commit_impl.hh revision 10730:11cb85883e6a
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2014 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44#ifndef __CPU_O3_COMMIT_IMPL_HH__
45#define __CPU_O3_COMMIT_IMPL_HH__
46
47#include <algorithm>
48#include <set>
49#include <string>
50
51#include "arch/utility.hh"
52#include "base/loader/symtab.hh"
53#include "base/cp_annotate.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/commit.hh"
57#include "cpu/o3/thread_state.hh"
58#include "cpu/base.hh"
59#include "cpu/exetrace.hh"
60#include "cpu/timebuf.hh"
61#include "debug/Activity.hh"
62#include "debug/Commit.hh"
63#include "debug/CommitRate.hh"
64#include "debug/Drain.hh"
65#include "debug/ExecFaulting.hh"
66#include "debug/O3PipeView.hh"
67#include "params/DerivO3CPU.hh"
68#include "sim/faults.hh"
69#include "sim/full_system.hh"
70
71using namespace std;
72
73template <class Impl>
74DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
75                                          ThreadID _tid)
76    : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
77{
78}
79
80template <class Impl>
81void
82DefaultCommit<Impl>::TrapEvent::process()
83{
84    // This will get reset by commit if it was switched out at the
85    // time of this event processing.
86    commit->trapSquash[tid] = true;
87}
88
89template <class Impl>
90const char *
91DefaultCommit<Impl>::TrapEvent::description() const
92{
93    return "Trap";
94}
95
96template <class Impl>
97DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
98    : cpu(_cpu),
99      iewToCommitDelay(params->iewToCommitDelay),
100      commitToIEWDelay(params->commitToIEWDelay),
101      renameToROBDelay(params->renameToROBDelay),
102      fetchToCommitDelay(params->commitToFetchDelay),
103      renameWidth(params->renameWidth),
104      commitWidth(params->commitWidth),
105      numThreads(params->numThreads),
106      drainPending(false),
107      drainImminent(false),
108      trapLatency(params->trapLatency),
109      canHandleInterrupts(true),
110      avoidQuiesceLiveLock(false)
111{
112    if (commitWidth > Impl::MaxWidth)
113        fatal("commitWidth (%d) is larger than compiled limit (%d),\n"
114             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
115             commitWidth, static_cast<int>(Impl::MaxWidth));
116
117    _status = Active;
118    _nextStatus = Inactive;
119    std::string policy = params->smtCommitPolicy;
120
121    //Convert string to lowercase
122    std::transform(policy.begin(), policy.end(), policy.begin(),
123                   (int(*)(int)) tolower);
124
125    //Assign commit policy
126    if (policy == "aggressive"){
127        commitPolicy = Aggressive;
128
129        DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
130    } else if (policy == "roundrobin"){
131        commitPolicy = RoundRobin;
132
133        //Set-Up Priority List
134        for (ThreadID tid = 0; tid < numThreads; tid++) {
135            priority_list.push_back(tid);
136        }
137
138        DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
139    } else if (policy == "oldestready"){
140        commitPolicy = OldestReady;
141
142        DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
143    } else {
144        assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
145               "RoundRobin,OldestReady}");
146    }
147
148    for (ThreadID tid = 0; tid < numThreads; tid++) {
149        commitStatus[tid] = Idle;
150        changedROBNumEntries[tid] = false;
151        checkEmptyROB[tid] = false;
152        trapInFlight[tid] = false;
153        committedStores[tid] = false;
154        trapSquash[tid] = false;
155        tcSquash[tid] = false;
156        pc[tid].set(0);
157        lastCommitedSeqNum[tid] = 0;
158        squashAfterInst[tid] = NULL;
159    }
160    interrupt = NoFault;
161}
162
163template <class Impl>
164std::string
165DefaultCommit<Impl>::name() const
166{
167    return cpu->name() + ".commit";
168}
169
170template <class Impl>
171void
172DefaultCommit<Impl>::regProbePoints()
173{
174    ppCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Commit");
175    ppCommitStall = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "CommitStall");
176}
177
178template <class Impl>
179void
180DefaultCommit<Impl>::regStats()
181{
182    using namespace Stats;
183    commitSquashedInsts
184        .name(name() + ".commitSquashedInsts")
185        .desc("The number of squashed insts skipped by commit")
186        .prereq(commitSquashedInsts);
187    commitSquashEvents
188        .name(name() + ".commitSquashEvents")
189        .desc("The number of times commit is told to squash")
190        .prereq(commitSquashEvents);
191    commitNonSpecStalls
192        .name(name() + ".commitNonSpecStalls")
193        .desc("The number of times commit has been forced to stall to "
194              "communicate backwards")
195        .prereq(commitNonSpecStalls);
196    branchMispredicts
197        .name(name() + ".branchMispredicts")
198        .desc("The number of times a branch was mispredicted")
199        .prereq(branchMispredicts);
200    numCommittedDist
201        .init(0,commitWidth,1)
202        .name(name() + ".committed_per_cycle")
203        .desc("Number of insts commited each cycle")
204        .flags(Stats::pdf)
205        ;
206
207    instsCommitted
208        .init(cpu->numThreads)
209        .name(name() + ".committedInsts")
210        .desc("Number of instructions committed")
211        .flags(total)
212        ;
213
214    opsCommitted
215        .init(cpu->numThreads)
216        .name(name() + ".committedOps")
217        .desc("Number of ops (including micro ops) committed")
218        .flags(total)
219        ;
220
221    statComSwp
222        .init(cpu->numThreads)
223        .name(name() + ".swp_count")
224        .desc("Number of s/w prefetches committed")
225        .flags(total)
226        ;
227
228    statComRefs
229        .init(cpu->numThreads)
230        .name(name() +  ".refs")
231        .desc("Number of memory references committed")
232        .flags(total)
233        ;
234
235    statComLoads
236        .init(cpu->numThreads)
237        .name(name() +  ".loads")
238        .desc("Number of loads committed")
239        .flags(total)
240        ;
241
242    statComMembars
243        .init(cpu->numThreads)
244        .name(name() +  ".membars")
245        .desc("Number of memory barriers committed")
246        .flags(total)
247        ;
248
249    statComBranches
250        .init(cpu->numThreads)
251        .name(name() + ".branches")
252        .desc("Number of branches committed")
253        .flags(total)
254        ;
255
256    statComFloating
257        .init(cpu->numThreads)
258        .name(name() + ".fp_insts")
259        .desc("Number of committed floating point instructions.")
