ;
244
245    statComFloating
246        .init(cpu->numThreads)
247        .name(name() + ".fp_insts")
248        .desc("Number of committed floating point instructions.")
249        .flags(total)
250        ;
251
252    statComInteger
253        .init(cpu->numThreads)
254        .name(name()+".int_insts")
255        .desc("Number of committed integer instructions.")
256        .flags(total)
257        ;
258
259    statComFunctionCalls
260        .init(cpu->numThreads)
261        .name(name()+".function_calls")
262        .desc("Number of function calls committed.")
263        .flags(total)
264        ;
265
266    commitEligible
267        .init(cpu->numThreads)
268        .name(name() + ".bw_limited")
269        .desc("number of insts not committed due to BW limits")
270        .flags(total)
271        ;
272
273    commitEligibleSamples
274        .name(name() + ".bw_lim_events")
275        .desc("number cycles where commit BW limit reached")
276        ;
277}
278
279template <class Impl>
280void
281DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
282{
283    thread = threads;
284}
285
286template <class Impl>
287void
288DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
289{
290    timeBuffer = tb_ptr;
291
292    // Setup wire to send information back to IEW.
293    toIEW = timeBuffer->getWire(0);
294
295    // Setup wire to read data from IEW (for the ROB).
296    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
297}
298
299template <class Impl>
300void
301DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
302{
303    fetchQueue = fq_ptr;
304
305    // Setup wire to get instructions from rename (for the ROB).
306    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
307}
308
309template <class Impl>
310void
311DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
312{
313    renameQueue = rq_ptr;
314
315    // Setup wire to get instructions from rename (for the ROB).
316    fromRename = renameQueue->getWire(-renameToROBDelay);
317}
318
319template <class Impl>
320void
321DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
322{
323    iewQueue = iq_ptr;
324
325    // Setup wire to get instructions from IEW.
326    fromIEW = iewQueue->getWire(-iewToCommitDelay);
327}
328
329template <class Impl>
330void
331DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
332{
333    iewStage = iew_stage;
334}
335
336template<class Impl>
337void
338DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
339{
340    activeThreads = at_ptr;
341}
342
343template <class Impl>
344void
345DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
346{
347    for (ThreadID tid = 0; tid < numThreads; tid++)
348        renameMap[tid] = &rm_ptr[tid];
349}
350
351template <class Impl>
352void
353DefaultCommit<Impl>::setROB(ROB *rob_ptr)
354{
355    rob = rob_ptr;
356}
357
358template <class Impl>
359void
360DefaultCommit<Impl>::initStage()
361{
362    rob->setActiveThreads(activeThreads);
363    rob->resetEntries();
364
365    // Broadcast the number of free entries.
366    for (ThreadID tid = 0; tid < numThreads; tid++) {
367        toIEW->commitInfo[tid].usedROB = true;
368        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
369        toIEW->commitInfo[tid].emptyROB = true;
370    }
371
372    // Commit must broadcast the number of free entries it has at the
373    // start of the simulation, so it starts as active.
374    cpu->activateStage(O3CPU::CommitIdx);
375
376    cpu->activityThisCycle();
377    trapLatency = cpu->ticks(trapLatency);
378}
379
380template <class Impl>
381bool
382DefaultCommit<Impl>::drain()
383{
384    drainPending = true;
385
386    return false;
387}
388
389template <class Impl>
390void
391DefaultCommit<Impl>::switchOut()
392{
393    switchedOut = true;
394    drainPending = false;
395    rob->switchOut();
396}
397
398template <class Impl>
399void
400DefaultCommit<Impl>::resume()
401{
402    drainPending = false;
403}
404
405template <class Impl>
406void
407DefaultCommit<Impl>::takeOverFrom()
408{
409    switchedOut = false;
410    _status = Active;
411    _nextStatus = Inactive;
412    for (ThreadID tid = 0; tid < numThreads; tid++) {
413        commitStatus[tid] = Idle;
414        changedROBNumEntries[tid] = false;
415        trapSquash[tid] = false;
416        tcSquash[tid] = false;
417    }
418    squashCounter = 0;
419    rob->takeOverFrom();
420}
421
422template <class Impl>
423void
424DefaultCommit<Impl>::updateStatus()
425{
426    // reset ROB changed variable
427    list<ThreadID>::iterator threads = activeThreads->begin();
428    list<ThreadID>::iterator end = activeThreads->end();
429
430    while (threads != end) {
431        ThreadID tid = *threads++;
432
433        changedROBNumEntries[tid] = false;
434
435        // Also check if any of the threads has a trap pending
436        if (commitStatus[tid] == TrapPending ||
437            commitStatus[tid] == FetchTrapPending) {
438            _nextStatus = Active;
439        }
440    }
441
442    if (_nextStatus == Inactive && _status == Active) {
443        DPRINTF(Activity, "Deactivating stage.\n");
444        cpu->deactivateStage(O3CPU::CommitIdx);
445    } else if (_nextStatus == Active && _status == Inactive) {
446        DPRINTF(Activity, "Activating stage.\n");
447        cpu->activateStage(O3CPU::CommitIdx);
448    }
449
450    _status = _nextStatus;
451}
452
453template <class Impl>
454void
455DefaultCommit<Impl>::setNextStatus()
456{
457    int squashes = 0;
458
459    list<ThreadID>::iterator threads = activeThreads->begin();
460    list<ThreadID>::iterator end = activeThreads->end();
461
462    while (threads != end) {
463        ThreadID tid = *threads++;
464
465        if (commitStatus[tid] == ROBSquashing) {
466            squashes++;
467        }
468    }
469
470    squashCounter = squashes;
471
472    // If commit is currently squashing, then it will have activity for the
473    // next cycle. Set its next status as active.
