x86_cpu.cc revision 11793:ef606668d247
1/*
2 * Copyright (c) 2013 Andreas Sandberg
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Andreas Sandberg
29 */
30
31#include "cpu/kvm/x86_cpu.hh"
32
33#include <linux/kvm.h>
34
35#include <algorithm>
36#include <cerrno>
37#include <memory>
38
39#include "arch/registers.hh"
40#include "arch/x86/cpuid.hh"
41#include "arch/x86/regs/msr.hh"
42#include "arch/x86/utility.hh"
43#include "cpu/kvm/base.hh"
44#include "debug/Drain.hh"
45#include "debug/Kvm.hh"
46#include "debug/KvmContext.hh"
47#include "debug/KvmIO.hh"
48#include "debug/KvmInt.hh"
49
50using namespace X86ISA;
51
52#define MSR_TSC 0x10
53
54#define IO_PCI_CONF_ADDR 0xCF8
55#define IO_PCI_CONF_DATA_BASE 0xCFC
56
57// Task segment type of an inactive 32-bit or 64-bit task
58#define SEG_SYS_TYPE_TSS_AVAILABLE 9
59// Task segment type of an active 32-bit or 64-bit task
60#define SEG_SYS_TYPE_TSS_BUSY 11
61
62// Non-conforming accessed code segment
63#define SEG_CS_TYPE_ACCESSED 9
64// Non-conforming accessed code segment that can be read
65#define SEG_CS_TYPE_READ_ACCESSED 11
66
67// The lowest bit of the type field for normal segments (code and
68// data) is used to indicate that a segment has been accessed.
69#define SEG_TYPE_BIT_ACCESSED 1
70
71struct FXSave
72{
73    uint16_t fcw;
74    uint16_t fsw;
75    uint8_t ftwx;
76    uint8_t pad0;
77    uint16_t last_opcode;
78    union {
79        struct {
80            uint32_t fpu_ip;
81            uint16_t fpu_cs;
82            uint16_t pad1;
83            uint32_t fpu_dp;
84            uint16_t fpu_ds;
85            uint16_t pad2;
86        } ctrl32;
87
88        struct {
89            uint64_t fpu_ip;
90            uint64_t fpu_dp;
91        } ctrl64;
92    };
93    uint32_t mxcsr;
94    uint32_t mxcsr_mask;
95
96    uint8_t fpr[8][16];
97    uint8_t xmm[16][16];
98
99    uint64_t reserved[12];
100} M5_ATTR_PACKED;
101
102static_assert(sizeof(FXSave) == 512, "Unexpected size of FXSave");
103
104#define FOREACH_IREG()                          \
105    do {                                        \
106        APPLY_IREG(rax, INTREG_RAX);            \
107        APPLY_IREG(rbx, INTREG_RBX);            \
108        APPLY_IREG(rcx, INTREG_RCX);            \
109        APPLY_IREG(rdx, INTREG_RDX);            \
110        APPLY_IREG(rsi, INTREG_RSI);            \
111        APPLY_IREG(rdi, INTREG_RDI);            \
112        APPLY_IREG(rsp, INTREG_RSP);            \
113        APPLY_IREG(rbp, INTREG_RBP);            \
114        APPLY_IREG(r8, INTREG_R8);              \
115        APPLY_IREG(r9, INTREG_R9);              \
116        APPLY_IREG(r10, INTREG_R10);            \
117        APPLY_IREG(r11, INTREG_R11);            \
118        APPLY_IREG(r12, INTREG_R12);            \
119        APPLY_IREG(r13, INTREG_R13);            \
120        APPLY_IREG(r14, INTREG_R14);            \
121        APPLY_IREG(r15, INTREG_R15);            \
122    } while (0)
123
124#define FOREACH_SREG()                                  \
125    do {                                                \
126        APPLY_SREG(cr0, MISCREG_CR0);                   \
127        APPLY_SREG(cr2, MISCREG_CR2);                   \
128        APPLY_SREG(cr3, MISCREG_CR3);                   \
129        APPLY_SREG(cr4, MISCREG_CR4);                   \
130        APPLY_SREG(cr8, MISCREG_CR8);                   \
131        APPLY_SREG(efer, MISCREG_EFER);                 \
132        APPLY_SREG(apic_base, MISCREG_APIC_BASE);       \
133    } while (0)
134
135#define FOREACH_DREG()                          \
136    do {                                        \
137        APPLY_DREG(db[0], MISCREG_DR0);         \
138        APPLY_DREG(db[1], MISCREG_DR1);         \
139        APPLY_DREG(db[2], MISCREG_DR2);         \
140        APPLY_DREG(db[3], MISCREG_DR3);         \
141        APPLY_DREG(dr6, MISCREG_DR6);           \
142        APPLY_DREG(dr7, MISCREG_DR7);           \
143    } while (0)
144
145#define FOREACH_SEGMENT()                                       \
146    do {                                                        \
147        APPLY_SEGMENT(cs, MISCREG_CS - MISCREG_SEG_SEL_BASE);   \
148        APPLY_SEGMENT(ds, MISCREG_DS - MISCREG_SEG_SEL_BASE);   \
149        APPLY_SEGMENT(es, MISCREG_ES - MISCREG_SEG_SEL_BASE);   \
150        APPLY_SEGMENT(fs, MISCREG_FS - MISCREG_SEG_SEL_BASE);   \
151        APPLY_SEGMENT(gs, MISCREG_GS - MISCREG_SEG_SEL_BASE);   \
152        APPLY_SEGMENT(ss, MISCREG_SS - MISCREG_SEG_SEL_BASE);   \
153        APPLY_SEGMENT(tr, MISCREG_TR - MISCREG_SEG_SEL_BASE);   \
154        APPLY_SEGMENT(ldt, MISCREG_TSL - MISCREG_SEG_SEL_BASE); \
155    } while (0)
156
157#define FOREACH_DTABLE()                                        \
158    do {                                                        \
159        APPLY_DTABLE(gdt, MISCREG_TSG - MISCREG_SEG_SEL_BASE);  \
160        APPLY_DTABLE(idt, MISCREG_IDTR - MISCREG_SEG_SEL_BASE); \
161    } while (0)
162
163template<typename STRUCT, typename ENTRY>
164static STRUCT *newVarStruct(size_t entries)
165{
166    return (STRUCT *)operator new(sizeof(STRUCT) + entries * sizeof(ENTRY));
167}
168
169static void
170dumpKvm(const struct kvm_regs &regs)
171{
172    inform("KVM register state:\n");
173
174#define APPLY_IREG(kreg, mreg)                  \
175    inform("\t" # kreg ": 0x%llx\n", regs.kreg)
176
177    FOREACH_IREG();
178
179#undef APPLY_IREG
180
181    inform("\trip: 0x%llx\n", regs.rip);
182    inform("\trflags: 0x%llx\n", regs.rflags);
183}
184
185static void
186dumpKvm(const char *reg_name, const struct kvm_segment &seg)
187{
188    inform("\t%s: @0x%llx+%x [sel: 0x%x, type: 0x%x]\n"