260        .flags(total)
261        ;
262
263    statComInteger
264        .init(cpu->numThreads)
265        .name(name()+".int_insts")
266        .desc("Number of committed integer instructions.")
267        .flags(total)
268        ;
269
270    statComFunctionCalls
271        .init(cpu->numThreads)
272        .name(name()+".function_calls")
273        .desc("Number of function calls committed.")
274        .flags(total)
275        ;
276
277    statCommittedInstType
278        .init(numThreads,Enums::Num_OpClass)
279        .name(name() + ".op_class")
280        .desc("Class of committed instruction")
281        .flags(total | pdf | dist)
282        ;
283    statCommittedInstType.ysubnames(Enums::OpClassStrings);
284
285    commitEligible
286        .init(cpu->numThreads)
287        .name(name() + ".bw_limited")
288        .desc("number of insts not committed due to BW limits")
289        .flags(total)
290        ;
291
292    commitEligibleSamples
293        .name(name() + ".bw_lim_events")
294        .desc("number cycles where commit BW limit reached")
295        ;
296}
297
298template <class Impl>
299void
300DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
301{
302    thread = threads;
303}
304
305template <class Impl>
306void
307DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
308{
309    timeBuffer = tb_ptr;
310
311    // Setup wire to send information back to IEW.
312    toIEW = timeBuffer->getWire(0);
313
314    // Setup wire to read data from IEW (for the ROB).
315    robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
316}
317
318template <class Impl>
319void
320DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
321{
322    fetchQueue = fq_ptr;
323
324    // Setup wire to get instructions from rename (for the ROB).
325    fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
326}
327
328template <class Impl>
329void
330DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
331{
332    renameQueue = rq_ptr;
333
334    // Setup wire to get instructions from rename (for the ROB).
335    fromRename = renameQueue->getWire(-renameToROBDelay);
336}
337
338template <class Impl>
339void
340DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
341{
342    iewQueue = iq_ptr;
343
344    // Setup wire to get instructions from IEW.
345    fromIEW = iewQueue->getWire(-iewToCommitDelay);
346}
347
348template <class Impl>
349void
350DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
351{
352    iewStage = iew_stage;
353}
354
355template<class Impl>
356void
357DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
358{
359    activeThreads = at_ptr;
360}
361
362template <class Impl>
363void
364DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
365{
366    for (ThreadID tid = 0; tid < numThreads; tid++)
367        renameMap[tid] = &rm_ptr[tid];
368}
369
370template <class Impl>
371void
372DefaultCommit<Impl>::setROB(ROB *rob_ptr)
373{
374    rob = rob_ptr;
375}
376
377template <class Impl>
378void
379DefaultCommit<Impl>::startupStage()
380{
381    rob->setActiveThreads(activeThreads);
382    rob->resetEntries();
383
384    // Broadcast the number of free entries.
385    for (ThreadID tid = 0; tid < numThreads; tid++) {
386        toIEW->commitInfo[tid].usedROB = true;
387        toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
388        toIEW->commitInfo[tid].emptyROB = true;
389    }
390
391    // Commit must broadcast the number of free entries it has at the
392    // start of the simulation, so it starts as active.
393    cpu->activateStage(O3CPU::CommitIdx);
394
395    cpu->activityThisCycle();
396}
397
398template <class Impl>
399void
400DefaultCommit<Impl>::drain()
401{
402    drainPending = true;
403}
404
405template <class Impl>
406void
407DefaultCommit<Impl>::drainResume()
408{
409    drainPending = false;
410    drainImminent = false;
411}
412
413template <class Impl>
414void
415DefaultCommit<Impl>::drainSanityCheck() const
416{
417    assert(isDrained());
418    rob->drainSanityCheck();
419}
420
421template <class Impl>
422bool
423DefaultCommit<Impl>::isDrained() const
424{
425    /* Make sure no one is executing microcode. There are two reasons
426     * for this:
427     * - Hardware virtualized CPUs can't switch into the middle of a
428     *   microcode sequence.
429     * - The current fetch implementation will most likely get very
430     *   confused if it tries to start fetching an instruction that
431     *   is executing in the middle of a ucode sequence that changes
432     *   address mappings. This can happen on for example x86.
433     */
434    for (ThreadID tid = 0; tid < numThreads; tid++) {
435        if (pc[tid].microPC() != 0)
436            return false;
437    }
438
439    /* Make sure that all instructions have finished committing before
440     * declaring the system as drained. We want the pipeline to be
441     * completely empty when we declare the CPU to be drained. This
442     * makes debugging easier since CPU handover and restoring from a
443     * checkpoint with a different CPU should have the same timing.
