commit_impl.hh revision 12110:c24ee249b8ba
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2014 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44#ifndef __CPU_O3_COMMIT_IMPL_HH__
45#define __CPU_O3_COMMIT_IMPL_HH__
46
47#include <algorithm>
48#include <set>
49#include <string>
50
51#include "arch/utility.hh"
52#include "base/loader/symtab.hh"
53#include "base/cp_annotate.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/commit.hh"
57#include "cpu/o3/thread_state.hh"
58#include "cpu/base.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/timebuf.hh"
61#include "debug/Activity.hh"
62#include "debug/Commit.hh"
63#include "debug/CommitRate.hh"
64#include "debug/Drain.hh"
65#include "debug/ExecFaulting.hh"
66#include "debug/O3PipeView.hh"
67#include "params/DerivO3CPU.hh"
68#include "sim/faults.hh"
69#include "sim/full_system.hh"
70
71using namespace std;
72
73template <class Impl>
74DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
75                                          ThreadID _tid)
76    : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
77{
78}
79
80template <class Impl>
81void
82DefaultCommit<Impl>::TrapEvent::process()
83{
84    // This will get reset by commit if it was switched out at the
85    // time of this event processing.
86    commit->trapSquash[tid] = true;
87}
88
89template <class Impl>
90const char *
91DefaultCommit<Impl>::TrapEvent::description() const
92{
93    return "Trap";
94}
95
96template <class Impl>
97DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
98    : cpu(_cpu),
99      iewToCommitDelay(params->iewToCommitDelay),
100      commitToIEWDelay(params->commitToIEWDelay),
101      renameToROBDelay(params->renameToROBDelay),
102      fetchToCommitDelay(params->commitToFetchDelay),
103      renameWidth(params->renameWidth),
104      commitWidth(params->commitWidth),
105      numThreads(params->numThreads),
106      drainPending(false),
107      drainImminent(false),
108      trapLatency(params->trapLatency),
109      canHandleInterrupts(true),
110      avoidQuiesceLiveLock(false)
111{
112    if (commitWidth > Impl::MaxWidth)
113        fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
114             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
115             commitWidth, static_cast<int>(Impl::MaxWidth));
116
117    _status = Active;
118    _nextStatus = Inactive;
119    std::string policy = params->smtCommitPolicy;
120
121    //Convert string to lowercase
122    std::transform(policy.begin(), policy.end(), policy.begin(),
123                   (int(*)(int)) tolower);
124
125    //Assign commit policy
126    if (policy == "aggressive"){
127        commitPolicy = Aggressive;
128
129        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
130    } else if (policy == "roundrobin"){
131        commitPolicy = RoundRobin;
132
133        //Set-Up Priority List
134        for (ThreadID tid = 0; tid < numThreads; tid++) {
135            priority_list.push_back(tid);
136        }
137
138        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
139    } else if (policy == "oldestready"){
140        commitPolicy = OldestReady;
141
142        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
143    } else {
144        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
145               "RoundRobin,OldestReady}");
146    }
147
148    for (ThreadID tid = 0; tid < numThreads; tid++) {
149        commitStatus[tid] = Idle;
150        changedROBNumEntries[tid] = false;
151        checkEmptyROB[tid] = false;
152        trapInFlight[tid] = false;
153        committedStores[tid] = false;
154        trapSquash[tid] = false;
155        tcSquash[tid] = false;
156        pc[tid].set(0);
157        lastCommitedSeqNum[tid] = 0;
158        squashAfterInst[tid] = NULL;
159    }
160    interrupt = NoFault;
161}
162
163template <class Impl>
164std::string
165DefaultCommit<Impl>::name() const
166{
167    return cpu->name() + ".commit";
168}
169
170template <class Impl>
171void
172DefaultCommit<Impl>::regProbePoints()
173{
174    ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
175    ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
176    ppSquash = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Squash");
177}
178
179template <class Impl>
180void
181DefaultCommit<Impl>::regStats()
182{
183    using namespace Stats;
184    commitSquashedInsts
185        .name(name() + ".commitSquashedInsts")
186        .desc("The number of squashed insts skipped by commit")
187        .prereq(commitSquashedInsts);
188
189    commitNonSpecStalls
190        .name(name() + ".commitNonSpecStalls")
191        .desc("The number of times commit has been forced to stall to "
192              "communicate backwards")
193        .prereq(commitNonSpecStalls);
194
195    branchMispredicts
196        .name(name() + ".branchMispredicts")
197        .desc("The number of times a branch was mispredicted")
198        .prereq(branchMispredicts);
199
200    numCommittedDist
201        .init(0,commitWidth,1)
202        .name(name() + ".committed_per_cycle")
203        .desc("Number of insts commited each cycle")
204        .flags(Stats::pdf)
205        ;
206
207    instsCommitted
208        .init(cpu->numThreads)
209        .name(name() + ".committedInsts")
210        .desc("Number of instructions committed")
211        .flags(total)
212        ;
213
214    opsCommitted
215        .init(cpu->numThreads)
216        .name(name() + ".committedOps")
217        .desc("Number of ops (including micro ops) committed")
218        .flags(total)
219        ;
220
221    statComSwp
222        .init(cpu->numThreads)
223        .name(name() + ".swp_count")
224        .desc("Number of s/w prefetches committed")
225        .flags(total)
226        ;
227
228    statComRefs
229        .init(cpu->numThreads)
230        .name(name() +  ".refs")
231        .desc("Number of memory references committed")
232        .flags(total)
233        ;
234
235    statComLoads
236        .init(cpu->numThreads)
237        .name(name() +  ".loads")
238        .desc("Number of loads committed")
239        .flags(total)
240        ;
241
242    statComMembars
243        .init(cpu->numThreads)
244        .name(name() +  ".membars")
245        .desc("Number of memory barriers committed")
246        .flags(total)
247        ;
248
249    statComBranches
250        .init(cpu->numThreads)
251        .name(name() + ".branches")
252        .desc("Number of branches committed")
253        .flags(total)
254        ;
255
256    statComFloating
257        .init(cpu->numThreads)
258        .name(name() + ".fp_insts")
259        .desc("Number of committed floating point instructions.")