474    if (squashCounter) {
475        _nextStatus = Active;
476    }
477}
478
479template <class Impl>
480bool
481DefaultCommit<Impl>::changedROBEntries()
482{
483    list<ThreadID>::iterator threads = activeThreads->begin();
484    list<ThreadID>::iterator end = activeThreads->end();
485
486    while (threads != end) {
487        ThreadID tid = *threads++;
488
489        if (changedROBNumEntries[tid]) {
490            return true;
491        }
492    }
493
494    return false;
495}
496
497template <class Impl>
498size_t
499DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
500{
501    return rob->numFreeEntries(tid);
502}
503
504template <class Impl>
505void
506DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
507{
508    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
509
510    TrapEvent *trap = new TrapEvent(this, tid);
511
512    cpu->schedule(trap, curTick() + trapLatency);
513    trapInFlight[tid] = true;
514    thread[tid]->trapPending = true;
515}
516
517template <class Impl>
518void
519DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
520{
521    assert(!trapInFlight[tid]);
522    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
523
524    tcSquash[tid] = true;
525}
526
527template <class Impl>
528void
529DefaultCommit<Impl>::squashAll(ThreadID tid)
530{
531    // If we want to include the squashing instruction in the squash,
532    // then use one older sequence number.
533    // Hopefully this doesn't mess things up.  Basically I want to squash
534    // all instructions of this thread.
535    InstSeqNum squashed_inst = rob->isEmpty() ?
536        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
537
538    // All younger instructions will be squashed. Set the sequence
539    // number as the youngest instruction in the ROB (0 in this case.
540    // Hopefully nothing breaks.)
541    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
542
543    rob->squash(squashed_inst, tid);
544    changedROBNumEntries[tid] = true;
545
546    // Send back the sequence number of the squashed instruction.
547    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
548
549    // Send back the squash signal to tell stages that they should
550    // squash.
551    toIEW->commitInfo[tid].squash = true;
552
553    // Send back the rob squashing signal so other stages know that
554    // the ROB is in the process of squashing.
555    toIEW->commitInfo[tid].robSquashing = true;
556
557    toIEW->commitInfo[tid].mispredictInst = NULL;
558    toIEW->commitInfo[tid].squashInst = NULL;
559
560    toIEW->commitInfo[tid].pc = pc[tid];
561}
562
563template <class Impl>
564void
565DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
566{
567    squashAll(tid);
568
569    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
570
571    thread[tid]->trapPending = false;
572    thread[tid]->inSyscall = false;
573    trapInFlight[tid] = false;
574
575    trapSquash[tid] = false;
576
577    commitStatus[tid] = ROBSquashing;
578    cpu->activityThisCycle();
579}
580
581template <class Impl>
582void
583DefaultCommit<Impl>::squashFromTC(ThreadID tid)
584{
585    squashAll(tid);
586
587    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
588
589    thread[tid]->inSyscall = false;
590    assert(!thread[tid]->trapPending);
591
592    commitStatus[tid] = ROBSquashing;
593    cpu->activityThisCycle();
594
595    tcSquash[tid] = false;
596}
597
598template <class Impl>
599void
600DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst,
601        uint64_t squash_after_seq_num)
602{
603    youngestSeqNum[tid] = squash_after_seq_num;
604
605    rob->squash(squash_after_seq_num, tid);
606    changedROBNumEntries[tid] = true;
607
608    // Send back the sequence number of the squashed instruction.
609    toIEW->commitInfo[tid].doneSeqNum = squash_after_seq_num;
610
611    toIEW->commitInfo[tid].squashInst = head_inst;
612    // Send back the squash signal to tell stages that they should squash.