189           "\t\tpres.: %u, dpl: %u, db: %u, s: %u, l: %u, g: %u, avl: %u, unus.: %u\n",
190           reg_name,
191           seg.base, seg.limit, seg.selector, seg.type,
192           seg.present, seg.dpl, seg.db, seg.s, seg.l, seg.g, seg.avl, seg.unusable);
193}
194
195static void
196dumpKvm(const char *reg_name, const struct kvm_dtable &dtable)
197{
198    inform("\t%s: @0x%llx+%x\n",
199           reg_name, dtable.base, dtable.limit);
200}
201
202static void
203dumpKvm(const struct kvm_sregs &sregs)
204{
205#define APPLY_SREG(kreg, mreg)                          \
206    inform("\t" # kreg ": 0x%llx\n", sregs.kreg);
207#define APPLY_SEGMENT(kreg, idx)                \
208    dumpKvm(# kreg, sregs.kreg);
209#define APPLY_DTABLE(kreg, idx)                 \
210    dumpKvm(# kreg, sregs.kreg);
211
212    inform("Special registers:\n");
213    FOREACH_SEGMENT();
214    FOREACH_SREG();
215    FOREACH_DTABLE();
216
217    inform("Interrupt Bitmap:");
218    for (int i = 0; i < KVM_NR_INTERRUPTS; i += 64)
219        inform("  0x%.8x", sregs.interrupt_bitmap[i / 64]);
220
221#undef APPLY_SREG
222#undef APPLY_SEGMENT
223#undef APPLY_DTABLE
224}
225
226#ifdef KVM_GET_DEBUGREGS
227static void
228dumpKvm(const struct kvm_debugregs &regs)
229{
230    inform("KVM debug state:\n");
231
232#define APPLY_DREG(kreg, mreg)                  \
233    inform("\t" # kreg ": 0x%llx\n", regs.kreg)
234
235    FOREACH_DREG();
236
237#undef APPLY_DREG
238
239    inform("\tflags: 0x%llx\n", regs.flags);
240}
241#endif
242
243static void
244dumpFpuSpec(const struct FXSave &xs)
245{
246    inform("\tlast_ip: 0x%x\n", xs.ctrl64.fpu_ip);
247    inform("\tlast_dp: 0x%x\n", xs.ctrl64.fpu_dp);
248    inform("\tmxcsr_mask: 0x%x\n", xs.mxcsr_mask);
249}
250
251static void
252dumpFpuSpec(const struct kvm_fpu &fpu)
253{
254    inform("\tlast_ip: 0x%x\n", fpu.last_ip);
255    inform("\tlast_dp: 0x%x\n", fpu.last_dp);
256}
257
258template<typename T>
259static void
260dumpFpuCommon(const T &fpu)
261{
262    const unsigned top((fpu.fsw >> 11) & 0x7);
263    inform("\tfcw: 0x%x\n", fpu.fcw);
264
265    inform("\tfsw: 0x%x (top: %i, "
266           "conditions: %s%s%s%s, exceptions: %s%s%s%s%s%s %s%s%s)\n",
267           fpu.fsw, top,
268
269           (fpu.fsw & CC0Bit) ? "C0" : "",
270           (fpu.fsw & CC1Bit) ? "C1" : "",
271           (fpu.fsw & CC2Bit) ? "C2" : "",
272           (fpu.fsw & CC3Bit) ? "C3" : "",
273
274           (fpu.fsw & IEBit) ? "I" : "",
275           (fpu.fsw & DEBit) ? "D" : "",
276           (fpu.fsw & ZEBit) ? "Z" : "",
277           (fpu.fsw & OEBit) ? "O" : "",
278           (fpu.fsw & UEBit) ? "U" : "",
279           (fpu.fsw & PEBit) ? "P" : "",
280
281           (fpu.fsw & StackFaultBit) ? "SF " : "",
282           (fpu.fsw & ErrSummaryBit) ? "ES " : "",
283           (fpu.fsw & BusyBit) ? "BUSY " : ""
284        );
285    inform("\tftwx: 0x%x\n", fpu.ftwx);
286    inform("\tlast_opcode: 0x%x\n", fpu.last_opcode);
287    dumpFpuSpec(fpu);
288    inform("\tmxcsr: 0x%x\n", fpu.mxcsr);
289    inform("\tFP Stack:\n");
290    for (int i = 0; i < 8; ++i) {
291        const unsigned reg_idx((i + top) & 0x7);
292        const bool empty(!((fpu.ftwx >> reg_idx) & 0x1));
293        const double value(X86ISA::loadFloat80(fpu.fpr[i]));
294        char hex[33];
295        for (int j = 0; j < 10; ++j)
296            snprintf(&hex[j*2], 3, "%.2x", fpu.fpr[i][j]);
297        inform("\t\tST%i/%i: 0x%s (%f)%s\n", i, reg_idx,
298               hex, value, empty ? " (e)" : "");
299    }
300    inform("\tXMM registers:\n");
301    for (int i = 0; i < 16; ++i) {
302        char hex[33];
303        for (int j = 0; j < 16; ++j)
304            snprintf(&hex[j*2], 3, "%.2x", fpu.xmm[i][j]);
305        inform("\t\t%i: 0x%s\n", i, hex);
306    }
307}
308
309static void
310dumpKvm(const struct kvm_fpu &fpu)
311{
312    inform("FPU registers:\n");
313    dumpFpuCommon(fpu);
314}
315
316static void
317dumpKvm(const struct kvm_xsave &xsave)
318{
319    inform("FPU registers (XSave):\n");
320    dumpFpuCommon(*(FXSave *)xsave.region);
321}
322
323static void
324dumpKvm(const struct kvm_msrs &msrs)
325{
326    inform("MSRs:\n");
327
328    for (int i = 0; i < msrs.nmsrs; ++i) {
329        const struct kvm_msr_entry &e(msrs.entries[i]);
330
331        inform("\t0x%x: 0x%x\n", e.index, e.data);
332    }
333}
334
335static void
336dumpKvm(const struct kvm_xcrs &regs)
337{
338    inform("KVM XCR registers:\n");
339
340    inform("\tFlags: 0x%x\n", regs.flags);
341    for (int i = 0; i < regs.nr_xcrs; ++i) {
342        inform("\tXCR[0x%x]: 0x%x\n",
343               regs.xcrs[i].xcr,
344               regs.xcrs[i].value);
345    }
346}
347
348static void
349dumpKvm(const struct kvm_vcpu_events &events)
350{
351    inform("vCPU events:\n");
352
353    inform("\tException: [inj: %i, nr: %i, has_ec: %i, ec: %i]\n",
354           events.exception.injected, events.exception.nr,
355           events.exception.has_error_code, events.exception.error_code);
356
357    inform("\tInterrupt: [inj: %i, nr: %i, soft: %i]\n",
358           events.interrupt.injected, events.interrupt.nr,
359           events.interrupt.soft);
360
361    inform("\tNMI: [inj: %i, pending: %i, masked: %i]\n",
362           events.nmi.injected, events.nmi.pending,
363           events.nmi.masked);
364
365    inform("\tSIPI vector: 0x%x\n", events.sipi_vector);
366    inform("\tFlags: 0x%x\n", events.flags);
367}
368
369static bool
370isCanonicalAddress(uint64_t addr)
371{
372    // x86-64 doesn't currently use the full 64-bit virtual address
373    // space, instead it uses signed 48 bit addresses that are
374    // sign-extended to 64 bits.  Such addresses are known as
375    // "canonical".