260        .flags(total)
261        ;
262
263    statComVector
264        .init(cpu->numThreads)
265        .name(name() + ".vec_insts")
266        .desc("Number of committed Vector instructions.")
267        .flags(total)
268        ;
269
270    statComInteger
271        .init(cpu->numThreads)
272        .name(name()+".int_insts")
273        .desc("Number of committed integer instructions.")
274        .flags(total)
275        ;
276
277    statComFunctionCalls
278        .init(cpu->numThreads)
279        .name(name()+".function_calls")
280        .desc("Number of function calls committed.")
281        .flags(total)
282        ;
283
284    statCommittedInstType
285        .init(numThreads,Enums::Num_OpClass)
286        .name(name() + ".op_class")
287        .desc("Class of committed instruction")
288        .flags(total | pdf | dist)
289        ;
290    statCommittedInstType.ysubnames(Enums::OpClassStrings);
291
292    commitEligibleSamples
293        .name(name() + ".bw_lim_events")
294        .desc("number cycles where commit BW limit reached")
295        ;
296}
297
298template <class Impl>
299void
300DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
301{
302    thread = threads;
303}
304
305template <class Impl>
306void
307DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
308{
309    timeBuffer = tb_ptr;
310
311    // Setup wire to send information back to IEW.
312    toIEW = timeBuffer->getWire(0);
313
314    // Setup wire to read data from IEW (for the ROB).
315    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
316}
317
318template <class Impl>
319void
320DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
321{
322    fetchQueue = fq_ptr;
323
324    // Setup wire to get instructions from rename (for the ROB).
325    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
326}
327
328template <class Impl>
329void
330DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
331{
332    renameQueue = rq_ptr;
333
334    // Setup wire to get instructions from rename (for the ROB).
335    fromRename = renameQueue->getWire(-renameToROBDelay);
336}
337
338template <class Impl>
339void
340DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
341{
342    iewQueue = iq_ptr;
343
344    // Setup wire to get instructions from IEW.
345    fromIEW = iewQueue->getWire(-iewToCommitDelay);
346}
347
348template <class Impl>
349void
350DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
351{
352    iewStage = iew_stage;
353}
354
355template<class Impl>
356void
357DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
358{
359    activeThreads = at_ptr;
360}
361
362template <class Impl>
363void
364DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
365{
366    for (ThreadID tid = 0; tid < numThreads; tid++)
367        renameMap[tid] = &rm_ptr[tid];
368}
369
370template <class Impl>
371void
372DefaultCommit<Impl>::setROB(ROB *rob_ptr)
373{
374    rob = rob_ptr;
375}
376
377template <class Impl>
378void
379DefaultCommit<Impl>::startupStage()
380{
381    rob->setActiveThreads(activeThreads);
382    rob->resetEntries();
383
384    // Broadcast the number of free entries.
385    for (ThreadID tid = 0; tid < numThreads; tid++) {
386        toIEW->commitInfo[tid].usedROB = true;
387        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
388        toIEW->commitInfo[tid].emptyROB = true;
389    }
390
391    // Commit must broadcast the number of free entries it has at the
392    // start of the simulation, so it starts as active.
393    cpu->activateStage(O3CPU::CommitIdx);
394
395    cpu->activityThisCycle();
396}
397
398template <class Impl>
399void
400DefaultCommit<Impl>::drain()
401{
402    drainPending = true;
403}
404
405template <class Impl>
406void
407DefaultCommit<Impl>::drainResume()
408{
409    drainPending = false;
410    drainImminent = false;
411}
412
413template <class Impl>
414void
415DefaultCommit<Impl>::drainSanityCheck() const
416{
417    assert(isDrained());
418    rob->drainSanityCheck();
419}
420
421template <class Impl>
422bool
423DefaultCommit<Impl>::isDrained() const
424{
425    /* Make sure no one is executing microcode. There are two reasons
426     * for this:
427     * - Hardware virtualized CPUs can't switch into the middle of a
428     *   microcode sequence.
429     * - The current fetch implementation will most likely get very
430     *   confused if it tries to start fetching an instruction that
431     *   is executing in the middle of a ucode sequence that changes
432     *   address mappings. This can happen on for example x86.
433     */
434    for (ThreadID tid = 0; tid < numThreads; tid++) {
435        if (pc[tid].microPC() != 0)
436            return false;
437    }
438
439    /* Make sure that all instructions have finished committing before
440     * declaring the system as drained. We want the pipeline to be
441     * completely empty when we declare the CPU to be drained. This
442     * makes debugging easier since CPU handover and restoring from a
443     * checkpoint with a different CPU should have the same timing.