444     */
445    return rob->isEmpty() &&
446        interrupt == NoFault;
447}
448
449template <class Impl>
450void
451DefaultCommit<Impl>::takeOverFrom()
452{
453    _status = Active;
454    _nextStatus = Inactive;
455    for (ThreadID tid = 0; tid < numThreads; tid++) {
456        commitStatus[tid] = Idle;
457        changedROBNumEntries[tid] = false;
458        trapSquash[tid] = false;
459        tcSquash[tid] = false;
460        squashAfterInst[tid] = NULL;
461    }
462    rob->takeOverFrom();
463}
464
465template <class Impl>
466void
467DefaultCommit<Impl>::deactivateThread(ThreadID tid)
468{
469    list<ThreadID>::iterator thread_it = std::find(priority_list.begin(),
470            priority_list.end(), tid);
471
472    if (thread_it != priority_list.end()) {
473        priority_list.erase(thread_it);
474    }
475}
476
477
478template <class Impl>
479void
480DefaultCommit<Impl>::updateStatus()
481{
482    // reset ROB changed variable
483    list<ThreadID>::iterator threads = activeThreads->begin();
484    list<ThreadID>::iterator end = activeThreads->end();
485
486    while (threads != end) {
487        ThreadID tid = *threads++;
488
489        changedROBNumEntries[tid] = false;
490
491        // Also check if any of the threads has a trap pending
492        if (commitStatus[tid] == TrapPending ||
493            commitStatus[tid] == FetchTrapPending) {
494            _nextStatus = Active;
495        }
496    }
497
498    if (_nextStatus == Inactive && _status == Active) {
499        DPRINTF(Activity, "Deactivating stage.\n");
500        cpu->deactivateStage(O3CPU::CommitIdx);
501    } else if (_nextStatus == Active && _status == Inactive) {
502        DPRINTF(Activity, "Activating stage.\n");
503        cpu->activateStage(O3CPU::CommitIdx);
504    }
505
506    _status = _nextStatus;
507}
508
509template <class Impl>
510bool
511DefaultCommit<Impl>::changedROBEntries()
512{
513    list<ThreadID>::iterator threads = activeThreads->begin();
514    list<ThreadID>::iterator end = activeThreads->end();
515
516    while (threads != end) {
517        ThreadID tid = *threads++;
518
519        if (changedROBNumEntries[tid]) {
520            return true;
521        }
522    }
523
524    return false;
525}
526
527template <class Impl>
528size_t
529DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
530{
531    return rob->numFreeEntries(tid);
532}
533
534template <class Impl>
535void
536DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
537{
538    DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
539
540    TrapEvent *trap = new TrapEvent(this, tid);
541
542    cpu->schedule(trap, cpu->clockEdge(trapLatency));
543    trapInFlight[tid] = true;
544    thread[tid]->trapPending = true;
545}
546
547template <class Impl>
548void
549DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
550{
551    assert(!trapInFlight[tid]);
552    DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
553
554    tcSquash[tid] = true;
555}
556
557template <class Impl>
558void
559DefaultCommit<Impl>::squashAll(ThreadID tid)
560{
561    // If we want to include the squashing instruction in the squash,
562    // then use one older sequence number.
563    // Hopefully this doesn't mess things up.  Basically I want to squash
564    // all instructions of this thread.
565    InstSeqNum squashed_inst = rob->isEmpty(tid) ?
566        lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
567
568    // All younger instructions will be squashed. Set the sequence
569    // number as the youngest instruction in the ROB (0 in this case.
570    // Hopefully nothing breaks.)
571    youngestSeqNum[tid] = lastCommitedSeqNum[tid];
572
573    rob->squash(squashed_inst, tid);
574    changedROBNumEntries[tid] = true;
575
576    // Send back the sequence number of the squashed instruction.
577    toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
578
579    // Send back the squash signal to tell stages that they should
580    // squash.
581    toIEW->commitInfo[tid].squash = true;
582
583    // Send back the rob squashing signal so other stages know that
584    // the ROB is in the process of squashing.
585    toIEW->commitInfo[tid].robSquashing = true;
586
587    toIEW->commitInfo[tid].mispredictInst = NULL;
588    toIEW->commitInfo[tid].squashInst = NULL;
589
590    toIEW->commitInfo[tid].pc = pc[tid];
591}
592
593template <class Impl>
594void
595DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
596{
597    squashAll(tid);
598
599    DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
600
601    thread[tid]->trapPending = false;
602    thread[tid]->noSquashFromTC = false;
603    trapInFlight[tid] = false;
604
605    trapSquash[tid] = false;
606
607    commitStatus[tid] = ROBSquashing;
608    cpu->activityThisCycle();
609}
610
611template <class Impl>
612void
613DefaultCommit<Impl>::squashFromTC(ThreadID tid)
614{
615    squashAll(tid);
616
617    DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
618
619    thread[tid]->noSquashFromTC = false;
620    assert(!thread[tid]->trapPending);
621
622    commitStatus[tid] = ROBSquashing;
623    cpu->activityThisCycle();
624
625    tcSquash[tid] = false;
626}
627
628template <class Impl>
629void
630DefaultCommit<Impl>::squashFromSquashAfter(ThreadID tid)
631{
632    DPRINTF(Commit, "Squashing after squash after request, "
633            "restarting at PC %s\n", pc[tid]);
634
635    squashAll(tid);
636    // Make sure to inform the fetch stage of which instruction caused
637    // the squash. It'll try to re-fetch an instruction executing in
638    // microcode unless this is set.