376    uint64_t upper_half(addr & 0xffff800000000000ULL);
377    return upper_half == 0 || upper_half == 0xffff800000000000;
378}
379
380static void
381checkSeg(const char *name, const int idx, const struct kvm_segment &seg,
382         struct kvm_sregs sregs)
383{
384    // Check the register base
385    switch (idx) {
386      case MISCREG_TSL:
387      case MISCREG_TR:
388      case MISCREG_FS:
389      case MISCREG_GS:
390        if (!isCanonicalAddress(seg.base))
391            warn("Illegal %s base: 0x%x\n", name, seg.base);
392        break;
393
394      case MISCREG_SS:
395      case MISCREG_DS:
396      case MISCREG_ES:
397        if (seg.unusable)
398            break;
399      case MISCREG_CS:
400        if (seg.base & 0xffffffff00000000ULL)
401            warn("Illegal %s base: 0x%x\n", name, seg.base);
402        break;
403    }
404
405    // Check the type
406    switch (idx) {
407      case MISCREG_CS:
408        switch (seg.type) {
409          case 3:
410            if (seg.dpl != 0)
411                warn("CS type is 3 but dpl != 0.\n");
412            break;
413          case 9:
414          case 11:
415            if (seg.dpl != sregs.ss.dpl)
416                warn("CS type is %i but CS DPL != SS DPL\n", seg.type);
417            break;
418          case 13:
419          case 15:
420            if (seg.dpl > sregs.ss.dpl)
421                warn("CS type is %i but CS DPL > SS DPL\n", seg.type);
422            break;
423          default:
424            warn("Illegal CS type: %i\n", seg.type);
425            break;
426        }
427        break;
428
429      case MISCREG_SS:
430        if (seg.unusable)
431            break;
432        switch (seg.type) {
433          case 3:
434            if (sregs.cs.type == 3 && seg.dpl != 0)
435                warn("CS type is 3, but SS DPL is != 0.\n");
436            /* FALLTHROUGH */
437          case 7:
438            if (!(sregs.cr0 & 1) && seg.dpl != 0)
439                warn("SS DPL is %i, but CR0 PE is 0\n", seg.dpl);
440            break;
441          default:
442            warn("Illegal SS type: %i\n", seg.type);
443            break;
444        }
445        break;
446
447      case MISCREG_DS:
448      case MISCREG_ES:
449      case MISCREG_FS:
450      case MISCREG_GS:
451        if (seg.unusable)
452            break;
453        if (!(seg.type & 0x1) ||
454            ((seg.type & 0x8) && !(seg.type & 0x2)))
455            warn("%s has an illegal type field: %i\n", name, seg.type);
456        break;
457
458      case MISCREG_TR:
459        // TODO: We should check the CPU mode
460        if (seg.type != 3 && seg.type != 11)
461            warn("%s: Illegal segment type (%i)\n", name, seg.type);
462        break;
463
464      case MISCREG_TSL:
465        if (seg.unusable)
466            break;
467        if (seg.type != 2)
468            warn("%s: Illegal segment type (%i)\n", name, seg.type);
469        break;
470    }
471
472    switch (idx) {
473      case MISCREG_SS:
474      case MISCREG_DS:
475      case MISCREG_ES:
476      case MISCREG_FS:
477      case MISCREG_GS:
478        if (seg.unusable)
479            break;
480      case MISCREG_CS:
481        if (!seg.s)
482            warn("%s: S flag not set\n", name);
483        break;
484
485      case MISCREG_TSL:
486        if (seg.unusable)
487            break;
488      case MISCREG_TR:
489        if (seg.s)
490            warn("%s: S flag is set\n", name);
491        break;
492    }
493
494    switch (idx) {
495      case MISCREG_SS:
496      case MISCREG_DS:
497      case MISCREG_ES:
498      case MISCREG_FS:
499      case MISCREG_GS:
500      case MISCREG_TSL:
501        if (seg.unusable)
502            break;
503      case MISCREG_TR:
504      case MISCREG_CS:
505        if (!seg.present)
506            warn("%s: P flag not set\n", name);
507
508        if (((seg.limit & 0xFFF) == 0 && seg.g) ||
509            ((seg.limit & 0xFFF00000) != 0 && !seg.g)) {
510            warn("%s limit (0x%x) and g (%i) combination is illegal.\n",
511                 name, seg.limit, seg.g);
512        }
513        break;
514    }
515
516    // TODO: Check CS DB
517}
518
519X86KvmCPU::X86KvmCPU(X86KvmCPUParams *params)
520    : BaseKvmCPU(params),
521      useXSave(params->useXSave)
522{
523    Kvm &kvm(*vm.kvm);
524
525    if (!kvm.capSetTSSAddress())
526        panic("KVM: Missing capability (KVM_CAP_SET_TSS_ADDR)\n");
527    if (!kvm.capExtendedCPUID())
528        panic("KVM: Missing capability (KVM_CAP_EXT_CPUID)\n");
529    if (!kvm.capUserNMI())
530        warn("KVM: Missing capability (KVM_CAP_USER_NMI)\n");
531    if (!kvm.capVCPUEvents())
532        warn("KVM: Missing capability (KVM_CAP_VCPU_EVENTS)\n");
533
534    haveDebugRegs = kvm.capDebugRegs();
535    haveXSave = kvm.capXSave();
536    haveXCRs = kvm.capXCRs();
537
538    if (useXSave && !haveXSave) {
539        warn("KVM: XSAVE not supported by host. MXCSR synchronization might be "
540             "unreliable due to kernel bugs.\n");
541        useXSave = false;
542    } else if (!useXSave) {
543        warn("KVM: XSave FPU/SIMD synchronization disabled by user.\n");
544    }
545}
546
547X86KvmCPU::~X86KvmCPU()
548{
549}
550
551void
552X86KvmCPU::startup()
553{
554    BaseKvmCPU::startup();
555
556    updateCPUID();
557
558    // TODO: Do we need to create an identity mapped TSS area? We
559    // should call kvm.vm.setTSSAddress() here in that case. It should
560    // only be needed for old versions of the virtualization
561    // extensions. We should make sure that the identity range is
562    // reserved in the e820 memory map in that case.
563}
564
565void
566X86KvmCPU::dump() const
567{
568    dumpIntRegs();
569    if (useXSave)
570        dumpXSave();
571    else
572        dumpFpuRegs();
573    dumpSpecRegs();
574    dumpDebugRegs();
575    dumpXCRs();
576    dumpVCpuEvents();
577    dumpMSRs();
578}
579
580void
581X86KvmCPU::dumpFpuRegs() const
582{
583    struct kvm_fpu fpu;
584    getFPUState(fpu);
585    dumpKvm(fpu);
586}
587
588void
589X86KvmCPU::dumpIntRegs() const
590{
591    struct kvm_regs regs;
592    getRegisters(regs);
593    dumpKvm(regs);
594}
595
596void
597X86KvmCPU::dumpSpecRegs() const
598{
599    struct kvm_sregs sregs;
600    getSpecialRegisters(sregs);
601    dumpKvm(sregs);
602}
603
604void
605X86KvmCPU::dumpDebugRegs() const
606{
607    if (haveDebugRegs) {
608#ifdef KVM_GET_DEBUGREGS
609        struct kvm_debugregs dregs;
610        getDebugRegisters(dregs);
611        dumpKvm(dregs);
612#endif
613    } else {
614        inform("Debug registers not supported by kernel.\n");
615    }
616}
617
618void
619X86KvmCPU::dumpXCRs() const
620{
621    if (haveXCRs) {
622        struct kvm_xcrs xcrs;
623        getXCRs(xcrs);
624        dumpKvm(xcrs);
625    } else {
626        inform("XCRs not supported by kernel.\n");
627    }
628}
629
630void
631X86KvmCPU::dumpXSave() const
632{
633    if (haveXSave) {
634        struct kvm_xsave xsave;
635        getXSave(xsave);
636        dumpKvm(xsave);
637    } else {
638        inform("XSave not supported by kernel.\n");
639    }
640}
641
642void
643X86KvmCPU::dumpVCpuEvents() const
644{
645    struct kvm_vcpu_events events;
646    getVCpuEvents(events);
647    dumpKvm(events);
648}
649
650void
651X86KvmCPU::dumpMSRs() const
652{
653    const Kvm::MSRIndexVector &supported_msrs(vm.kvm->getSupportedMSRs());
654    std::unique_ptr<struct kvm_msrs> msrs(
655        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(
656            supported_msrs.size()));
657
658    msrs->nmsrs = supported_msrs.size();
659    for (int i = 0; i < supported_msrs.size(); ++i) {
660        struct kvm_msr_entry &e(msrs->entries[i]);
661        e.index = supported_msrs[i];
662        e.reserved = 0;
663        e.data = 0;
664    }
665    getMSRs(*msrs.get());
666
667    dumpKvm(*msrs.get());
668}
669
670void
671X86KvmCPU::updateKvmState()
672{
673    updateKvmStateRegs();
674    updateKvmStateSRegs();
675    updateKvmStateFPU();
676    updateKvmStateMSRs();
677
678    DPRINTF(KvmContext, "X86KvmCPU::updateKvmState():\n");
679    if (DTRACE(KvmContext))
680        dump();
681}
682
683void
684X86KvmCPU::updateKvmStateRegs()
685{
686    struct kvm_regs regs;
687
688#define APPLY_IREG(kreg, mreg) regs.kreg = tc->readIntReg(mreg)
689    FOREACH_IREG();
690#undef APPLY_IREG
691
692    regs.rip = tc->instAddr() - tc->readMiscReg(MISCREG_CS_BASE);
693
694    /* You might think that setting regs.rflags to the contents
695     * MISCREG_RFLAGS here would suffice. In that case you're
696     * mistaken. We need to reconstruct it from a bunch of ucode
697     * registers and wave a dead chicken over it (aka mask out and set
698     * reserved bits) to get it to work.