444     */
445    return rob->isEmpty() &&
446        interrupt == NoFault;
447}
448
449template <class Impl>
450void
451DefaultCommit<Impl>::takeOverFrom()
452{
453    _status = Active;
454    _nextStatus = Inactive;
455    for (ThreadID tid = 0; tid < numThreads; tid++) {
456        commitStatus[tid] = Idle;
457        changedROBNumEntries[tid] = false;
458        trapSquash[tid] = false;
459        tcSquash[tid] = false;
460        squashAfterInst[tid] = NULL;
461    }
462    rob->takeOverFrom();
463}
464
465template <class Impl>
466void
467DefaultCommit<Impl>::deactivateThread(ThreadID tid)
468{
469    list<ThreadID>::iterator thread_it = std::find(priority_list.begin(),
470            priority_list.end(), tid);
471
472    if (thread_it != priority_list.end()) {
473        priority_list.erase(thread_it);
474    }
475}
476
477
478template <class Impl>
479void
480DefaultCommit<Impl>::updateStatus()
481{
482    // reset ROB changed variable
483    list<ThreadID>::iterator threads = activeThreads->begin();
484    list<ThreadID>::iterator end = activeThreads->end();
485
486    while (threads != end) {
487        ThreadID tid = *threads++;
488
489        changedROBNumEntries[tid] = false;
490
491        // Also check if any of the threads has a trap pending
492        if (commitStatus[tid] == TrapPending ||
493            commitStatus[tid] == FetchTrapPending) {
494            _nextStatus = Active;
495        }
496    }
497
498    if (_nextStatus == Inactive && _status == Active) {
499        DPRINTF(Activity, "Deactivating stage.\n");
500        cpu->deactivateStage(O3CPU::CommitIdx);
501    } else if (_nextStatus == Active && _status == Inactive) {
502        DPRINTF(Activity, "Activating stage.\n");
503        cpu->activateStage(O3CPU::CommitIdx);
504    }
505
506    _status = _nextStatus;
507}
508
509template <class Impl>
510bool
511DefaultCommit<Impl>::changedROBEntries()
512{
513    list<ThreadID>::iterator threads = activeThreads->begin();
514    list<ThreadID>::iterator end = activeThreads->end();
515
516    while (threads != end) {
517        ThreadID tid = *threads++;
518
519        if (changedROBNumEntries[tid]) {
520            return true;
521        }
522    }
523
524    return false;
525}
526
527template <class Impl>
528size_t
529DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
530{
531    return rob->numFreeEntries(tid);
532}
533
534template <class Impl>
535void
536DefaultCommit<Impl>::generateTrapEvent(ThreadID tid, Fault inst_fault)
537{
538    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
539
540    TrapEvent *trap = new TrapEvent(this, tid);
541
542    Cycles latency = dynamic_pointer_cast<SyscallRetryFault>(inst_fault) ?
543                     cpu->syscallRetryLatency : trapLatency;
544
545    cpu->schedule(trap, cpu->clockEdge(latency));
546    trapInFlight[tid] = true;
547    thread[tid]->trapPending = true;
548}
549
550template <class Impl>
551void
552DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
553{
554    assert(!trapInFlight[tid]);
555    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
556
557    tcSquash[tid] = true;
558}
559
560template <class Impl>
561void
562DefaultCommit<Impl>::squashAll(ThreadID tid)
563{
564    // If we want to include the squashing instruction in the squash,
565    // then use one older sequence number.
566    // Hopefully this doesn't mess things up.  Basically I want to squash
567    // all instructions of this thread.
568    InstSeqNum squashed_inst = rob->isEmpty(tid) ?
569        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
570
571    // All younger instructions will be squashed. Set the sequence
572    // number as the youngest instruction in the ROB (0 in this case.
573    // Hopefully nothing breaks.)
574    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
575
576    rob->squash(squashed_inst, tid);
577    changedROBNumEntries[tid] = true;
578
579    // Send back the sequence number of the squashed instruction.
580    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
581
582    // Send back the squash signal to tell stages that they should
583    // squash.
584    toIEW->commitInfo[tid].squash = true;
585
586    // Send back the rob squashing signal so other stages know that
587    // the ROB is in the process of squashing.
588    toIEW->commitInfo[tid].robSquashing = true;
589
590    toIEW->commitInfo[tid].mispredictInst = NULL;
591    toIEW->commitInfo[tid].squashInst = NULL;
592
593    toIEW->commitInfo[tid].pc = pc[tid];
594}
595
596template <class Impl>
597void
598DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
599{
600    squashAll(tid);
601
602    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
603
604    thread[tid]->trapPending = false;
605    thread[tid]->noSquashFromTC = false;
606    trapInFlight[tid] = false;
607
608    trapSquash[tid] = false;
609
610    commitStatus[tid] = ROBSquashing;
611    cpu->activityThisCycle();
612}
613
614template <class Impl>
615void
616DefaultCommit<Impl>::squashFromTC(ThreadID tid)
617{
618    squashAll(tid);
619
620    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
621
622    thread[tid]->noSquashFromTC = false;
623    assert(!thread[tid]->trapPending);
624
625    commitStatus[tid] = ROBSquashing;
626    cpu->activityThisCycle();
627
628    tcSquash[tid] = false;
629}
630
631template <class Impl>
632void
633DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
634{
635    DPRINTF(Commit, "Squashing after squash after request, "
636            "restarting at PC %s\n", pc[tid]);
637
638    squashAll(tid);
639    // Make sure to inform the fetch stage of which instruction caused
640    // the squash. It'll try to re-fetch an instruction executing in
641    // microcode unless this is set.