613    toIEW->commitInfo[tid].squash = true;
614
615    // Send back the rob squashing signal so other stages know that
616    // the ROB is in the process of squashing.
617    toIEW->commitInfo[tid].robSquashing = true;
618
619    toIEW->commitInfo[tid].mispredictInst = NULL;
620
621    toIEW->commitInfo[tid].pc = pc[tid];
622    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
623            tid, squash_after_seq_num);
624    commitStatus[tid] = ROBSquashing;
625}
626
627template <class Impl>
628void
629DefaultCommit<Impl>::tick()
630{
631    wroteToTimeBuffer = false;
632    _nextStatus = Inactive;
633
634    if (drainPending && cpu->instList.empty() && !iewStage->hasStoresToWB() &&
635        interrupt == NoFault) {
636        cpu->signalDrained();
637        drainPending = false;
638        return;
639    }
640
641    if (activeThreads->empty())
642        return;
643
644    list<ThreadID>::iterator threads = activeThreads->begin();
645    list<ThreadID>::iterator end = activeThreads->end();
646
647    // Check if any of the threads are done squashing.  Change the
648    // status if they are done.
649    while (threads != end) {
650        ThreadID tid = *threads++;
651
652        // Clear the bit saying if the thread has committed stores
653        // this cycle.
654        committedStores[tid] = false;
655
656        if (commitStatus[tid] == ROBSquashing) {
657
658            if (rob->isDoneSquashing(tid)) {
659                commitStatus[tid] = Running;
660            } else {
661                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
662                        " insts this cycle.\n", tid);
663                rob->doSquash(tid);
664                toIEW->commitInfo[tid].robSquashing = true;
665                wroteToTimeBuffer = true;
666            }
667        }
668    }
669
670    commit();
671
672    markCompletedInsts();
673
674    threads = activeThreads->begin();
675
676    while (threads != end) {
677        ThreadID tid = *threads++;
678
679        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
680            // The ROB has more instructions it can commit. Its next status
681            // will be active.
682            _nextStatus = Active;
683
684            DynInstPtr inst = rob->readHeadInst(tid);
685
686            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
687                    " ROB and ready to commit\n",
688                    tid, inst->seqNum, inst->pcState());
689
690        } else if (!rob->isEmpty(tid)) {
691            DynInstPtr inst = rob->readHeadInst(tid);
692
693            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
694                    "%s is head of ROB and not ready\n",
695                    tid, inst->seqNum, inst->pcState());
696        }
697
698        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
699                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
700    }
701
702
703    if (wroteToTimeBuffer) {
704        DPRINTF(Activity, "Activity This Cycle.\n");
705        cpu->activityThisCycle();
706    }
707
708    updateStatus();
709}
710
711template <class Impl>
712void
713DefaultCommit<Impl>::handleInterrupt()
714{
715    // Verify that we still have an interrupt to handle
716    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
717        DPRINTF(Commit, "Pending interrupt is cleared by master before "
718                "it got handled. Restart fetching from the orig path.\n");
719        toIEW->commitInfo[0].clearInterrupt = true;
720        interrupt = NoFault;
721        return;
722    }
723
724    // Wait until all in flight instructions are finished before enterring
725    // the interrupt.
726    if (canHandleInterrupts && cpu->instList.empty()) {
727        // Squash or record that I need to squash this cycle if
728        // an interrupt needed to be handled.
729        DPRINTF(Commit, "Interrupt detected.\n");
730
731        // Clear the interrupt now that it's going to be handled
732        toIEW->commitInfo[0].clearInterrupt = true;
733
734        assert(!thread[0]->inSyscall);
735        thread[0]->inSyscall = true;
736
737        if (cpu->checker) {
738            cpu->checker->handlePendingInt();
739        }
740
741        // CPU will handle interrupt.
742        cpu->processInterrupts(interrupt);
743
744        thread[0]->inSyscall = false;
745
746        commitStatus[0] = TrapPending;
747
748        // Generate trap squash event.
749        generateTrapEvent(0);
750
751        interrupt = NoFault;
752    } else {
753        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
754                "flight, ROB is %sempty\n",
755                canHandleInterrupts ? "not " : "",
756                cpu->instList.empty() ? "" : "not " );
757    }
758}
759
760template <class Impl>
761void
762DefaultCommit<Impl>::propagateInterrupt()
763{
764    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
765            tcSquash[0])
766        return;
767
768    // Process interrupts if interrupts are enabled, not in PAL
769    // mode, and no other traps or external squashes are currently
770    // pending.
771    // @todo: Allow other threads to handle interrupts.