699     */
700    regs.rflags = X86ISA::getRFlags(tc);
701
702    setRegisters(regs);
703}
704
705static inline void
706setKvmSegmentReg(ThreadContext *tc, struct kvm_segment &kvm_seg,
707                 const int index)
708{
709    SegAttr attr(tc->readMiscRegNoEffect(MISCREG_SEG_ATTR(index)));
710
711    kvm_seg.base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(index));
712    kvm_seg.limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(index));
713    kvm_seg.selector = tc->readMiscRegNoEffect(MISCREG_SEG_SEL(index));
714    kvm_seg.type = attr.type;
715    kvm_seg.present = attr.present;
716    kvm_seg.dpl = attr.dpl;
717    kvm_seg.db = attr.defaultSize;
718    kvm_seg.s = attr.system;
719    kvm_seg.l = attr.longMode;
720    kvm_seg.g = attr.granularity;
721    kvm_seg.avl = attr.avl;
722
723    // A segment is normally unusable when the selector is zero. There
724    // is a attr.unusable flag in gem5, but it seems unused. qemu
725    // seems to set this to 0 all the time, so we just do the same and
726    // hope for the best.
727    kvm_seg.unusable = 0;
728}
729
730static inline void
731setKvmDTableReg(ThreadContext *tc, struct kvm_dtable &kvm_dtable,
732                const int index)
733{
734    kvm_dtable.base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(index));
735    kvm_dtable.limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(index));
736}
737
738static void
739forceSegAccessed(struct kvm_segment &seg)
740{
741    // Intel's VMX requires that (some) usable segments are flagged as
742    // 'accessed' (i.e., the lowest bit in the segment type is set)
743    // when entering VMX. This wouldn't necessary be the case even if
744    // gem5 did set the access bits correctly, so we force it to one
745    // in that case.
746    if (!seg.unusable)
747        seg.type |= SEG_TYPE_BIT_ACCESSED;
748}
749
750void
751X86KvmCPU::updateKvmStateSRegs()
752{
753    struct kvm_sregs sregs;
754
755#define APPLY_SREG(kreg, mreg) sregs.kreg = tc->readMiscRegNoEffect(mreg)
756#define APPLY_SEGMENT(kreg, idx) setKvmSegmentReg(tc, sregs.kreg, idx)
757#define APPLY_DTABLE(kreg, idx) setKvmDTableReg(tc, sregs.kreg, idx)
758
759    FOREACH_SREG();
760    FOREACH_SEGMENT();
761    FOREACH_DTABLE();
762
763#undef APPLY_SREG
764#undef APPLY_SEGMENT
765#undef APPLY_DTABLE
766
767    // Clear the interrupt bitmap
768    memset(&sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
769
770    // VMX requires CS, SS, DS, ES, FS, and GS to have the accessed
771    // bit in the type field set.
772    forceSegAccessed(sregs.cs);
773    forceSegAccessed(sregs.ss);
774    forceSegAccessed(sregs.ds);
775    forceSegAccessed(sregs.es);
776    forceSegAccessed(sregs.fs);
777    forceSegAccessed(sregs.gs);
778
779    // There are currently some cases where the active task isn't
780    // marked as busy. This is illegal in VMX, so we force it to busy.
781    if (sregs.tr.type == SEG_SYS_TYPE_TSS_AVAILABLE) {
782        hack("tr.type (%i) is not busy. Forcing the busy bit.\n",
783             sregs.tr.type);
784        sregs.tr.type = SEG_SYS_TYPE_TSS_BUSY;
785    }
786
787    // VMX requires the DPL of SS and CS to be the same for
788    // non-conforming code segments. It seems like m5 doesn't set the
789    // DPL of SS correctly when taking interrupts, so we need to fix
790    // that here.
791    if ((sregs.cs.type == SEG_CS_TYPE_ACCESSED ||
792         sregs.cs.type == SEG_CS_TYPE_READ_ACCESSED) &&
793        sregs.cs.dpl != sregs.ss.dpl) {
794
795        hack("CS.DPL (%i) != SS.DPL (%i): Forcing SS.DPL to %i\n",
796             sregs.cs.dpl, sregs.ss.dpl, sregs.cs.dpl);
797        sregs.ss.dpl = sregs.cs.dpl;
798    }
799
800    // Do checks after fixing up the state to avoid getting excessive
801    // amounts of warnings.
802    RFLAGS rflags_nocc(tc->readMiscReg(MISCREG_RFLAGS));
803    if (!rflags_nocc.vm) {
804        // Do segment verification if the CPU isn't entering virtual
805        // 8086 mode.  We currently assume that unrestricted guest
806        // mode is available.
807
808#define APPLY_SEGMENT(kreg, idx) \
809        checkSeg(# kreg, idx + MISCREG_SEG_SEL_BASE, sregs.kreg, sregs)
810
811        FOREACH_SEGMENT();
812#undef APPLY_SEGMENT
813    }
814
815    setSpecialRegisters(sregs);
816}
817
818template <typename T>
819static void
820updateKvmStateFPUCommon(ThreadContext *tc, T &fpu)
821{
822    static_assert(sizeof(X86ISA::FloatRegBits) == 8,
823                  "Unexpected size of X86ISA::FloatRegBits");
824
825    fpu.mxcsr = tc->readMiscRegNoEffect(MISCREG_MXCSR);
826    fpu.fcw = tc->readMiscRegNoEffect(MISCREG_FCW);
827    // No need to rebuild from MISCREG_FSW and MISCREG_TOP if we read
828    // with effects.
829    fpu.fsw = tc->readMiscReg(MISCREG_FSW);
830
831    uint64_t ftw(tc->readMiscRegNoEffect(MISCREG_FTW));
832    fpu.ftwx = X86ISA::convX87TagsToXTags(ftw);
833
834    fpu.last_opcode = tc->readMiscRegNoEffect(MISCREG_FOP);
835
836    const unsigned top((fpu.fsw >> 11) & 0x7);
837    for (int i = 0; i < 8; ++i) {
838        const unsigned reg_idx((i + top) & 0x7);
839        const double value(tc->readFloatReg(FLOATREG_FPR(reg_idx)));
840        DPRINTF(KvmContext, "Setting KVM FP reg %i (st[%i]) := %f\n",
841                reg_idx, i, value);
842        X86ISA::storeFloat80(fpu.fpr[i], value);
843    }
844
845    // TODO: We should update the MMX state
846
847    for (int i = 0; i < 16; ++i) {
848        *(X86ISA::FloatRegBits *)&fpu.xmm[i][0] =
849            tc->readFloatRegBits(FLOATREG_XMM_LOW(i));
850        *(X86ISA::FloatRegBits *)&fpu.xmm[i][8] =
851            tc->readFloatRegBits(FLOATREG_XMM_HIGH(i));
852    }
853}
854
855void
856X86KvmCPU::updateKvmStateFPULegacy()
857{
858    struct kvm_fpu fpu;
859
860    // There is some padding in the FP registers, so we'd better zero
861    // the whole struct.