642    toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
643    squashAfterInst[tid] = NULL;
644
645    commitStatus[tid] = ROBSquashing;
646    cpu->activityThisCycle();
647}
648
649template <class Impl>
650void
651DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
652{
653    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
654            tid, head_inst->seqNum);
655
656    assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
657    commitStatus[tid] = SquashAfterPending;
658    squashAfterInst[tid] = head_inst;
659}
660
661template <class Impl>
662void
663DefaultCommit<Impl>::tick()
664{
665    wroteToTimeBuffer = false;
666    _nextStatus = Inactive;
667
668    if (activeThreads->empty())
669        return;
670
671    list<ThreadID>::iterator threads = activeThreads->begin();
672    list<ThreadID>::iterator end = activeThreads->end();
673
674    // Check if any of the threads are done squashing.  Change the
675    // status if they are done.
676    while (threads != end) {
677        ThreadID tid = *threads++;
678
679        // Clear the bit saying if the thread has committed stores
680        // this cycle.
681        committedStores[tid] = false;
682
683        if (commitStatus[tid] == ROBSquashing) {
684
685            if (rob->isDoneSquashing(tid)) {
686                commitStatus[tid] = Running;
687            } else {
688                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
689                        " insts this cycle.\n", tid);
690                rob->doSquash(tid);
691                toIEW->commitInfo[tid].robSquashing = true;
692                wroteToTimeBuffer = true;
693            }
694        }
695    }
696
697    commit();
698
699    markCompletedInsts();
700
701    threads = activeThreads->begin();
702
703    while (threads != end) {
704        ThreadID tid = *threads++;
705
706        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
707            // The ROB has more instructions it can commit. Its next status
708            // will be active.
709            _nextStatus = Active;
710
711            DynInstPtr inst = rob->readHeadInst(tid);
712
713            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
714                    " ROB and ready to commit\n",
715                    tid, inst->seqNum, inst->pcState());
716
717        } else if (!rob->isEmpty(tid)) {
718            DynInstPtr inst = rob->readHeadInst(tid);
719
720            ppCommitStall->notify(inst);
721
722            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
723                    "%s is head of ROB and not ready\n",
724                    tid, inst->seqNum, inst->pcState());
725        }
726
727        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
728                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
729    }
730
731
732    if (wroteToTimeBuffer) {
733        DPRINTF(Activity, "Activity This Cycle.\n");
734        cpu->activityThisCycle();
735    }
736
737    updateStatus();
738}
739
740template <class Impl>
741void
742DefaultCommit<Impl>::handleInterrupt()
743{
744    // Verify that we still have an interrupt to handle
745    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
746        DPRINTF(Commit, "Pending interrupt is cleared by master before "
747                "it got handled. Restart fetching from the orig path.\n");
748        toIEW->commitInfo[0].clearInterrupt = true;
749        interrupt = NoFault;
750        avoidQuiesceLiveLock = true;
751        return;
752    }
753
754    // Wait until all in flight instructions are finished before enterring
755    // the interrupt.
756    if (canHandleInterrupts && cpu->instList.empty()) {
757        // Squash or record that I need to squash this cycle if
758        // an interrupt needed to be handled.
759        DPRINTF(Commit, "Interrupt detected.\n");
760
761        // Clear the interrupt now that it's going to be handled
762        toIEW->commitInfo[0].clearInterrupt = true;
763
764        assert(!thread[0]->noSquashFromTC);
765        thread[0]->noSquashFromTC = true;
766
767        if (cpu->checker) {
768            cpu->checker->handlePendingInt();
769        }
770
771        // CPU will handle interrupt. Note that we ignore the local copy of
772        // interrupt. This is because the local copy may no longer be the
773        // interrupt that the interrupt controller thinks is being handled.
774        cpu->processInterrupts(cpu->getInterrupts());
775
776        thread[0]->noSquashFromTC = false;
777
778        commitStatus[0] = TrapPending;
779
780        interrupt = NoFault;
781
782        // Generate trap squash event.
783        generateTrapEvent(0, interrupt);
784
785        avoidQuiesceLiveLock = false;
786    } else {
787        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
788                "flight, ROB is %sempty\n",
789                canHandleInterrupts ? "not " : "",
790                cpu->instList.empty() ? "" : "not " );
791    }
792}
793
794template <class Impl>
795void
796DefaultCommit<Impl>::propagateInterrupt()
797{
798    // Don't propagate intterupts if we are currently handling a trap or
799    // in draining and the last observable instruction has been committed.
800    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
801            tcSquash[0] || drainImminent)
802        return;
803
804    // Process interrupts if interrupts are enabled, not in PAL
805    // mode, and no other traps or external squashes are currently
806    // pending.
807    // @todo: Allow other threads to handle interrupts.
808
809    // Get any interrupt that happened
810    interrupt = cpu->getInterrupts();
811
812    // Tell fetch that there is an interrupt pending.  This
813    // will make fetch wait until it sees a non PAL-mode PC,
814    // at which point it stops fetching instructions.
815    if (interrupt != NoFault)
816        toIEW->commitInfo[0].interruptPending = true;
817}
818
819template <class Impl>
820void
821DefaultCommit<Impl>::commit()
822{
823    if (FullSystem) {
824        // Check if we have a interrupt and get read to handle it
825        if (cpu->checkInterrupts(cpu->tcBase(0)))
826            propagateInterrupt();
827    }
828
829    ////////////////////////////////////
830    // Check for any possible squashes, handle them first
831    ////////////////////////////////////
832    list<ThreadID>::iterator threads = activeThreads->begin();
833    list<ThreadID>::iterator end = activeThreads->end();
834
835    int num_squashing_threads = 0;
836
837    while (threads != end) {
838        ThreadID tid = *threads++;
839
840        // Not sure which one takes priority.  I think if we have
841        // both, that's a bad sign.