772
773    // Get any interrupt that happened
774    interrupt = cpu->getInterrupts();
775
776    // Tell fetch that there is an interrupt pending.  This
777    // will make fetch wait until it sees a non PAL-mode PC,
778    // at which point it stops fetching instructions.
779    if (interrupt != NoFault)
780        toIEW->commitInfo[0].interruptPending = true;
781}
782
783template <class Impl>
784void
785DefaultCommit<Impl>::commit()
786{
787    if (FullSystem) {
788        // Check if we have a interrupt and get read to handle it
789        if (cpu->checkInterrupts(cpu->tcBase(0)))
790            propagateInterrupt();
791    }
792
793    ////////////////////////////////////
794    // Check for any possible squashes, handle them first
795    ////////////////////////////////////
796    list<ThreadID>::iterator threads = activeThreads->begin();
797    list<ThreadID>::iterator end = activeThreads->end();
798
799    while (threads != end) {
800        ThreadID tid = *threads++;
801
802        // Not sure which one takes priority.  I think if we have
803        // both, that's a bad sign.
804        if (trapSquash[tid] == true) {
805            assert(!tcSquash[tid]);
806            squashFromTrap(tid);
807        } else if (tcSquash[tid] == true) {
808            assert(commitStatus[tid] != TrapPending);
809            squashFromTC(tid);
810        }
811
812        // Squashed sequence number must be older than youngest valid
813        // instruction in the ROB. This prevents squashes from younger
814        // instructions overriding squashes from older instructions.
815        if (fromIEW->squash[tid] &&
816            commitStatus[tid] != TrapPending &&
817            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
818
819            if (fromIEW->mispredictInst[tid]) {
820                DPRINTF(Commit,
821                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
822                    tid,
823                    fromIEW->mispredictInst[tid]->instAddr(),
824                    fromIEW->squashedSeqNum[tid]);
825            } else {
826                DPRINTF(Commit,
827                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
828                    tid, fromIEW->squashedSeqNum[tid]);
829            }
830
831            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
832                    tid,
833                    fromIEW->pc[tid].nextInstAddr());
834
835            commitStatus[tid] = ROBSquashing;
836
837            // If we want to include the squashing instruction in the squash,
838            // then use one older sequence number.
839            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
840
841            if (fromIEW->includeSquashInst[tid] == true) {
842                squashed_inst--;
843            }
844
845            // All younger instructions will be squashed. Set the sequence
846            // number as the youngest instruction in the ROB.
847            youngestSeqNum[tid] = squashed_inst;
848
849            rob->squash(squashed_inst, tid);
850            changedROBNumEntries[tid] = true;
851
852            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
853
854            toIEW->commitInfo[tid].squash = true;
855
856            // Send back the rob squashing signal so other stages know that
857            // the ROB is in the process of squashing.
858            toIEW->commitInfo[tid].robSquashing = true;
859
860            toIEW->commitInfo[tid].mispredictInst =
861                fromIEW->mispredictInst[tid];
862            toIEW->commitInfo[tid].branchTaken =
863                fromIEW->branchTaken[tid];
864            toIEW->commitInfo[tid].squashInst =
865                                    rob->findInst(tid, squashed_inst);
866            if (toIEW->commitInfo[tid].mispredictInst) {
867                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
868                     toIEW->commitInfo[tid].branchTaken = true;
869                }
870            }
871
872            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
873
874            if (toIEW->commitInfo[tid].mispredictInst) {
875                ++branchMispredicts;
876            }
877        }
878
879    }
880
881    setNextStatus();
882
883    if (squashCounter != numThreads) {
884        // If we're not currently squashing, then get instructions.
885        getInsts();
886
887        // Try to commit any instructions.
888        commitInsts();
889    }
890
891    //Check for any activity
892    threads = activeThreads->begin();
893
894    while (threads != end) {
895        ThreadID tid = *threads++;
896
897        if (changedROBNumEntries[tid]) {
898            toIEW->commitInfo[tid].usedROB = true;
899            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
900
901            wroteToTimeBuffer = true;
902            changedROBNumEntries[tid] = false;
903            if (rob->isEmpty(tid))
904                checkEmptyROB[tid] = true;
905        }
906
907        // ROB is only considered "empty" for previous stages if: a)
908        // ROB is empty, b) there are no outstanding stores, c) IEW
909        // stage has received any information regarding stores that
910        // committed.
911        // c) is checked by making sure to not consider the ROB empty
912        // on the same cycle as when stores have been committed.
913        // @todo: Make this handle multi-cycle communication between
914        // commit and IEW.