862    memset(&fpu, 0, sizeof(fpu));
863
864    updateKvmStateFPUCommon(tc, fpu);
865
866    if (tc->readMiscRegNoEffect(MISCREG_FISEG))
867        warn_once("MISCREG_FISEG is non-zero.\n");
868
869    fpu.last_ip = tc->readMiscRegNoEffect(MISCREG_FIOFF);
870
871    if (tc->readMiscRegNoEffect(MISCREG_FOSEG))
872        warn_once("MISCREG_FOSEG is non-zero.\n");
873
874    fpu.last_dp = tc->readMiscRegNoEffect(MISCREG_FOOFF);
875
876    setFPUState(fpu);
877}
878
879void
880X86KvmCPU::updateKvmStateFPUXSave()
881{
882    struct kvm_xsave kxsave;
883    FXSave &xsave(*(FXSave *)kxsave.region);
884
885    // There is some padding and reserved fields in the structure, so
886    // we'd better zero the whole thing.
887    memset(&kxsave, 0, sizeof(kxsave));
888
889    updateKvmStateFPUCommon(tc, xsave);
890
891    if (tc->readMiscRegNoEffect(MISCREG_FISEG))
892        warn_once("MISCREG_FISEG is non-zero.\n");
893
894    xsave.ctrl64.fpu_ip = tc->readMiscRegNoEffect(MISCREG_FIOFF);
895
896    if (tc->readMiscRegNoEffect(MISCREG_FOSEG))
897        warn_once("MISCREG_FOSEG is non-zero.\n");
898
899    xsave.ctrl64.fpu_dp = tc->readMiscRegNoEffect(MISCREG_FOOFF);
900
901    setXSave(kxsave);
902}
903
904void
905X86KvmCPU::updateKvmStateFPU()
906{
907    if (useXSave)
908        updateKvmStateFPUXSave();
909    else
910        updateKvmStateFPULegacy();
911}
912
913void
914X86KvmCPU::updateKvmStateMSRs()
915{
916    KvmMSRVector msrs;
917
918    const Kvm::MSRIndexVector &indices(getMsrIntersection());
919
920    for (auto it = indices.cbegin(); it != indices.cend(); ++it) {
921        struct kvm_msr_entry e;
922
923        e.index = *it;
924        e.reserved = 0;
925        e.data = tc->readMiscReg(msrMap.at(*it));
926        DPRINTF(KvmContext, "Adding MSR: idx: 0x%x, data: 0x%x\n",
927                e.index, e.data);
928
929        msrs.push_back(e);
930    }
931
932    setMSRs(msrs);
933}
934
935void
936X86KvmCPU::updateThreadContext()
937{
938    struct kvm_regs regs;
939    struct kvm_sregs sregs;
940
941    getRegisters(regs);
942    getSpecialRegisters(sregs);
943
944    DPRINTF(KvmContext, "X86KvmCPU::updateThreadContext():\n");
945    if (DTRACE(KvmContext))
946        dump();
947
948    updateThreadContextRegs(regs, sregs);
949    updateThreadContextSRegs(sregs);
950    if (useXSave) {
951        struct kvm_xsave xsave;
952        getXSave(xsave);
953
954       updateThreadContextXSave(xsave);
955    } else {
956        struct kvm_fpu fpu;
957        getFPUState(fpu);
958
959        updateThreadContextFPU(fpu);
960    }
961    updateThreadContextMSRs();
962
963    // The M5 misc reg caches some values from other
964    // registers. Writing to it with side effects causes it to be
965    // updated from its source registers.
966    tc->setMiscReg(MISCREG_M5_REG, 0);
967}
968
969void
970X86KvmCPU::updateThreadContextRegs(const struct kvm_regs &regs,
971                                   const struct kvm_sregs &sregs)
972{
973#define APPLY_IREG(kreg, mreg) tc->setIntReg(mreg, regs.kreg)
974
975    FOREACH_IREG();
976
977#undef APPLY_IREG
978
979    tc->pcState(PCState(regs.rip + sregs.cs.base));
980
981    // Flags are spread out across multiple semi-magic registers so we
982    // need some special care when updating them.
983    X86ISA::setRFlags(tc, regs.rflags);
984}
985
986
987inline void
988setContextSegment(ThreadContext *tc, const struct kvm_segment &kvm_seg,
989                  const int index)
990{
991    SegAttr attr(0);
992
993    attr.type = kvm_seg.type;
994    attr.present = kvm_seg.present;
995    attr.dpl = kvm_seg.dpl;
996    attr.defaultSize = kvm_seg.db;
997    attr.system = kvm_seg.s;
998    attr.longMode = kvm_seg.l;
999    attr.granularity = kvm_seg.g;
1000    attr.avl = kvm_seg.avl;
1001    attr.unusable = kvm_seg.unusable;
1002
1003    // We need some setMiscReg magic here to keep the effective base
1004    // addresses in sync. We need an up-to-date version of EFER, so
1005    // make sure this is called after the sregs have been synced.
1006    tc->setMiscReg(MISCREG_SEG_BASE(index), kvm_seg.base);
1007    tc->setMiscReg(MISCREG_SEG_LIMIT(index), kvm_seg.limit);
1008    tc->setMiscReg(MISCREG_SEG_SEL(index), kvm_seg.selector);
1009    tc->setMiscReg(MISCREG_SEG_ATTR(index), attr);
1010}
1011
1012inline void
1013setContextSegment(ThreadContext *tc, const struct kvm_dtable &kvm_dtable,
1014                  const int index)
1015{
1016    // We need some setMiscReg magic here to keep the effective base
1017    // addresses in sync. We need an up-to-date version of EFER, so
1018    // make sure this is called after the sregs have been synced.
1019    tc->setMiscReg(MISCREG_SEG_BASE(index), kvm_dtable.base);
1020    tc->setMiscReg(MISCREG_SEG_LIMIT(index), kvm_dtable.limit);
1021}
1022
1023void
1024X86KvmCPU::updateThreadContextSRegs(const struct kvm_sregs &sregs)
1025{
1026    assert(getKvmRunState()->apic_base == sregs.apic_base);
1027    assert(getKvmRunState()->cr8 == sregs.cr8);
1028
1029#define APPLY_SREG(kreg, mreg) tc->setMiscRegNoEffect(mreg, sregs.kreg)
1030#define APPLY_SEGMENT(kreg, idx) setContextSegment(tc, sregs.kreg, idx)
1031#define APPLY_DTABLE(kreg, idx) setContextSegment(tc, sregs.kreg, idx)
1032    FOREACH_SREG();
1033    FOREACH_SEGMENT();
1034    FOREACH_DTABLE();
1035#undef APPLY_SREG
1036#undef APPLY_SEGMENT
1037#undef APPLY_DTABLE
1038}
1039
1040template<typename T>
1041static void
1042updateThreadContextFPUCommon(ThreadContext *tc, const T &fpu)
1043{
1044    const unsigned top((fpu.fsw >> 11) & 0x7);
1045
1046    static_assert(sizeof(X86ISA::FloatRegBits) == 8,
1047                  "Unexpected size of X86ISA::FloatRegBits");
1048
1049    for (int i = 0; i < 8; ++i) {
1050        const unsigned reg_idx((i + top) & 0x7);
1051        const double value(X86ISA::loadFloat80(fpu.fpr[i]));
1052        DPRINTF(KvmContext, "Setting gem5 FP reg %i (st[%i]) := %f\n",
1053                reg_idx, i, value);
1054        tc->setFloatReg(FLOATREG_FPR(reg_idx), value);
1055    }
1056
1057    // TODO: We should update the MMX state
1058
1059    tc->setMiscRegNoEffect(MISCREG_X87_TOP, top);
1060    tc->setMiscRegNoEffect(MISCREG_MXCSR, fpu.mxcsr);
1061    tc->setMiscRegNoEffect(MISCREG_FCW, fpu.fcw);
1062    tc->setMiscRegNoEffect(MISCREG_FSW, fpu.fsw);
1063
1064    uint64_t ftw(convX87XTagsToTags(fpu.ftwx));
1065    // TODO: Are these registers really the same?