842        if (trapSquash[tid]) {
843            assert(!tcSquash[tid]);
844            squashFromTrap(tid);
845        } else if (tcSquash[tid]) {
846            assert(commitStatus[tid] != TrapPending);
847            squashFromTC(tid);
848        } else if (commitStatus[tid] == SquashAfterPending) {
849            // A squash from the previous cycle of the commit stage (i.e.,
850            // commitInsts() called squashAfter) is pending. Squash the
851            // thread now.
852            squashFromSquashAfter(tid);
853        }
854
855        // Squashed sequence number must be older than youngest valid
856        // instruction in the ROB. This prevents squashes from younger
857        // instructions overriding squashes from older instructions.
858        if (fromIEW->squash[tid] &&
859            commitStatus[tid] != TrapPending &&
860            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
861
862            if (fromIEW->mispredictInst[tid]) {
863                DPRINTF(Commit,
864                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
865                    tid,
866                    fromIEW->mispredictInst[tid]->instAddr(),
867                    fromIEW->squashedSeqNum[tid]);
868            } else {
869                DPRINTF(Commit,
870                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
871                    tid, fromIEW->squashedSeqNum[tid]);
872            }
873
874            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
875                    tid,
876                    fromIEW->pc[tid].nextInstAddr());
877
878            commitStatus[tid] = ROBSquashing;
879
880            // If we want to include the squashing instruction in the squash,
881            // then use one older sequence number.
882            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
883
884            if (fromIEW->includeSquashInst[tid]) {
885                squashed_inst--;
886            }
887
888            // All younger instructions will be squashed. Set the sequence
889            // number as the youngest instruction in the ROB.
890            youngestSeqNum[tid] = squashed_inst;
891
892            rob->squash(squashed_inst, tid);
893            changedROBNumEntries[tid] = true;
894
895            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
896
897            toIEW->commitInfo[tid].squash = true;
898
899            // Send back the rob squashing signal so other stages know that
900            // the ROB is in the process of squashing.
901            toIEW->commitInfo[tid].robSquashing = true;
902
903            toIEW->commitInfo[tid].mispredictInst =
904                fromIEW->mispredictInst[tid];
905            toIEW->commitInfo[tid].branchTaken =
906                fromIEW->branchTaken[tid];
907            toIEW->commitInfo[tid].squashInst =
908                                    rob->findInst(tid, squashed_inst);
909            if (toIEW->commitInfo[tid].mispredictInst) {
910                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
911                     toIEW->commitInfo[tid].branchTaken = true;
912                }
913                ++branchMispredicts;
914            }
915
916            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
917        }
918
919        if (commitStatus[tid] == ROBSquashing) {
920            num_squashing_threads++;
921        }
922    }
923
924    // If commit is currently squashing, then it will have activity for the
925    // next cycle. Set its next status as active.
926    if (num_squashing_threads) {
927        _nextStatus = Active;
928    }
929
930    if (num_squashing_threads != numThreads) {
931        // If we're not currently squashing, then get instructions.
932        getInsts();
933
934        // Try to commit any instructions.
935        commitInsts();
936    }
937
938    //Check for any activity
939    threads = activeThreads->begin();
940
941    while (threads != end) {
942        ThreadID tid = *threads++;
943
944        if (changedROBNumEntries[tid]) {
945            toIEW->commitInfo[tid].usedROB = true;
946            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
947
948            wroteToTimeBuffer = true;
949            changedROBNumEntries[tid] = false;
950            if (rob->isEmpty(tid))
951                checkEmptyROB[tid] = true;
952        }
953
954        // ROB is only considered "empty" for previous stages if: a)
955        // ROB is empty, b) there are no outstanding stores, c) IEW
956        // stage has received any information regarding stores that
957        // committed.
958        // c) is checked by making sure to not consider the ROB empty
959        // on the same cycle as when stores have been committed.
960        // @todo: Make this handle multi-cycle communication between
961        // commit and IEW.
962        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
963            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
964            checkEmptyROB[tid] = false;
965            toIEW->commitInfo[tid].usedROB = true;
966            toIEW->commitInfo[tid].emptyROB = true;
967            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
968            wroteToTimeBuffer = true;
969        }
970
971    }
972}
973
974template <class Impl>
975void
976DefaultCommit<Impl>::commitInsts()
977{
978    ////////////////////////////////////
979    // Handle commit
980    // Note that commit will be handled prior to putting new
981    // instructions in the ROB so that the ROB only tries to commit
982    // instructions it has in this current cycle, and not instructions
983    // it is writing in during this cycle.  Can't commit and squash
984    // things at the same time...
985    ////////////////////////////////////
986
987    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
988
989    unsigned num_committed = 0;
990
991    DynInstPtr head_inst;
992
993    // Commit as many instructions as possible until the commit bandwidth
994    // limit is reached, or it becomes impossible to commit any more.
995    while (num_committed < commitWidth) {
996        // Check for any interrupt that we've already squashed for
997        // and start processing it.
998        if (interrupt != NoFault)
999            handleInterrupt();
1000
1001        ThreadID commit_thread = getCommittingThread();
1002
1003        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
1004            break;
1005
1006        head_inst = rob->readHeadInst(commit_thread);
1007
1008        ThreadID tid = head_inst->threadNumber;
1009
1010        assert(tid == commit_thread);
1011
1012        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1013                head_inst->seqNum, tid);
1014
1015        // If the head instruction is squashed, it is ready to retire
1016        // (be removed from the ROB) at any time.