915        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
916            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
917            checkEmptyROB[tid] = false;
918            toIEW->commitInfo[tid].usedROB = true;
919            toIEW->commitInfo[tid].emptyROB = true;
920            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
921            wroteToTimeBuffer = true;
922        }
923
924    }
925}
926
927template <class Impl>
928void
929DefaultCommit<Impl>::commitInsts()
930{
931    ////////////////////////////////////
932    // Handle commit
933    // Note that commit will be handled prior to putting new
934    // instructions in the ROB so that the ROB only tries to commit
935    // instructions it has in this current cycle, and not instructions
936    // it is writing in during this cycle.  Can't commit and squash
937    // things at the same time...
938    ////////////////////////////////////
939
940    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
941
942    unsigned num_committed = 0;
943
944    DynInstPtr head_inst;
945
946    // Commit as many instructions as possible until the commit bandwidth
947    // limit is reached, or it becomes impossible to commit any more.
948    while (num_committed < commitWidth) {
949        // Check for any interrupt that we've already squashed for
950        // and start processing it.
951        if (interrupt != NoFault)
952            handleInterrupt();
953
954        int commit_thread = getCommittingThread();
955
956        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
957            break;
958
959        head_inst = rob->readHeadInst(commit_thread);
960
961        ThreadID tid = head_inst->threadNumber;
962
963        assert(tid == commit_thread);
964
965        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
966                head_inst->seqNum, tid);
967
968        // If the head instruction is squashed, it is ready to retire
969        // (be removed from the ROB) at any time.
970        if (head_inst->isSquashed()) {
971
972            DPRINTF(Commit, "Retiring squashed instruction from "
973                    "ROB.\n");
974
975            rob->retireHead(commit_thread);
976
977            ++commitSquashedInsts;
978
979            // Record that the number of ROB entries has changed.
980            changedROBNumEntries[tid] = true;
981        } else {
982            pc[tid] = head_inst->pcState();
983
984            // Increment the total number of non-speculative instructions
985            // executed.
986            // Hack for now: it really shouldn't happen until after the
987            // commit is deemed to be successful, but this count is needed
988            // for syscalls.
989            thread[tid]->funcExeInst++;
990
991            // Try to commit the head instruction.
992            bool commit_success = commitHead(head_inst, num_committed);
993
994            if (commit_success) {
995                ++num_committed;
996
997                changedROBNumEntries[tid] = true;
998
999                // Set the doneSeqNum to the youngest committed instruction.
1000                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1001
1002                if (!head_inst->isMicroop() || head_inst->isLastMicroop())
1003                    ++commitCommittedInsts;
1004                ++commitCommittedOps;
1005
1006                // To match the old model, don't count nops and instruction
1007                // prefetches towards the total commit count.
1008                if (!head_inst->isNop() && !head_inst->isInstPrefetch()) {
1009                    cpu->instDone(tid, head_inst);
1010                }
1011
1012                if (tid == 0) {
1013                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1014                                           ((THE_ISA != ALPHA_ISA) ||
1015                                             (!(pc[0].instAddr() & 0x3)));
1016                }
1017
1018                // Updates misc. registers.
1019                head_inst->updateMiscRegs();
1020
1021                cpu->traceFunctions(pc[tid].instAddr());
1022
1023                TheISA::advancePC(pc[tid], head_inst->staticInst);
1024
1025                // Keep track of the last sequence number commited
1026                lastCommitedSeqNum[tid] = head_inst->seqNum;
1027
1028                // If this is an instruction that doesn't play nicely with
1029                // others squash everything and restart fetch
1030                if (head_inst->isSquashAfter())
1031                    squashAfter(tid, head_inst, head_inst->seqNum);
1032
1033                int count = 0;
1034                Addr oldpc;
1035                // Debug statement.  Checks to make sure we're not
1036                // currently updating state while handling PC events.
1037                assert(!thread[tid]->inSyscall && !thread[tid]->trapPending);
1038                do {
1039                    oldpc = pc[tid].instAddr();
1040                    cpu->system->pcEventQueue.service(thread[tid]->getTC());
1041                    count++;
1042                } while (oldpc != pc[tid].instAddr());
1043                if (count > 1) {
1044                    DPRINTF(Commit,
1045                            "PC skip function event, stopping commit\n");
1046                    break;
1047                }
1048            } else {
1049                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1050                        "[tid:%i] [sn:%i].\n",
1051                        head_inst->pcState(), tid ,head_inst->seqNum);
1052                break;
1053            }
1054        }
1055    }
1056
1057    DPRINTF(CommitRate, "%i\n", num_committed);
1058    numCommittedDist.sample(num_committed);
1059
1060    if (num_committed == commitWidth) {
1061        commitEligibleSamples++;
1062    }
1063}
1064
1065template <class Impl>
1066bool
1067DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1068{
1069    assert(head_inst);
1070
1071    ThreadID tid = head_inst->threadNumber;
1072
1073    // If the instruction is not executed yet, then it will need extra
1074    // handling.  Signal backwards that it should be executed.