1066    tc->setMiscRegNoEffect(MISCREG_FTW, ftw);
1067    tc->setMiscRegNoEffect(MISCREG_FTAG, ftw);
1068
1069    tc->setMiscRegNoEffect(MISCREG_FOP, fpu.last_opcode);
1070
1071    for (int i = 0; i < 16; ++i) {
1072        tc->setFloatRegBits(FLOATREG_XMM_LOW(i),
1073                            *(X86ISA::FloatRegBits *)&fpu.xmm[i][0]);
1074        tc->setFloatRegBits(FLOATREG_XMM_HIGH(i),
1075                            *(X86ISA::FloatRegBits *)&fpu.xmm[i][8]);
1076    }
1077}
1078
1079void
1080X86KvmCPU::updateThreadContextFPU(const struct kvm_fpu &fpu)
1081{
1082    updateThreadContextFPUCommon(tc, fpu);
1083
1084    tc->setMiscRegNoEffect(MISCREG_FISEG, 0);
1085    tc->setMiscRegNoEffect(MISCREG_FIOFF, fpu.last_ip);
1086    tc->setMiscRegNoEffect(MISCREG_FOSEG, 0);
1087    tc->setMiscRegNoEffect(MISCREG_FOOFF, fpu.last_dp);
1088}
1089
1090void
1091X86KvmCPU::updateThreadContextXSave(const struct kvm_xsave &kxsave)
1092{
1093    const FXSave &xsave(*(const FXSave *)kxsave.region);
1094
1095    updateThreadContextFPUCommon(tc, xsave);
1096
1097    tc->setMiscRegNoEffect(MISCREG_FISEG, 0);
1098    tc->setMiscRegNoEffect(MISCREG_FIOFF, xsave.ctrl64.fpu_ip);
1099    tc->setMiscRegNoEffect(MISCREG_FOSEG, 0);
1100    tc->setMiscRegNoEffect(MISCREG_FOOFF, xsave.ctrl64.fpu_dp);
1101}
1102
1103void
1104X86KvmCPU::updateThreadContextMSRs()
1105{
1106    const Kvm::MSRIndexVector &msrs(getMsrIntersection());
1107
1108    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1109        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(msrs.size()));
1110    struct kvm_msr_entry *entry;
1111
1112    // Create a list of MSRs to read
1113    kvm_msrs->nmsrs = msrs.size();
1114    entry = &kvm_msrs->entries[0];
1115    for (auto it = msrs.cbegin(); it != msrs.cend(); ++it, ++entry) {
1116        entry->index = *it;
1117        entry->reserved = 0;
1118        entry->data = 0;
1119    }
1120
1121    getMSRs(*kvm_msrs.get());
1122
1123    // Update M5's state
1124    entry = &kvm_msrs->entries[0];
1125    for (int i = 0; i < kvm_msrs->nmsrs; ++i, ++entry) {
1126        DPRINTF(KvmContext, "Setting M5 MSR: idx: 0x%x, data: 0x%x\n",
1127                entry->index, entry->data);
1128
1129        tc->setMiscReg(X86ISA::msrMap.at(entry->index), entry->data);
1130    }
1131}
1132
1133void
1134X86KvmCPU::deliverInterrupts()
1135{
1136    Fault fault;
1137
1138    syncThreadContext();
1139
1140    {
1141        // Migrate to the interrupt controller's thread to get the
1142        // interrupt. Even though the individual methods are safe to
1143        // call across threads, we might still lose interrupts unless
1144        // they are getInterrupt() and updateIntrInfo() are called
1145        // atomically.
1146        EventQueue::ScopedMigration migrate(interrupts[0]->eventQueue());
1147        fault = interrupts[0]->getInterrupt(tc);
1148        interrupts[0]->updateIntrInfo(tc);
1149    }
1150
1151    X86Interrupt *x86int(dynamic_cast<X86Interrupt *>(fault.get()));
1152    if (dynamic_cast<NonMaskableInterrupt *>(fault.get())) {
1153        DPRINTF(KvmInt, "Delivering NMI\n");
1154        kvmNonMaskableInterrupt();
1155    } else if (dynamic_cast<InitInterrupt *>(fault.get())) {
1156        DPRINTF(KvmInt, "INIT interrupt\n");
1157        fault.get()->invoke(tc);
1158        // Delay the kvm state update since we won't enter KVM on this
1159        // tick.
1160        threadContextDirty = true;
1161        // HACK: gem5 doesn't actually have any BIOS code, which means
1162        // that we need to halt the thread and wait for a startup
1163        // interrupt before restarting the thread. The simulated CPUs
1164        // use the same kind of hack using a microcode routine.
1165        thread->suspend();
1166    } else if (dynamic_cast<StartupInterrupt *>(fault.get())) {
1167        DPRINTF(KvmInt, "STARTUP interrupt\n");
1168        fault.get()->invoke(tc);
1169        // The kvm state is assumed to have been updated when entering
1170        // kvmRun(), so we need to update manually it here.
1171        updateKvmState();
1172    } else if (x86int) {
1173        struct kvm_interrupt kvm_int;
1174        kvm_int.irq = x86int->getVector();
1175
1176        DPRINTF(KvmInt, "Delivering interrupt: %s (%u)\n",
1177                fault->name(), kvm_int.irq);
1178
1179        kvmInterrupt(kvm_int);
1180    } else {
1181        panic("KVM: Unknown interrupt type\n");
1182    }
1183
1184}
1185
1186Tick
1187X86KvmCPU::kvmRun(Tick ticks)
1188{
1189    struct kvm_run &kvm_run(*getKvmRunState());
1190
1191    if (interrupts[0]->checkInterruptsRaw()) {
1192        if (interrupts[0]->hasPendingUnmaskable()) {
1193            DPRINTF(KvmInt,
1194                    "Delivering unmaskable interrupt.\n");
1195            syncThreadContext();
1196            deliverInterrupts();
1197        } else if (kvm_run.ready_for_interrupt_injection) {
1198            // KVM claims that it is ready for an interrupt. It might
1199            // be lying if we just updated rflags and disabled
1200            // interrupts (e.g., by doing a CPU handover). Let's sync
1201            // the thread context and check if there are /really/
1202            // interrupts that should be delivered now.
1203            syncThreadContext();
1204            if (interrupts[0]->checkInterrupts(tc)) {
1205                DPRINTF(KvmInt,
1206                        "M5 has pending interrupts, delivering interrupt.\n");
1207
1208                deliverInterrupts();
1209            } else {
1210                DPRINTF(KvmInt,
1211                        "Interrupt delivery delayed due to KVM confusion.\n");
1212                kvm_run.request_interrupt_window = 1;
1213            }
1214        } else if (!kvm_run.request_interrupt_window) {
1215            DPRINTF(KvmInt,
1216                    "M5 has pending interrupts, requesting interrupt "
1217                    "window.\n");
1218            kvm_run.request_interrupt_window = 1;
1219        }
1220    } else {
1221        kvm_run.request_interrupt_window = 0;
1222    }
1223
1224    // The CPU might have been suspended as a result of the INIT
1225    // interrupt delivery hack. In that case, don't enter into KVM.