639    toIEW->commitInfo[tid].squashInst = squashAfterInst[tid];
640    squashAfterInst[tid] = NULL;
641
642    commitStatus[tid] = ROBSquashing;
643    cpu->activityThisCycle();
644}
645
646template <class Impl>
647void
648DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst)
649{
650    DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
651            tid, head_inst->seqNum);
652
653    assert(!squashAfterInst[tid] || squashAfterInst[tid] == head_inst);
654    commitStatus[tid] = SquashAfterPending;
655    squashAfterInst[tid] = head_inst;
656}
657
658template <class Impl>
659void
660DefaultCommit<Impl>::tick()
661{
662    wroteToTimeBuffer = false;
663    _nextStatus = Inactive;
664
665    if (activeThreads->empty())
666        return;
667
668    list<ThreadID>::iterator threads = activeThreads->begin();
669    list<ThreadID>::iterator end = activeThreads->end();
670
671    // Check if any of the threads are done squashing.  Change the
672    // status if they are done.
673    while (threads != end) {
674        ThreadID tid = *threads++;
675
676        // Clear the bit saying if the thread has committed stores
677        // this cycle.
678        committedStores[tid] = false;
679
680        if (commitStatus[tid] == ROBSquashing) {
681
682            if (rob->isDoneSquashing(tid)) {
683                commitStatus[tid] = Running;
684            } else {
685                DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
686                        " insts this cycle.\n", tid);
687                rob->doSquash(tid);
688                toIEW->commitInfo[tid].robSquashing = true;
689                wroteToTimeBuffer = true;
690            }
691        }
692    }
693
694    commit();
695
696    markCompletedInsts();
697
698    threads = activeThreads->begin();
699
700    while (threads != end) {
701        ThreadID tid = *threads++;
702
703        if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
704            // The ROB has more instructions it can commit. Its next status
705            // will be active.
706            _nextStatus = Active;
707
708            DynInstPtr inst = rob->readHeadInst(tid);
709
710            DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
711                    " ROB and ready to commit\n",
712                    tid, inst->seqNum, inst->pcState());
713
714        } else if (!rob->isEmpty(tid)) {
715            DynInstPtr inst = rob->readHeadInst(tid);
716
717            ppCommitStall->notify(inst);
718
719            DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
720                    "%s is head of ROB and not ready\n",
721                    tid, inst->seqNum, inst->pcState());
722        }
723
724        DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
725                tid, rob->countInsts(tid), rob->numFreeEntries(tid));
726    }
727
728
729    if (wroteToTimeBuffer) {
730        DPRINTF(Activity, "Activity This Cycle.\n");
731        cpu->activityThisCycle();
732    }
733
734    updateStatus();
735}
736
737template <class Impl>
738void
739DefaultCommit<Impl>::handleInterrupt()
740{
741    // Verify that we still have an interrupt to handle
742    if (!cpu->checkInterrupts(cpu->tcBase(0))) {
743        DPRINTF(Commit, "Pending interrupt is cleared by master before "
744                "it got handled. Restart fetching from the orig path.\n");
745        toIEW->commitInfo[0].clearInterrupt = true;
746        interrupt = NoFault;
747        avoidQuiesceLiveLock = true;
748        return;
749    }
750
751    // Wait until all in flight instructions are finished before enterring
752    // the interrupt.
753    if (canHandleInterrupts && cpu->instList.empty()) {
754        // Squash or record that I need to squash this cycle if
755        // an interrupt needed to be handled.
756        DPRINTF(Commit, "Interrupt detected.\n");
757
758        // Clear the interrupt now that it's going to be handled
759        toIEW->commitInfo[0].clearInterrupt = true;
760
761        assert(!thread[0]->noSquashFromTC);
762        thread[0]->noSquashFromTC = true;
763
764        if (cpu->checker) {
765            cpu->checker->handlePendingInt();
766        }
767
768        // CPU will handle interrupt. Note that we ignore the local copy of
769        // interrupt. This is because the local copy may no longer be the
770        // interrupt that the interrupt controller thinks is being handled.
771        cpu->processInterrupts(cpu->getInterrupts());
772
773        thread[0]->noSquashFromTC = false;
774
775        commitStatus[0] = TrapPending;
776
777        // Generate trap squash event.
778        generateTrapEvent(0);
779
780        interrupt = NoFault;
781        avoidQuiesceLiveLock = false;
782    } else {
783        DPRINTF(Commit, "Interrupt pending: instruction is %sin "
784                "flight, ROB is %sempty\n",
785                canHandleInterrupts ? "not " : "",
786                cpu->instList.empty() ? "" : "not " );
787    }
788}
789
790template <class Impl>
791void
792DefaultCommit<Impl>::propagateInterrupt()
793{
794    // Don't propagate intterupts if we are currently handling a trap or
795    // in draining and the last observable instruction has been committed.
796    if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
797            tcSquash[0] || drainImminent)
798        return;
799
800    // Process interrupts if interrupts are enabled, not in PAL
801    // mode, and no other traps or external squashes are currently
802    // pending.
803    // @todo: Allow other threads to handle interrupts.
804
805    // Get any interrupt that happened
806    interrupt = cpu->getInterrupts();
807
808    // Tell fetch that there is an interrupt pending.  This
809    // will make fetch wait until it sees a non PAL-mode PC,
810    // at which point it stops fetching instructions.
811    if (interrupt != NoFault)
812        toIEW->commitInfo[0].interruptPending = true;
813}
814
815template <class Impl>
816void
817DefaultCommit<Impl>::commit()
818{
819    if (FullSystem) {
820        // Check if we have a interrupt and get read to handle it
821        if (cpu->checkInterrupts(cpu->tcBase(0)))
822            propagateInterrupt();
823    }
824
825    ////////////////////////////////////
826    // Check for any possible squashes, handle them first
827    ////////////////////////////////////
828    list<ThreadID>::iterator threads = activeThreads->begin();
829    list<ThreadID>::iterator end = activeThreads->end();
830
831    int num_squashing_threads = 0;
832
833    while (threads != end) {
834        ThreadID tid = *threads++;
835
836        // Not sure which one takes priority.  I think if we have
837        // both, that's a bad sign.