1075    if (!head_inst->isExecuted()) {
1076        // Keep this number correct.  We have not yet actually executed
1077        // and committed this instruction.
1078        thread[tid]->funcExeInst--;
1079
1080        if (head_inst->isNonSpeculative() ||
1081            head_inst->isStoreConditional() ||
1082            head_inst->isMemBarrier() ||
1083            head_inst->isWriteBarrier()) {
1084
1085            DPRINTF(Commit, "Encountered a barrier or non-speculative "
1086                    "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1087                    head_inst->seqNum, head_inst->pcState());
1088
1089            if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1090                DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1091                return false;
1092            }
1093
1094            toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1095
1096            // Change the instruction so it won't try to commit again until
1097            // it is executed.
1098            head_inst->clearCanCommit();
1099
1100            ++commitNonSpecStalls;
1101
1102            return false;
1103        } else if (head_inst->isLoad()) {
1104            if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1105                DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1106                return false;
1107            }
1108
1109            assert(head_inst->uncacheable());
1110            DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1111                    head_inst->seqNum, head_inst->pcState());
1112
1113            // Send back the non-speculative instruction's sequence
1114            // number.  Tell the lsq to re-execute the load.
1115            toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1116            toIEW->commitInfo[tid].uncached = true;
1117            toIEW->commitInfo[tid].uncachedLoad = head_inst;
1118
1119            head_inst->clearCanCommit();
1120
1121            return false;
1122        } else {
1123            panic("Trying to commit un-executed instruction "
1124                  "of unknown type!\n");
1125        }
1126    }
1127
1128    if (head_inst->isThreadSync()) {
1129        // Not handled for now.
1130        panic("Thread sync instructions are not handled yet.\n");
1131    }
1132
1133    // Check if the instruction caused a fault.  If so, trap.
1134    Fault inst_fault = head_inst->getFault();
1135
1136    // Stores mark themselves as completed.
1137    if (!head_inst->isStore() && inst_fault == NoFault) {
1138        head_inst->setCompleted();
1139    }
1140
1141    // Use checker prior to updating anything due to traps or PC
1142    // based events.
1143    if (cpu->checker) {
1144        cpu->checker->verify(head_inst);
1145    }
1146
1147    if (inst_fault != NoFault) {
1148        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1149                head_inst->seqNum, head_inst->pcState());
1150
1151        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1152            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1153            return false;
1154        }
1155
1156        head_inst->setCompleted();
1157
1158        if (cpu->checker) {
1159            // Need to check the instruction before its fault is processed
1160            cpu->checker->verify(head_inst);
1161        }
1162
1163        assert(!thread[tid]->inSyscall);
1164
1165        // Mark that we're in state update mode so that the trap's
1166        // execution doesn't generate extra squashes.
1167        thread[tid]->inSyscall = true;
1168
1169        // Execute the trap.  Although it's slightly unrealistic in
1170        // terms of timing (as it doesn't wait for the full timing of
1171        // the trap event to complete before updating state), it's
1172        // needed to update the state as soon as possible.  This
1173        // prevents external agents from changing any specific state
1174        // that the trap need.
1175        cpu->trap(inst_fault, tid, head_inst->staticInst);
1176
1177        // Exit state update mode to avoid accidental updating.
1178        thread[tid]->inSyscall = false;
1179
1180        commitStatus[tid] = TrapPending;
1181
1182        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1183            head_inst->seqNum);
1184        if (head_inst->traceData) {
1185            if (DTRACE(ExecFaulting)) {
1186                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1187                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1188                head_inst->traceData->dump();
1189            }
1190            delete head_inst->traceData;
1191            head_inst->traceData = NULL;
1192        }
1193
1194        // Generate trap squash event.
1195        generateTrapEvent(tid);
1196        return false;
1197    }
1198
1199    updateComInstStats(head_inst);
1200
1201    if (FullSystem) {
1202        if (thread[tid]->profile) {
1203            thread[tid]->profilePC = head_inst->instAddr();
1204            ProfileNode *node = thread[tid]->profile->consume(
1205                    thread[tid]->getTC(), head_inst->staticInst);
1206
1207            if (node)
1208                thread[tid]->profileNode = node;
1209        }
1210        if (CPA::available()) {
1211            if (head_inst->isControl()) {
1212                ThreadContext *tc = thread[tid]->getTC();
1213                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1214            }
1215        }
1216    }
1217    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1218            head_inst->seqNum, head_inst->pcState());
1219    if (head_inst->traceData) {
1220        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1221        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1222        head_inst->traceData->dump();
1223        delete head_inst->traceData;
1224        head_inst->traceData = NULL;
1225    }
1226    if (head_inst->isReturn()) {
1227        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1228                        head_inst->seqNum, head_inst->pcState());
1229    }
1230
1231    // Update the commit rename map
1232    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1233        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1234                                 head_inst->renamedDestRegIdx(i));
1235    }
1236
1237    // Finally clear the head ROB entry.