1017        if (head_inst->isSquashed()) {
1018
1019            DPRINTF(Commit, "Retiring squashed instruction from "
1020                    "ROB.\n");
1021
1022            rob->retireHead(commit_thread);
1023
1024            ++commitSquashedInsts;
1025            // Notify potential listeners that this instruction is squashed
1026            ppSquash->notify(head_inst);
1027
1028            // Record that the number of ROB entries has changed.
1029            changedROBNumEntries[tid] = true;
1030        } else {
1031            pc[tid] = head_inst->pcState();
1032
1033            // Increment the total number of non-speculative instructions
1034            // executed.
1035            // Hack for now: it really shouldn't happen until after the
1036            // commit is deemed to be successful, but this count is needed
1037            // for syscalls.
1038            thread[tid]->funcExeInst++;
1039
1040            // Try to commit the head instruction.
1041            bool commit_success = commitHead(head_inst, num_committed);
1042
1043            if (commit_success) {
1044                ++num_committed;
1045                statCommittedInstType[tid][head_inst->opClass()]++;
1046                ppCommit->notify(head_inst);
1047
1048                changedROBNumEntries[tid] = true;
1049
1050                // Set the doneSeqNum to the youngest committed instruction.
1051                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1052
1053                if (tid == 0) {
1054                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1055                                           ((THE_ISA != ALPHA_ISA) ||
1056                                             (!(pc[0].instAddr() & 0x3)));
1057                }
1058
1059                // Updates misc. registers.
1060                head_inst->updateMiscRegs();
1061
1062                // Check instruction execution if it successfully commits and
1063                // is not carrying a fault.
1064                if (cpu->checker) {
1065                    cpu->checker->verify(head_inst);
1066                }
1067
1068                cpu->traceFunctions(pc[tid].instAddr());
1069
1070                TheISA::advancePC(pc[tid], head_inst->staticInst);
1071
1072                // Keep track of the last sequence number commited
1073                lastCommitedSeqNum[tid] = head_inst->seqNum;
1074
1075                // If this is an instruction that doesn't play nicely with
1076                // others squash everything and restart fetch
1077                if (head_inst->isSquashAfter())
1078                    squashAfter(tid, head_inst);
1079
1080                if (drainPending) {
1081                    if (pc[tid].microPC() == 0 && interrupt == NoFault &&
1082                        !thread[tid]->trapPending) {
1083                        // Last architectually committed instruction.
1084                        // Squash the pipeline, stall fetch, and use
1085                        // drainImminent to disable interrupts
1086                        DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1087                        squashAfter(tid, head_inst);
1088                        cpu->commitDrained(tid);
1089                        drainImminent = true;
1090                    }
1091                }
1092
1093                bool onInstBoundary = !head_inst->isMicroop() ||
1094                                      head_inst->isLastMicroop() ||
1095                                      !head_inst->isDelayedCommit();
1096
1097                if (onInstBoundary) {
1098                    int count = 0;
1099                    Addr oldpc;
1100                    // Make sure we're not currently updating state while
1101                    // handling PC events.
1102                    assert(!thread[tid]->noSquashFromTC &&
1103                           !thread[tid]->trapPending);
1104                    do {
1105                        oldpc = pc[tid].instAddr();
1106                        cpu->system->pcEventQueue.service(thread[tid]->getTC());
1107                        count++;
1108                    } while (oldpc != pc[tid].instAddr());
1109                    if (count > 1) {
1110                        DPRINTF(Commit,
1111                                "PC skip function event, stopping commit\n");
1112                        break;
1113                    }
1114                }
1115
1116                // Check if an instruction just enabled interrupts and we've
1117                // previously had an interrupt pending that was not handled
1118                // because interrupts were subsequently disabled before the
1119                // pipeline reached a place to handle the interrupt. In that
1120                // case squash now to make sure the interrupt is handled.
1121                //
1122                // If we don't do this, we might end up in a live lock situation
1123                if (!interrupt && avoidQuiesceLiveLock &&
1124                    onInstBoundary && cpu->checkInterrupts(cpu->tcBase(0)))
1125                    squashAfter(tid, head_inst);
1126            } else {
1127                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1128                        "[tid:%i] [sn:%i].\n",
1129                        head_inst->pcState(), tid ,head_inst->seqNum);
1130                break;
1131            }
1132        }
1133    }
1134
1135    DPRINTF(CommitRate, "%i\n", num_committed);
1136    numCommittedDist.sample(num_committed);
1137
1138    if (num_committed == commitWidth) {
1139        commitEligibleSamples++;
1140    }
1141}
1142
1143template <class Impl>
1144bool
1145DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1146{
1147    assert(head_inst);
1148
1149    ThreadID tid = head_inst->threadNumber;
1150
1151    // If the instruction is not executed yet, then it will need extra
1152    // handling.  Signal backwards that it should be executed.
1153    if (!head_inst->isExecuted()) {
1154        // Keep this number correct.  We have not yet actually executed
1155        // and committed this instruction.
1156        thread[tid]->funcExeInst--;
1157
1158        // Make sure we are only trying to commit un-executed instructions we
1159        // think are possible.