838        if (trapSquash[tid]) {
839            assert(!tcSquash[tid]);
840            squashFromTrap(tid);
841        } else if (tcSquash[tid]) {
842            assert(commitStatus[tid] != TrapPending);
843            squashFromTC(tid);
844        } else if (commitStatus[tid] == SquashAfterPending) {
845            // A squash from the previous cycle of the commit stage (i.e.,
846            // commitInsts() called squashAfter) is pending. Squash the
847            // thread now.
848            squashFromSquashAfter(tid);
849        }
850
851        // Squashed sequence number must be older than youngest valid
852        // instruction in the ROB. This prevents squashes from younger
853        // instructions overriding squashes from older instructions.
854        if (fromIEW->squash[tid] &&
855            commitStatus[tid] != TrapPending &&
856            fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
857
858            if (fromIEW->mispredictInst[tid]) {
859                DPRINTF(Commit,
860                    "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
861                    tid,
862                    fromIEW->mispredictInst[tid]->instAddr(),
863                    fromIEW->squashedSeqNum[tid]);
864            } else {
865                DPRINTF(Commit,
866                    "[tid:%i]: Squashing due to order violation [sn:%i]\n",
867                    tid, fromIEW->squashedSeqNum[tid]);
868            }
869
870            DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
871                    tid,
872                    fromIEW->pc[tid].nextInstAddr());
873
874            commitStatus[tid] = ROBSquashing;
875
876            // If we want to include the squashing instruction in the squash,
877            // then use one older sequence number.
878            InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
879
880            if (fromIEW->includeSquashInst[tid]) {
881                squashed_inst--;
882            }
883
884            // All younger instructions will be squashed. Set the sequence
885            // number as the youngest instruction in the ROB.
886            youngestSeqNum[tid] = squashed_inst;
887
888            rob->squash(squashed_inst, tid);
889            changedROBNumEntries[tid] = true;
890
891            toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
892
893            toIEW->commitInfo[tid].squash = true;
894
895            // Send back the rob squashing signal so other stages know that
896            // the ROB is in the process of squashing.
897            toIEW->commitInfo[tid].robSquashing = true;
898
899            toIEW->commitInfo[tid].mispredictInst =
900                fromIEW->mispredictInst[tid];
901            toIEW->commitInfo[tid].branchTaken =
902                fromIEW->branchTaken[tid];
903            toIEW->commitInfo[tid].squashInst =
904                                    rob->findInst(tid, squashed_inst);
905            if (toIEW->commitInfo[tid].mispredictInst) {
906                if (toIEW->commitInfo[tid].mispredictInst->isUncondCtrl()) {
907                     toIEW->commitInfo[tid].branchTaken = true;
908                }
909                ++branchMispredicts;
910            }
911
912            toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
913        }
914
915        if (commitStatus[tid] == ROBSquashing) {
916            num_squashing_threads++;
917        }
918    }
919
920    // If commit is currently squashing, then it will have activity for the
921    // next cycle. Set its next status as active.
922    if (num_squashing_threads) {
923        _nextStatus = Active;
924    }
925
926    if (num_squashing_threads != numThreads) {
927        // If we're not currently squashing, then get instructions.
928        getInsts();
929
930        // Try to commit any instructions.
931        commitInsts();
932    }
933
934    //Check for any activity
935    threads = activeThreads->begin();
936
937    while (threads != end) {
938        ThreadID tid = *threads++;
939
940        if (changedROBNumEntries[tid]) {
941            toIEW->commitInfo[tid].usedROB = true;
942            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
943
944            wroteToTimeBuffer = true;
945            changedROBNumEntries[tid] = false;
946            if (rob->isEmpty(tid))
947                checkEmptyROB[tid] = true;
948        }
949
950        // ROB is only considered "empty" for previous stages if: a)
951        // ROB is empty, b) there are no outstanding stores, c) IEW
952        // stage has received any information regarding stores that
953        // committed.
954        // c) is checked by making sure to not consider the ROB empty
955        // on the same cycle as when stores have been committed.
956        // @todo: Make this handle multi-cycle communication between
957        // commit and IEW.
958        if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
959            !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
960            checkEmptyROB[tid] = false;
961            toIEW->commitInfo[tid].usedROB = true;
962            toIEW->commitInfo[tid].emptyROB = true;
963            toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
964            wroteToTimeBuffer = true;
965        }
966
967    }
968}
969
970template <class Impl>
971void
972DefaultCommit<Impl>::commitInsts()
973{
974    ////////////////////////////////////
975    // Handle commit
976    // Note that commit will be handled prior to putting new
977    // instructions in the ROB so that the ROB only tries to commit
978    // instructions it has in this current cycle, and not instructions
979    // it is writing in during this cycle.  Can't commit and squash
980    // things at the same time...
981    ////////////////////////////////////
982
983    DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
984
985    unsigned num_committed = 0;
986
987    DynInstPtr head_inst;
988
989    // Commit as many instructions as possible until the commit bandwidth
990    // limit is reached, or it becomes impossible to commit any more.
991    while (num_committed < commitWidth) {
992        // Check for any interrupt that we've already squashed for
993        // and start processing it.
994        if (interrupt != NoFault)
995            handleInterrupt();
996
997        int commit_thread = getCommittingThread();
998
999        if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
1000            break;
1001
1002        head_inst = rob->readHeadInst(commit_thread);
1003
1004        ThreadID tid = head_inst->threadNumber;
1005
1006        assert(tid == commit_thread);
1007
1008        DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
1009                head_inst->seqNum, tid);
1010
1011        // If the head instruction is squashed, it is ready to retire
1012        // (be removed from the ROB) at any time.