1226    if (_status == Idle)
1227        return 0;
1228    else
1229        return kvmRunWrapper(ticks);
1230}
1231
1232Tick
1233X86KvmCPU::kvmRunDrain()
1234{
1235    struct kvm_run &kvm_run(*getKvmRunState());
1236
1237    if (!archIsDrained()) {
1238        DPRINTF(Drain, "kvmRunDrain: Architecture code isn't drained\n");
1239
1240        // Tell KVM to find a suitable place to deliver interrupts. This
1241        // should ensure that pending interrupts have been delivered and
1242        // things are reasonably consistent (i.e., no interrupts pending
1243        // in the guest).
1244        kvm_run.request_interrupt_window = 1;
1245
1246        // Limit the run to 1 millisecond. That is hopefully enough to
1247        // reach an interrupt window. Otherwise, we'll just try again
1248        // later.
1249        return kvmRunWrapper(1 * SimClock::Float::ms);
1250    } else {
1251        DPRINTF(Drain, "kvmRunDrain: Delivering pending IO\n");
1252
1253        return kvmRunWrapper(0);
1254    }
1255}
1256
1257Tick
1258X86KvmCPU::kvmRunWrapper(Tick ticks)
1259{
1260    struct kvm_run &kvm_run(*getKvmRunState());
1261
1262    // Synchronize the APIC base and CR8 here since they are present
1263    // in the kvm_run struct, which makes the synchronization really
1264    // cheap.
1265    kvm_run.apic_base = tc->readMiscReg(MISCREG_APIC_BASE);
1266    kvm_run.cr8 = tc->readMiscReg(MISCREG_CR8);
1267
1268    const Tick run_ticks(BaseKvmCPU::kvmRun(ticks));
1269
1270    tc->setMiscReg(MISCREG_APIC_BASE, kvm_run.apic_base);
1271    kvm_run.cr8 = tc->readMiscReg(MISCREG_CR8);
1272
1273    return run_ticks;
1274}
1275
1276uint64_t
1277X86KvmCPU::getHostCycles() const
1278{
1279    return getMSR(MSR_TSC);
1280}
1281
1282void
1283X86KvmCPU::handleIOMiscReg32(int miscreg)
1284{
1285    struct kvm_run &kvm_run(*getKvmRunState());
1286    const uint16_t port(kvm_run.io.port);
1287
1288    assert(kvm_run.exit_reason == KVM_EXIT_IO);
1289
1290    if (kvm_run.io.size != 4) {
1291        panic("Unexpected IO size (%u) for address 0x%x.\n",
1292              kvm_run.io.size, port);
1293    }
1294
1295    if (kvm_run.io.count != 1) {
1296        panic("Unexpected IO count (%u) for address 0x%x.\n",
1297              kvm_run.io.count, port);
1298    }
1299
1300    uint32_t *data((uint32_t *)getGuestData(kvm_run.io.data_offset));
1301    if (kvm_run.io.direction == KVM_EXIT_IO_OUT)
1302        tc->setMiscReg(miscreg, *data);
1303    else
1304        *data = tc->readMiscRegNoEffect(miscreg);
1305}
1306
1307Tick
1308X86KvmCPU::handleKvmExitIO()
1309{
1310    struct kvm_run &kvm_run(*getKvmRunState());
1311    bool isWrite(kvm_run.io.direction == KVM_EXIT_IO_OUT);
1312    unsigned char *guestData(getGuestData(kvm_run.io.data_offset));
1313    Tick delay(0);
1314    uint16_t port(kvm_run.io.port);
1315    Addr pAddr;
1316    const int count(kvm_run.io.count);
1317
1318    assert(kvm_run.io.direction == KVM_EXIT_IO_IN ||
1319           kvm_run.io.direction == KVM_EXIT_IO_OUT);
1320
1321    DPRINTF(KvmIO, "KVM-x86: Handling IO instruction (%s) (port: 0x%x)\n",
1322            (isWrite ? "out" : "in"), kvm_run.io.port);
1323
1324    /* Vanilla gem5 handles PCI discovery in the TLB(!). Since we
1325     * don't use the TLB component, we need to intercept and handle
1326     * the PCI configuration space IO ports here.
1327     *
1328     * The IO port PCI discovery mechanism uses one address register
1329     * and one data register. We map the address register to a misc
1330     * reg and use that to re-route data register accesses to the
1331     * right location in the PCI configuration space.
1332     */
1333    if (port == IO_PCI_CONF_ADDR) {
1334        handleIOMiscReg32(MISCREG_PCI_CONFIG_ADDRESS);
1335        return 0;
1336    } else if ((port & ~0x3) == IO_PCI_CONF_DATA_BASE) {
1337        Addr pciConfigAddr(tc->readMiscRegNoEffect(MISCREG_PCI_CONFIG_ADDRESS));
1338        if (pciConfigAddr & 0x80000000) {
1339            pAddr = X86ISA::x86PciConfigAddress((pciConfigAddr & 0x7ffffffc) |
1340                                                (port & 0x3));
1341        } else {
1342            pAddr = X86ISA::x86IOAddress(port);
1343        }
1344    } else {
1345        pAddr = X86ISA::x86IOAddress(port);
1346    }
1347
1348    const MemCmd cmd(isWrite ? MemCmd::WriteReq : MemCmd::ReadReq);
1349    // Temporarily lock and migrate to the event queue of the
1350    // VM. This queue is assumed to "own" all devices we need to
1351    // access if running in multi-core mode.
1352    EventQueue::ScopedMigration migrate(vm.eventQueue());
1353    for (int i = 0; i < count; ++i) {
1354        RequestPtr io_req = new Request(pAddr, kvm_run.io.size,
1355                                        Request::UNCACHEABLE, dataMasterId());
1356        io_req->setContext(tc->contextId());
1357
1358        PacketPtr pkt = new Packet(io_req, cmd);
1359
1360        pkt->dataStatic(guestData);
1361        delay += dataPort.submitIO(pkt);
1362
1363        guestData += kvm_run.io.size;
1364    }
1365
1366    return delay;
1367}
1368
1369Tick
1370X86KvmCPU::handleKvmExitIRQWindowOpen()
1371{
1372    // We don't need to do anything here since this is caught the next
1373    // time we execute kvmRun(). We still overload the exit event to
1374    // silence the warning about an unhandled exit event.
1375    return 0;
1376}
1377
1378bool
1379X86KvmCPU::archIsDrained() const
1380{
1381    struct kvm_vcpu_events events;
1382
1383    getVCpuEvents(events);
1384
1385    // We could probably handle this in a by re-inserting interrupts
1386    // that are pending into gem5 on a drain. However, that would
1387    // probably be tricky to do reliably, so we'll just prevent a
1388    // drain if there is anything pending in the
1389    // guest. X86KvmCPU::kvmRunDrain() minimizes the amount of code
1390    // executed in the guest by requesting an interrupt window if
1391    // there are pending interrupts.
1392    const bool pending_events(events.exception.injected ||
1393                              events.interrupt.injected ||
1394                              events.nmi.injected || events.nmi.pending);
1395
1396    if (pending_events) {
1397        DPRINTF(Drain, "archIsDrained: Pending events: %s %s %s %s\n",
1398                events.exception.injected ? "exception" : "",
1399                events.interrupt.injected ? "interrupt" : "",
1400                events.nmi.injected ? "nmi[i]" : "",
1401                events.nmi.pending ? "nmi[p]" : "");
1402    }
1403
1404    return !pending_events;
1405}
1406
1407static struct kvm_cpuid_entry2
1408makeKvmCpuid(uint32_t function, uint32_t index,
1409             CpuidResult &result)
1410{
1411    struct kvm_cpuid_entry2 e;
1412    e.function = function;
1413    e.index = index;
1414    e.flags = 0;
1415    e.eax = (uint32_t)result.rax;
1416    e.ebx = (uint32_t)result.rbx;
1417    e.ecx = (uint32_t)result.rcx;
1418    e.edx = (uint32_t)result.rdx;
1419
1420    return e;
1421}
1422
1423void
1424X86KvmCPU::updateCPUID()
1425{
1426    Kvm::CPUIDVector m5_supported;
1427
1428    /* TODO: We currently don't support any of the functions that
1429     * iterate through data structures in the CPU using an index. It's
1430     * currently not a problem since M5 doesn't expose any of them at
1431     * the moment.