1160        assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1161               || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1162               (head_inst->isLoad() && head_inst->strictlyOrdered()));
1163
1164        DPRINTF(Commit, "Encountered a barrier or non-speculative "
1165                "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1166                head_inst->seqNum, head_inst->pcState());
1167
1168        if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1169            DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1170            return false;
1171        }
1172
1173        toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1174
1175        // Change the instruction so it won't try to commit again until
1176        // it is executed.
1177        head_inst->clearCanCommit();
1178
1179        if (head_inst->isLoad() && head_inst->strictlyOrdered()) {
1180            DPRINTF(Commit, "[sn:%lli]: Strictly ordered load, PC %s.\n",
1181                    head_inst->seqNum, head_inst->pcState());
1182            toIEW->commitInfo[tid].strictlyOrdered = true;
1183            toIEW->commitInfo[tid].strictlyOrderedLoad = head_inst;
1184        } else {
1185            ++commitNonSpecStalls;
1186        }
1187
1188        return false;
1189    }
1190
1191    if (head_inst->isThreadSync()) {
1192        // Not handled for now.
1193        panic("Thread sync instructions are not handled yet.\n");
1194    }
1195
1196    // Check if the instruction caused a fault.  If so, trap.
1197    Fault inst_fault = head_inst->getFault();
1198
1199    // Stores mark themselves as completed.
1200    if (!head_inst->isStore() && inst_fault == NoFault) {
1201        head_inst->setCompleted();
1202    }
1203
1204    if (inst_fault != NoFault) {
1205        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1206                head_inst->seqNum, head_inst->pcState());
1207
1208        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1209            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1210            return false;
1211        }
1212
1213        head_inst->setCompleted();
1214
1215        // If instruction has faulted, let the checker execute it and
1216        // check if it sees the same fault and control flow.
1217        if (cpu->checker) {
1218            // Need to check the instruction before its fault is processed
1219            cpu->checker->verify(head_inst);
1220        }
1221
1222        assert(!thread[tid]->noSquashFromTC);
1223
1224        // Mark that we're in state update mode so that the trap's
1225        // execution doesn't generate extra squashes.
1226        thread[tid]->noSquashFromTC = true;
1227
1228        // Execute the trap.  Although it's slightly unrealistic in
1229        // terms of timing (as it doesn't wait for the full timing of
1230        // the trap event to complete before updating state), it's
1231        // needed to update the state as soon as possible.  This
1232        // prevents external agents from changing any specific state
1233        // that the trap need.
1234        cpu->trap(inst_fault, tid, head_inst->staticInst);
1235
1236        // Exit state update mode to avoid accidental updating.
1237        thread[tid]->noSquashFromTC = false;
1238
1239        commitStatus[tid] = TrapPending;
1240
1241        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1242            head_inst->seqNum);
1243        if (head_inst->traceData) {
1244            if (DTRACE(ExecFaulting)) {
1245                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1246                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1247                head_inst->traceData->dump();
1248            }
1249            delete head_inst->traceData;
1250            head_inst->traceData = NULL;
1251        }
1252
1253        // Generate trap squash event.
1254        generateTrapEvent(tid, inst_fault);
1255        return false;
1256    }
1257
1258    updateComInstStats(head_inst);
1259
1260    if (FullSystem) {
1261        if (thread[tid]->profile) {
1262            thread[tid]->profilePC = head_inst->instAddr();
1263            ProfileNode *node = thread[tid]->profile->consume(
1264                    thread[tid]->getTC(), head_inst->staticInst);
1265
1266            if (node)
1267                thread[tid]->profileNode = node;
1268        }
1269        if (CPA::available()) {
1270            if (head_inst->isControl()) {
1271                ThreadContext *tc = thread[tid]->getTC();
1272                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1273            }
1274        }
1275    }
1276    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1277            head_inst->seqNum, head_inst->pcState());
1278    if (head_inst->traceData) {
1279        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1280        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1281        head_inst->traceData->dump();
1282        delete head_inst->traceData;
1283        head_inst->traceData = NULL;
1284    }
1285    if (head_inst->isReturn()) {
1286        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1287                        head_inst->seqNum, head_inst->pcState());
1288    }
1289
1290    // Update the commit rename map
1291    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1292        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1293                                 head_inst->renamedDestRegIdx(i));
1294    }
1295
1296    // Finally clear the head ROB entry.
1297    rob->retireHead(tid);
1298
1299#if TRACING_ON
1300    if (DTRACE(O3PipeView)) {
1301        head_inst->commitTick = curTick() - head_inst->fetchTick;
1302    }
1303#endif
1304
1305    // If this was a store, record it for this cycle.
1306    if (head_inst->isStore())
1307        committedStores[tid] = true;
1308
1309    // Return true to indicate that we have committed an instruction.
1310    return true;
1311}
1312
1313template <class Impl>
1314void
1315DefaultCommit<Impl>::getInsts()
1316{
1317    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1318
1319    // Read any renamed instructions and place them into the ROB.
1320    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1321
1322    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1323        DynInstPtr inst;
1324
1325        inst = fromRename->insts[inst_num];
1326        ThreadID tid = inst->threadNumber;
1327
1328        if (!inst->isSquashed() &&
1329            commitStatus[tid] != ROBSquashing &&
1330            commitStatus[tid] != TrapPending) {
1331            changedROBNumEntries[tid] = true;
1332
1333            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1334                    inst->pcState(), inst->seqNum, tid);
1335
1336            rob->insertInst(inst);
1337
1338            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1339
1340            youngestSeqNum[tid] = inst->seqNum;
1341        } else {
1342            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1343                    "squashed, skipping.\n",
1344                    inst->pcState(), inst->seqNum, tid);
1345        }
1346    }
1347}
1348
1349template <class Impl>
1350void
1351DefaultCommit<Impl>::markCompletedInsts()
1352{
1353    // Grab completed insts out of the IEW instruction queue, and mark
1354    // instructions completed within the ROB.