1238    rob->retireHead(tid);
1239
1240#if TRACING_ON
1241    // Print info needed by the pipeline activity viewer.
1242    DPRINTFR(O3PipeView, "O3PipeView:fetch:%llu:0x%08llx:%d:%llu:%s\n",
1243             head_inst->fetchTick,
1244             head_inst->instAddr(),
1245             head_inst->microPC(),
1246             head_inst->seqNum,
1247             head_inst->staticInst->disassemble(head_inst->instAddr()));
1248    DPRINTFR(O3PipeView, "O3PipeView:decode:%llu\n", head_inst->fetchTick + head_inst->decodeTick);
1249    DPRINTFR(O3PipeView, "O3PipeView:rename:%llu\n", head_inst->fetchTick + head_inst->renameTick);
1250    DPRINTFR(O3PipeView, "O3PipeView:dispatch:%llu\n", head_inst->fetchTick + head_inst->dispatchTick);
1251    DPRINTFR(O3PipeView, "O3PipeView:issue:%llu\n", head_inst->fetchTick + head_inst->issueTick);
1252    DPRINTFR(O3PipeView, "O3PipeView:complete:%llu\n", head_inst->fetchTick + head_inst->completeTick);
1253    DPRINTFR(O3PipeView, "O3PipeView:retire:%llu\n", curTick());
1254#endif
1255
1256    // If this was a store, record it for this cycle.
1257    if (head_inst->isStore())
1258        committedStores[tid] = true;
1259
1260    // Return true to indicate that we have committed an instruction.
1261    return true;
1262}
1263
1264template <class Impl>
1265void
1266DefaultCommit<Impl>::getInsts()
1267{
1268    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1269
1270    // Read any renamed instructions and place them into the ROB.
1271    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1272
1273    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1274        DynInstPtr inst;
1275
1276        inst = fromRename->insts[inst_num];
1277        ThreadID tid = inst->threadNumber;
1278
1279        if (!inst->isSquashed() &&
1280            commitStatus[tid] != ROBSquashing &&
1281            commitStatus[tid] != TrapPending) {
1282            changedROBNumEntries[tid] = true;
1283
1284            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1285                    inst->pcState(), inst->seqNum, tid);
1286
1287            rob->insertInst(inst);
1288
1289            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1290
1291            youngestSeqNum[tid] = inst->seqNum;
1292        } else {
1293            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1294                    "squashed, skipping.\n",
1295                    inst->pcState(), inst->seqNum, tid);
1296        }
1297    }
1298}
1299
1300template <class Impl>
1301void
1302DefaultCommit<Impl>::skidInsert()
1303{
1304    DPRINTF(Commit, "Attempting to any instructions from rename into "
1305            "skidBuffer.\n");
1306
1307    for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1308        DynInstPtr inst = fromRename->insts[inst_num];
1309
1310        if (!inst->isSquashed()) {
1311            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1312                    "skidBuffer.\n", inst->pcState(), inst->seqNum,
1313                    inst->threadNumber);
1314            skidBuffer.push(inst);
1315        } else {
1316            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1317                    "squashed, skipping.\n",
1318                    inst->pcState(), inst->seqNum, inst->threadNumber);
1319        }
1320    }
1321}
1322
1323template <class Impl>
1324void
1325DefaultCommit<Impl>::markCompletedInsts()
1326{
1327    // Grab completed insts out of the IEW instruction queue, and mark
1328    // instructions completed within the ROB.
1329    for (int inst_num = 0;
1330         inst_num < fromIEW->size && fromIEW->insts[inst_num];
1331         ++inst_num)
1332    {
1333        if (!fromIEW->insts[inst_num]->isSquashed()) {
1334            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1335                    "within ROB.\n",
1336                    fromIEW->insts[inst_num]->threadNumber,
1337                    fromIEW->insts[inst_num]->pcState(),
1338                    fromIEW->insts[inst_num]->seqNum);
1339
1340            // Mark the instruction as ready to commit.