1432     */
1433
1434    /* Basic features */
1435    CpuidResult func0;
1436    X86ISA::doCpuid(tc, 0x0, 0, func0);
1437    for (uint32_t function = 0; function <= func0.rax; ++function) {
1438        CpuidResult cpuid;
1439        uint32_t idx(0);
1440
1441        X86ISA::doCpuid(tc, function, idx, cpuid);
1442        m5_supported.push_back(makeKvmCpuid(function, idx, cpuid));
1443    }
1444
1445    /* Extended features */
1446    CpuidResult efunc0;
1447    X86ISA::doCpuid(tc, 0x80000000, 0, efunc0);
1448    for (uint32_t function = 0x80000000; function <= efunc0.rax; ++function) {
1449        CpuidResult cpuid;
1450        uint32_t idx(0);
1451
1452        X86ISA::doCpuid(tc, function, idx, cpuid);
1453        m5_supported.push_back(makeKvmCpuid(function, idx, cpuid));
1454    }
1455
1456    setCPUID(m5_supported);
1457}
1458
1459void
1460X86KvmCPU::setCPUID(const struct kvm_cpuid2 &cpuid)
1461{
1462    if (ioctl(KVM_SET_CPUID2, (void *)&cpuid) == -1)
1463        panic("KVM: Failed to set guest CPUID2 (errno: %i)\n",
1464              errno);
1465}
1466
1467void
1468X86KvmCPU::setCPUID(const Kvm::CPUIDVector &cpuid)
1469{
1470    std::unique_ptr<struct kvm_cpuid2> kvm_cpuid(
1471        newVarStruct<struct kvm_cpuid2, struct kvm_cpuid_entry2>(cpuid.size()));
1472
1473    kvm_cpuid->nent = cpuid.size();
1474    std::copy(cpuid.begin(), cpuid.end(), kvm_cpuid->entries);
1475
1476    setCPUID(*kvm_cpuid);
1477}
1478
1479void
1480X86KvmCPU::setMSRs(const struct kvm_msrs &msrs)
1481{
1482    if (ioctl(KVM_SET_MSRS, (void *)&msrs) == -1)
1483        panic("KVM: Failed to set guest MSRs (errno: %i)\n",
1484              errno);
1485}
1486
1487void
1488X86KvmCPU::setMSRs(const KvmMSRVector &msrs)
1489{
1490    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1491        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(msrs.size()));
1492
1493    kvm_msrs->nmsrs = msrs.size();
1494    std::copy(msrs.begin(), msrs.end(), kvm_msrs->entries);
1495
1496    setMSRs(*kvm_msrs);
1497}
1498
1499void
1500X86KvmCPU::getMSRs(struct kvm_msrs &msrs) const
1501{
1502    if (ioctl(KVM_GET_MSRS, (void *)&msrs) == -1)
1503        panic("KVM: Failed to get guest MSRs (errno: %i)\n",
1504              errno);
1505}
1506
1507
1508void
1509X86KvmCPU::setMSR(uint32_t index, uint64_t value)
1510{
1511    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1512        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(1));
1513    struct kvm_msr_entry &entry(kvm_msrs->entries[0]);
1514
1515    kvm_msrs->nmsrs = 1;
1516    entry.index = index;
1517    entry.reserved = 0;
1518    entry.data = value;
1519
1520    setMSRs(*kvm_msrs.get());
1521}
1522
1523uint64_t
1524X86KvmCPU::getMSR(uint32_t index) const
1525{
1526    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1527        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(1));
1528    struct kvm_msr_entry &entry(kvm_msrs->entries[0]);
1529
1530    kvm_msrs->nmsrs = 1;
1531    entry.index = index;
1532    entry.reserved = 0;
1533    entry.data = 0;
1534
1535    getMSRs(*kvm_msrs.get());
1536    return entry.data;
1537}
1538
1539const Kvm::MSRIndexVector &
1540X86KvmCPU::getMsrIntersection() const
1541{
1542    if (cachedMsrIntersection.empty()) {
1543        const Kvm::MSRIndexVector &kvm_msrs(vm.kvm->getSupportedMSRs());
1544
1545        DPRINTF(Kvm, "kvm-x86: Updating MSR intersection\n");
1546        for (auto it = kvm_msrs.cbegin(); it != kvm_msrs.cend(); ++it) {
1547            if (X86ISA::msrMap.find(*it) != X86ISA::msrMap.end()) {
1548                cachedMsrIntersection.push_back(*it);
1549                DPRINTF(Kvm, "kvm-x86: Adding MSR 0x%x\n", *it);
1550            } else {
1551                warn("kvm-x86: MSR (0x%x) unsupported by gem5. Skipping.\n",
1552                     *it);
1553            }
1554        }
1555    }
1556
1557    return cachedMsrIntersection;
1558}
1559
1560void
1561X86KvmCPU::getDebugRegisters(struct kvm_debugregs &regs) const
1562{
1563#ifdef KVM_GET_DEBUGREGS
1564    if (ioctl(KVM_GET_DEBUGREGS, &regs) == -1)
1565        panic("KVM: Failed to get guest debug registers\n");
1566#else
1567    panic("KVM: Unsupported getDebugRegisters call.\n");
1568#endif
1569}
1570
1571void
1572X86KvmCPU::setDebugRegisters(const struct kvm_debugregs &regs)
1573{
1574#ifdef KVM_SET_DEBUGREGS
1575    if (ioctl(KVM_SET_DEBUGREGS, (void *)&regs) == -1)
1576        panic("KVM: Failed to set guest debug registers\n");
1577#else
1578    panic("KVM: Unsupported setDebugRegisters call.\n");
1579#endif
1580}
1581
1582void
1583X86KvmCPU::getXCRs(struct kvm_xcrs &regs) const
1584{
1585    if (ioctl(KVM_GET_XCRS, &regs) == -1)
1586        panic("KVM: Failed to get guest debug registers\n");
1587}
1588
1589void
1590X86KvmCPU::setXCRs(const struct kvm_xcrs &regs)
1591{
1592    if (ioctl(KVM_SET_XCRS, (void *)&regs) == -1)
1593        panic("KVM: Failed to set guest debug registers\n");
1594}
1595
1596void
1597X86KvmCPU::getXSave(struct kvm_xsave &xsave) const
1598{
1599    if (ioctl(KVM_GET_XSAVE, &xsave) == -1)
1600        panic("KVM: Failed to get guest debug registers\n");
1601}
1602
1603void
1604X86KvmCPU::setXSave(const struct kvm_xsave &xsave)
1605{
1606    if (ioctl(KVM_SET_XSAVE, (void *)&xsave) == -1)
1607        panic("KVM: Failed to set guest debug registers\n");
1608}
1609
1610
1611void
1612X86KvmCPU::getVCpuEvents(struct kvm_vcpu_events &events) const
1613{
1614    if (ioctl(KVM_GET_VCPU_EVENTS, &events) == -1)
1615        panic("KVM: Failed to get guest debug registers\n");
1616}
1617
1618void
1619X86KvmCPU::setVCpuEvents(const struct kvm_vcpu_events &events)
1620{
1621    if (ioctl(KVM_SET_VCPU_EVENTS, (void *)&events) == -1)
1622        panic("KVM: Failed to set guest debug registers\n");
1623}
1624
1625X86KvmCPU *
1626X86KvmCPUParams::create()
1627{
1628    return new X86KvmCPU(this);
1629}
1630