1013        if (head_inst->isSquashed()) {
1014
1015            DPRINTF(Commit, "Retiring squashed instruction from "
1016                    "ROB.\n");
1017
1018            rob->retireHead(commit_thread);
1019
1020            ++commitSquashedInsts;
1021
1022            // Record that the number of ROB entries has changed.
1023            changedROBNumEntries[tid] = true;
1024        } else {
1025            pc[tid] = head_inst->pcState();
1026
1027            // Increment the total number of non-speculative instructions
1028            // executed.
1029            // Hack for now: it really shouldn't happen until after the
1030            // commit is deemed to be successful, but this count is needed
1031            // for syscalls.
1032            thread[tid]->funcExeInst++;
1033
1034            // Try to commit the head instruction.
1035            bool commit_success = commitHead(head_inst, num_committed);
1036
1037            if (commit_success) {
1038                ++num_committed;
1039                statCommittedInstType[tid][head_inst->opClass()]++;
1040                ppCommit->notify(head_inst);
1041
1042                changedROBNumEntries[tid] = true;
1043
1044                // Set the doneSeqNum to the youngest committed instruction.
1045                toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
1046
1047                if (tid == 0) {
1048                    canHandleInterrupts =  (!head_inst->isDelayedCommit()) &&
1049                                           ((THE_ISA != ALPHA_ISA) ||
1050                                             (!(pc[0].instAddr() & 0x3)));
1051                }
1052
1053                // Updates misc. registers.
1054                head_inst->updateMiscRegs();
1055
1056                // Check instruction execution if it successfully commits and
1057                // is not carrying a fault.
1058                if (cpu->checker) {
1059                    cpu->checker->verify(head_inst);
1060                }
1061
1062                cpu->traceFunctions(pc[tid].instAddr());
1063
1064                TheISA::advancePC(pc[tid], head_inst->staticInst);
1065
1066                // Keep track of the last sequence number commited
1067                lastCommitedSeqNum[tid] = head_inst->seqNum;
1068
1069                // If this is an instruction that doesn't play nicely with
1070                // others squash everything and restart fetch
1071                if (head_inst->isSquashAfter())
1072                    squashAfter(tid, head_inst);
1073
1074                if (drainPending) {
1075                    if (pc[tid].microPC() == 0 && interrupt == NoFault &&
1076                        !thread[tid]->trapPending) {
1077                        // Last architectually committed instruction.
1078                        // Squash the pipeline, stall fetch, and use
1079                        // drainImminent to disable interrupts
1080                        DPRINTF(Drain, "Draining: %i:%s\n", tid, pc[tid]);
1081                        squashAfter(tid, head_inst);
1082                        cpu->commitDrained(tid);
1083                        drainImminent = true;
1084                    }
1085                }
1086
1087                bool onInstBoundary = !head_inst->isMicroop() ||
1088                                      head_inst->isLastMicroop() ||
1089                                      !head_inst->isDelayedCommit();
1090
1091                if (onInstBoundary) {
1092                    int count = 0;
1093                    Addr oldpc;
1094                    // Make sure we're not currently updating state while
1095                    // handling PC events.
1096                    assert(!thread[tid]->noSquashFromTC &&
1097                           !thread[tid]->trapPending);
1098                    do {
1099                        oldpc = pc[tid].instAddr();
1100                        cpu->system->pcEventQueue.service(thread[tid]->getTC());
1101                        count++;
1102                    } while (oldpc != pc[tid].instAddr());
1103                    if (count > 1) {
1104                        DPRINTF(Commit,
1105                                "PC skip function event, stopping commit\n");
1106                        break;
1107                    }
1108                }
1109
1110                // Check if an instruction just enabled interrupts and we've
1111                // previously had an interrupt pending that was not handled
1112                // because interrupts were subsequently disabled before the
1113                // pipeline reached a place to handle the interrupt. In that
1114                // case squash now to make sure the interrupt is handled.
1115                //
1116                // If we don't do this, we might end up in a live lock situation
1117                if (!interrupt && avoidQuiesceLiveLock &&
1118                    onInstBoundary && cpu->checkInterrupts(cpu->tcBase(0)))
1119                    squashAfter(tid, head_inst);
1120            } else {
1121                DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1122                        "[tid:%i] [sn:%i].\n",
1123                        head_inst->pcState(), tid ,head_inst->seqNum);
1124                break;
1125            }
1126        }
1127    }
1128
1129    DPRINTF(CommitRate, "%i\n", num_committed);
1130    numCommittedDist.sample(num_committed);
1131
1132    if (num_committed == commitWidth) {
1133        commitEligibleSamples++;
1134    }
1135}
1136
1137template <class Impl>
1138bool
1139DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1140{
1141    assert(head_inst);
1142
1143    ThreadID tid = head_inst->threadNumber;
1144
1145    // If the instruction is not executed yet, then it will need extra
1146    // handling.  Signal backwards that it should be executed.
1147    if (!head_inst->isExecuted()) {
1148        // Keep this number correct.  We have not yet actually executed
1149        // and committed this instruction.
1150        thread[tid]->funcExeInst--;
1151
1152        // Make sure we are only trying to commit un-executed instructions we
1153        // think are possible.