1341            fromIEW->insts[inst_num]->setCanCommit();
1342        }
1343    }
1344}
1345
1346template <class Impl>
1347bool
1348DefaultCommit<Impl>::robDoneSquashing()
1349{
1350    list<ThreadID>::iterator threads = activeThreads->begin();
1351    list<ThreadID>::iterator end = activeThreads->end();
1352
1353    while (threads != end) {
1354        ThreadID tid = *threads++;
1355
1356        if (!rob->isDoneSquashing(tid))
1357            return false;
1358    }
1359
1360    return true;
1361}
1362
1363template <class Impl>
1364void
1365DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1366{
1367    ThreadID tid = inst->threadNumber;
1368
1369    if (!inst->isMicroop() || inst->isLastMicroop())
1370        instsCommitted[tid]++;
1371    opsCommitted[tid]++;
1372
1373    //
1374    //  Control Instructions
1375    //
1376    if (inst->isControl())
1377        statComBranches[tid]++;
1378
1379    //
1380    //  Memory references
1381    //
1382    if (inst->isMemRef()) {
1383        statComRefs[tid]++;
1384
1385        if (inst->isLoad()) {
1386            statComLoads[tid]++;
1387        }
1388    }
1389
1390    if (inst->isMemBarrier()) {
1391        statComMembars[tid]++;
1392    }
1393
1394    // Integer Instruction
1395    if (inst->isInteger())
1396        statComInteger[tid]++;
1397
1398    // Floating Point Instruction
1399    if (inst->isFloating())
1400        statComFloating[tid]++;
1401
1402    // Function Calls
1403    if (inst->isCall())
1404        statComFunctionCalls[tid]++;
1405
1406}
1407
1408////////////////////////////////////////
1409//                                    //
1410//  SMT COMMIT POLICY MAINTAINED HERE //
1411//                                    //
1412////////////////////////////////////////
1413template <class Impl>
1414ThreadID
1415DefaultCommit<Impl>::getCommittingThread()
1416{
1417    if (numThreads > 1) {
1418        switch (commitPolicy) {
1419
1420          case Aggressive:
1421            //If Policy is Aggressive, commit will call
1422            //this function multiple times per
1423            //cycle
1424            return oldestReady();
1425
1426          case RoundRobin:
1427            return roundRobin();
1428
1429          case OldestReady:
1430            return oldestReady();
1431
1432          default:
1433            return InvalidThreadID;
1434        }
1435    } else {
1436        assert(!activeThreads->empty());
1437        ThreadID tid = activeThreads->front();
1438
1439        if (commitStatus[tid] == Running ||
1440            commitStatus[tid] == Idle ||
1441            commitStatus[tid] == FetchTrapPending) {
1442            return tid;
1443        } else {
1444            return InvalidThreadID;
1445        }
1446    }
1447}
1448
1449template<class Impl>
1450ThreadID
1451DefaultCommit<Impl>::roundRobin()
1452{
1453    list<ThreadID>::iterator pri_iter = priority_list.begin();
1454    list<ThreadID>::iterator end      = priority_list.end();
1455
1456    while (pri_iter != end) {
1457        ThreadID tid = *pri_iter;
1458
1459        if (commitStatus[tid] == Running ||
1460            commitStatus[tid] == Idle ||
1461            commitStatus[tid] == FetchTrapPending) {
1462
1463            if (rob->isHeadReady(tid)) {
1464                priority_list.erase(pri_iter);
1465                priority_list.push_back(tid);
1466
1467                return tid;
1468            }
1469        }
1470
1471        pri_iter++;
1472    }
1473
1474    return InvalidThreadID;
1475}
1476
1477template<class Impl>
1478ThreadID
1479DefaultCommit<Impl>::oldestReady()
1480{
1481    unsigned oldest = 0;
1482    bool first = true;
1483
1484    list<ThreadID>::iterator threads = activeThreads->begin();
1485    list<ThreadID>::iterator end = activeThreads->end();
1486
1487    while (threads != end) {
1488        ThreadID tid = *threads++;
1489
1490        if (!rob->isEmpty(tid) &&
1491            (commitStatus[tid] == Running ||
1492             commitStatus[tid] == Idle ||
1493             commitStatus[tid] == FetchTrapPending)) {
1494
1495            if (rob->isHeadReady(tid)) {
1496
1497                DynInstPtr head_inst = rob->readHeadInst(tid);
1498
1499                if (first) {
1500                    oldest = tid;
1501                    first = false;
1502                } else if (head_inst->seqNum < oldest) {
1503                    oldest = tid;
1504                }
1505            }
1506        }
1507    }
1508
1509    if (!first) {
1510        return oldest;
1511    } else {
1512        return InvalidThreadID;
1513    }
1514}
1515