1355    for (int inst_num = 0; inst_num < fromIEW->size; ++inst_num) {
1356        assert(fromIEW->insts[inst_num]);
1357        if (!fromIEW->insts[inst_num]->isSquashed()) {
1358            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1359                    "within ROB.\n",
1360                    fromIEW->insts[inst_num]->threadNumber,
1361                    fromIEW->insts[inst_num]->pcState(),
1362                    fromIEW->insts[inst_num]->seqNum);
1363
1364            // Mark the instruction as ready to commit.
1365            fromIEW->insts[inst_num]->setCanCommit();
1366        }
1367    }
1368}
1369
1370template <class Impl>
1371void
1372DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1373{
1374    ThreadID tid = inst->threadNumber;
1375
1376    if (!inst->isMicroop() || inst->isLastMicroop())
1377        instsCommitted[tid]++;
1378    opsCommitted[tid]++;
1379
1380    // To match the old model, don't count nops and instruction
1381    // prefetches towards the total commit count.
1382    if (!inst->isNop() && !inst->isInstPrefetch()) {
1383        cpu->instDone(tid, inst);
1384    }
1385
1386    //
1387    //  Control Instructions
1388    //
1389    if (inst->isControl())
1390        statComBranches[tid]++;
1391
1392    //
1393    //  Memory references
1394    //
1395    if (inst->isMemRef()) {
1396        statComRefs[tid]++;
1397
1398        if (inst->isLoad()) {
1399            statComLoads[tid]++;
1400        }
1401    }
1402
1403    if (inst->isMemBarrier()) {
1404        statComMembars[tid]++;
1405    }
1406
1407    // Integer Instruction
1408    if (inst->isInteger())
1409        statComInteger[tid]++;
1410
1411    // Floating Point Instruction
1412    if (inst->isFloating())
1413        statComFloating[tid]++;
1414    // Vector Instruction
1415    if (inst->isVector())
1416        statComVector[tid]++;
1417
1418    // Function Calls
1419    if (inst->isCall())
1420        statComFunctionCalls[tid]++;
1421
1422}
1423
1424////////////////////////////////////////
1425//                                    //
1426//  SMT COMMIT POLICY MAINTAINED HERE //
1427//                                    //
1428////////////////////////////////////////
1429template <class Impl>
1430ThreadID
1431DefaultCommit<Impl>::getCommittingThread()
1432{
1433    if (numThreads > 1) {
1434        switch (commitPolicy) {
1435
1436          case Aggressive:
1437            //If Policy is Aggressive, commit will call
1438            //this function multiple times per
1439            //cycle
1440            return oldestReady();
1441
1442          case RoundRobin:
1443            return roundRobin();
1444
1445          case OldestReady:
1446            return oldestReady();
1447
1448          default:
1449            return InvalidThreadID;
1450        }
1451    } else {
1452        assert(!activeThreads->empty());
1453        ThreadID tid = activeThreads->front();
1454
1455        if (commitStatus[tid] == Running ||
1456            commitStatus[tid] == Idle ||
1457            commitStatus[tid] == FetchTrapPending) {
1458            return tid;
1459        } else {
1460            return InvalidThreadID;
1461        }
1462    }
1463}
1464
1465template<class Impl>
1466ThreadID
1467DefaultCommit<Impl>::roundRobin()
1468{
1469    list<ThreadID>::iterator pri_iter = priority_list.begin();
1470    list<ThreadID>::iterator end      = priority_list.end();
1471
1472    while (pri_iter != end) {
1473        ThreadID tid = *pri_iter;
1474
1475        if (commitStatus[tid] == Running ||
1476            commitStatus[tid] == Idle ||
1477            commitStatus[tid] == FetchTrapPending) {
1478
1479            if (rob->isHeadReady(tid)) {
1480                priority_list.erase(pri_iter);
1481                priority_list.push_back(tid);
1482
1483                return tid;
1484            }
1485        }
1486
1487        pri_iter++;
1488    }
1489
1490    return InvalidThreadID;
1491}
1492
1493template<class Impl>
1494ThreadID
1495DefaultCommit<Impl>::oldestReady()
1496{
1497    unsigned oldest = 0;
1498    bool first = true;
1499
1500    list<ThreadID>::iterator threads = activeThreads->begin();
1501    list<ThreadID>::iterator end = activeThreads->end();
1502
1503    while (threads != end) {
1504        ThreadID tid = *threads++;
1505
1506        if (!rob->isEmpty(tid) &&
1507            (commitStatus[tid] == Running ||
1508             commitStatus[tid] == Idle ||
1509             commitStatus[tid] == FetchTrapPending)) {
1510
1511            if (rob->isHeadReady(tid)) {
1512
1513                DynInstPtr head_inst = rob->readHeadInst(tid);
1514
1515                if (first) {
1516                    oldest = tid;
1517                    first = false;
1518                } else if (head_inst->seqNum < oldest) {
1519                    oldest = tid;
1520                }
1521            }
1522        }
1523    }
1524
1525    if (!first) {
1526        return oldest;
1527    } else {
1528        return InvalidThreadID;
1529    }
1530}
1531
1532#endif//__CPU_O3_COMMIT_IMPL_HH__
1533