1154        assert(head_inst->isNonSpeculative() || head_inst->isStoreConditional()
1155               || head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
1156               (head_inst->isLoad() && head_inst->uncacheable()));
1157
1158        DPRINTF(Commit, "Encountered a barrier or non-speculative "
1159                "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1160                head_inst->seqNum, head_inst->pcState());
1161
1162        if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1163            DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1164            return false;
1165        }
1166
1167        toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1168
1169        // Change the instruction so it won't try to commit again until
1170        // it is executed.
1171        head_inst->clearCanCommit();
1172
1173        if (head_inst->isLoad() && head_inst->uncacheable()) {
1174            DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1175                    head_inst->seqNum, head_inst->pcState());
1176            toIEW->commitInfo[tid].uncached = true;
1177            toIEW->commitInfo[tid].uncachedLoad = head_inst;
1178        } else {
1179            ++commitNonSpecStalls;
1180        }
1181
1182        return false;
1183    }
1184
1185    if (head_inst->isThreadSync()) {
1186        // Not handled for now.
1187        panic("Thread sync instructions are not handled yet.\n");
1188    }
1189
1190    // Check if the instruction caused a fault.  If so, trap.
1191    Fault inst_fault = head_inst->getFault();
1192
1193    // Stores mark themselves as completed.
1194    if (!head_inst->isStore() && inst_fault == NoFault) {
1195        head_inst->setCompleted();
1196    }
1197
1198    if (inst_fault != NoFault) {
1199        DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1200                head_inst->seqNum, head_inst->pcState());
1201
1202        if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1203            DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1204            return false;
1205        }
1206
1207        head_inst->setCompleted();
1208
1209        // If instruction has faulted, let the checker execute it and
1210        // check if it sees the same fault and control flow.
1211        if (cpu->checker) {
1212            // Need to check the instruction before its fault is processed
1213            cpu->checker->verify(head_inst);
1214        }
1215
1216        assert(!thread[tid]->noSquashFromTC);
1217
1218        // Mark that we're in state update mode so that the trap's
1219        // execution doesn't generate extra squashes.
1220        thread[tid]->noSquashFromTC = true;
1221
1222        // Execute the trap.  Although it's slightly unrealistic in
1223        // terms of timing (as it doesn't wait for the full timing of
1224        // the trap event to complete before updating state), it's
1225        // needed to update the state as soon as possible.  This
1226        // prevents external agents from changing any specific state
1227        // that the trap need.
1228        cpu->trap(inst_fault, tid, head_inst->staticInst);
1229
1230        // Exit state update mode to avoid accidental updating.
1231        thread[tid]->noSquashFromTC = false;
1232
1233        commitStatus[tid] = TrapPending;
1234
1235        DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1236            head_inst->seqNum);
1237        if (head_inst->traceData) {
1238            if (DTRACE(ExecFaulting)) {
1239                head_inst->traceData->setFetchSeq(head_inst->seqNum);
1240                head_inst->traceData->setCPSeq(thread[tid]->numOp);
1241                head_inst->traceData->dump();
1242            }
1243            delete head_inst->traceData;
1244            head_inst->traceData = NULL;
1245        }
1246
1247        // Generate trap squash event.
1248        generateTrapEvent(tid);
1249        return false;
1250    }
1251
1252    updateComInstStats(head_inst);
1253
1254    if (FullSystem) {
1255        if (thread[tid]->profile) {
1256            thread[tid]->profilePC = head_inst->instAddr();
1257            ProfileNode *node = thread[tid]->profile->consume(
1258                    thread[tid]->getTC(), head_inst->staticInst);
1259
1260            if (node)
1261                thread[tid]->profileNode = node;
1262        }
1263        if (CPA::available()) {
1264            if (head_inst->isControl()) {
1265                ThreadContext *tc = thread[tid]->getTC();
1266                CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1267            }
1268        }
1269    }
1270    DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1271            head_inst->seqNum, head_inst->pcState());
1272    if (head_inst->traceData) {
1273        head_inst->traceData->setFetchSeq(head_inst->seqNum);
1274        head_inst->traceData->setCPSeq(thread[tid]->numOp);
1275        head_inst->traceData->dump();
1276        delete head_inst->traceData;
1277        head_inst->traceData = NULL;
1278    }
1279    if (head_inst->isReturn()) {
1280        DPRINTF(Commit,"Return Instruction Committed [sn:%lli] PC %s \n",
1281                        head_inst->seqNum, head_inst->pcState());
1282    }
1283
1284    // Update the commit rename map
1285    for (int i = 0; i < head_inst->numDestRegs(); i++) {
1286        renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1287                                 head_inst->renamedDestRegIdx(i));
1288    }
1289
1290    // Finally clear the head ROB entry.
1291    rob->retireHead(tid);
1292
1293#if TRACING_ON
1294    if (DTRACE(O3PipeView)) {
1295        head_inst->commitTick = curTick() - head_inst->fetchTick;
1296    }
1297#endif
1298
1299    // If this was a store, record it for this cycle.
1300    if (head_inst->isStore())
1301        committedStores[tid] = true;
1302
1303    // Return true to indicate that we have committed an instruction.
1304    return true;
1305}
1306
1307template <class Impl>
1308void
1309DefaultCommit<Impl>::getInsts()
1310{
1311    DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1312
1313    // Read any renamed instructions and place them into the ROB.
1314    int insts_to_process = std::min((int)renameWidth, fromRename->size);
1315
1316    for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1317        DynInstPtr inst;
1318
1319        inst = fromRename->insts[inst_num];
1320        ThreadID tid = inst->threadNumber;
1321
1322        if (!inst->isSquashed() &&
1323            commitStatus[tid] != ROBSquashing &&
1324            commitStatus[tid] != TrapPending) {
1325            changedROBNumEntries[tid] = true;
1326
1327            DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1328                    inst->pcState(), inst->seqNum, tid);
1329
1330            rob->insertInst(inst);
1331
1332            assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1333
1334            youngestSeqNum[tid] = inst->seqNum;
1335        } else {
1336            DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1337                    "squashed, skipping.\n",
1338                    inst->pcState(), inst->seqNum, tid);
1339        }
1340    }
1341}
1342
1343template <class Impl>
1344void
1345DefaultCommit<Impl>::markCompletedInsts()
1346{
1347    // Grab completed insts out of the IEW instruction queue, and mark
1348    // instructions completed within the ROB.
1349    for (int inst_num = 0;
1350         inst_num < fromIEW->size && fromIEW->insts[inst_num];
1351         ++inst_num)
1352    {
1353        if (!fromIEW->insts[inst_num]->isSquashed()) {
1354            DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1355                    "within ROB.\n",
1356                    fromIEW->insts[inst_num]->threadNumber,
1357                    fromIEW->insts[inst_num]->pcState(),
1358                    fromIEW->insts[inst_num]->seqNum);
1359
1360            // Mark the instruction as ready to commit.
1361            fromIEW->insts[inst_num]->setCanCommit();
1362        }
1363    }
1364}
1365
1366template <class Impl>
1367void
1368DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1369{
1370    ThreadID tid = inst->threadNumber;
1371
1372    if (!inst->isMicroop() || inst->isLastMicroop())
1373        instsCommitted[tid]++;
1374    opsCommitted[tid]++;
1375
1376    // To match the old model, don't count nops and instruction
1377    // prefetches towards the total commit count.
1378    if (!inst->isNop() && !inst->isInstPrefetch()) {
1379        cpu->instDone(tid, inst);
1380    }
1381
1382    //
1383    //  Control Instructions
1384    //
1385    if (inst->isControl())
1386        statComBranches[tid]++;
1387
1388    //
1389    //  Memory references
1390    //
1391    if (inst->isMemRef()) {
1392        statComRefs[tid]++;
1393
1394        if (inst->isLoad()) {
1395            statComLoads[tid]++;
1396        }
1397    }
1398
1399    if (inst->isMemBarrier()) {
1400        statComMembars[tid]++;
1401    }
1402
1403    // Integer Instruction
1404    if (inst->isInteger())
1405        statComInteger[tid]++;
1406
1407    // Floating Point Instruction
1408    if (inst->isFloating())
1409        statComFloating[tid]++;
1410
1411    // Function Calls
1412    if (inst->isCall())
1413        statComFunctionCalls[tid]++;
1414
1415}
1416
1417////////////////////////////////////////
1418//                                    //
1419//  SMT COMMIT POLICY MAINTAINED HERE //
1420//                                    //
1421////////////////////////////////////////
1422template <class Impl>
1423ThreadID
1424DefaultCommit<Impl>::getCommittingThread()
1425{
1426    if (numThreads > 1) {
1427        switch (commitPolicy) {
1428
1429          case Aggressive:
1430            //If Policy is Aggressive, commit will call
1431            //this function multiple times per
1432            //cycle
1433            return oldestReady();
1434
1435          case RoundRobin:
1436            return roundRobin();
1437
1438          case OldestReady:
1439            return oldestReady();
1440
1441          default:
1442            return InvalidThreadID;
1443        }
1444    } else {
1445        assert(!activeThreads->empty());
1446        ThreadID tid = activeThreads->front();
1447
1448        if (commitStatus[tid] == Running ||
1449            commitStatus[tid] == Idle ||
1450            commitStatus[tid] == FetchTrapPending) {
1451            return tid;
1452        } else {
1453            return InvalidThreadID;
1454        }
1455    }
1456}
1457
1458template<class Impl>
1459ThreadID
1460DefaultCommit<Impl>::roundRobin()
1461{
1462    list<ThreadID>::iterator pri_iter = priority_list.begin();
1463    list<ThreadID>::iterator end      = priority_list.end();
1464
1465    while (pri_iter != end) {
1466        ThreadID tid = *pri_iter;
1467
1468        if (commitStatus[tid] == Running ||
1469            commitStatus[tid] == Idle ||
1470            commitStatus[tid] == FetchTrapPending) {
1471
1472            if (rob->isHeadReady(tid)) {
1473                priority_list.erase(pri_iter);
1474                priority_list.push_back(tid);
1475
1476                return tid;
1477            }
1478        }
1479
1480        pri_iter++;
1481    }
1482
1483    return InvalidThreadID;
1484}
1485
1486template<class Impl>
1487ThreadID
1488DefaultCommit<Impl>::oldestReady()
1489{
1490    unsigned oldest = 0;
1491    bool first = true;
1492
1493    list<ThreadID>::iterator threads = activeThreads->begin();
1494    list<ThreadID>::iterator end = activeThreads->end();
1495
1496    while (threads != end) {
1497        ThreadID tid = *threads++;
1498
1499        if (!rob->isEmpty(tid) &&
1500            (commitStatus[tid] == Running ||
1501             commitStatus[tid] == Idle ||
1502             commitStatus[tid] == FetchTrapPending)) {
1503
1504            if (rob->isHeadReady(tid)) {
1505
1506                DynInstPtr head_inst = rob->readHeadInst(tid);
1507
1508                if (first) {
1509                    oldest = tid;
1510                    first = false;
1511                } else if (head_inst->seqNum < oldest) {
1512                    oldest = tid;
1513                }
1514            }
1515        }
1516    }
1517
1518    if (!first) {
1519        return oldest;
1520    } else {
1521        return InvalidThreadID;
1522    }
1523}
1524
1525#endif//__CPU_O3_COMMIT_IMPL_HH__
1526