x86_cpu.cc revision 11629:22f08c96bf7f
1/*
2 * Copyright (c) 2013 Andreas Sandberg
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Andreas Sandberg
29 */
30
31#include <linux/kvm.h>
32
33#include <algorithm>
34#include <cerrno>
35#include <memory>
36
37#include "arch/x86/regs/msr.hh"
38#include "arch/x86/cpuid.hh"
39#include "arch/x86/utility.hh"
40#include "arch/registers.hh"
41#include "cpu/kvm/base.hh"
42#include "cpu/kvm/x86_cpu.hh"
43#include "debug/Drain.hh"
44#include "debug/Kvm.hh"
45#include "debug/KvmContext.hh"
46#include "debug/KvmIO.hh"
47#include "debug/KvmInt.hh"
48
49using namespace X86ISA;
50
51#define MSR_TSC 0x10
52
53#define IO_PCI_CONF_ADDR 0xCF8
54#define IO_PCI_CONF_DATA_BASE 0xCFC
55
56// Task segment type of an inactive 32-bit or 64-bit task
57#define SEG_SYS_TYPE_TSS_AVAILABLE 9
58// Task segment type of an active 32-bit or 64-bit task
59#define SEG_SYS_TYPE_TSS_BUSY 11
60
61// Non-conforming accessed code segment
62#define SEG_CS_TYPE_ACCESSED 9
63// Non-conforming accessed code segment that can be read
64#define SEG_CS_TYPE_READ_ACCESSED 11
65
66// The lowest bit of the type field for normal segments (code and
67// data) is used to indicate that a segment has been accessed.
68#define SEG_TYPE_BIT_ACCESSED 1
69
70struct FXSave
71{
72    uint16_t fcw;
73    uint16_t fsw;
74    uint8_t ftwx;
75    uint8_t pad0;
76    uint16_t last_opcode;
77    union {
78        struct {
79            uint32_t fpu_ip;
80            uint16_t fpu_cs;
81            uint16_t pad1;
82            uint32_t fpu_dp;
83            uint16_t fpu_ds;
84            uint16_t pad2;
85        } ctrl32;
86
87        struct {
88            uint64_t fpu_ip;
89            uint64_t fpu_dp;
90        } ctrl64;
91    };
92    uint32_t mxcsr;
93    uint32_t mxcsr_mask;
94
95    uint8_t fpr[8][16];
96    uint8_t xmm[16][16];
97
98    uint64_t reserved[12];
99} M5_ATTR_PACKED;
100
101static_assert(sizeof(FXSave) == 512, "Unexpected size of FXSave");
102
103#define FOREACH_IREG()                          \
104    do {                                        \
105        APPLY_IREG(rax, INTREG_RAX);            \
106        APPLY_IREG(rbx, INTREG_RBX);            \
107        APPLY_IREG(rcx, INTREG_RCX);            \
108        APPLY_IREG(rdx, INTREG_RDX);            \
109        APPLY_IREG(rsi, INTREG_RSI);            \
110        APPLY_IREG(rdi, INTREG_RDI);            \
111        APPLY_IREG(rsp, INTREG_RSP);            \
112        APPLY_IREG(rbp, INTREG_RBP);            \
113        APPLY_IREG(r8, INTREG_R8);              \
114        APPLY_IREG(r9, INTREG_R9);              \
115        APPLY_IREG(r10, INTREG_R10);            \
116        APPLY_IREG(r11, INTREG_R11);            \
117        APPLY_IREG(r12, INTREG_R12);            \
118        APPLY_IREG(r13, INTREG_R13);            \
119        APPLY_IREG(r14, INTREG_R14);            \
120        APPLY_IREG(r15, INTREG_R15);            \
121    } while (0)
122
123#define FOREACH_SREG()                                  \
124    do {                                                \
125        APPLY_SREG(cr0, MISCREG_CR0);                   \
126        APPLY_SREG(cr2, MISCREG_CR2);                   \
127        APPLY_SREG(cr3, MISCREG_CR3);                   \
128        APPLY_SREG(cr4, MISCREG_CR4);                   \
129        APPLY_SREG(cr8, MISCREG_CR8);                   \
130        APPLY_SREG(efer, MISCREG_EFER);                 \
131        APPLY_SREG(apic_base, MISCREG_APIC_BASE);       \
132    } while (0)
133
134#define FOREACH_DREG()                          \
135    do {                                        \
136        APPLY_DREG(db[0], MISCREG_DR0);         \
137        APPLY_DREG(db[1], MISCREG_DR1);         \
138        APPLY_DREG(db[2], MISCREG_DR2);         \
139        APPLY_DREG(db[3], MISCREG_DR3);         \
140        APPLY_DREG(dr6, MISCREG_DR6);           \
141        APPLY_DREG(dr7, MISCREG_DR7);           \
142    } while (0)
143
144#define FOREACH_SEGMENT()                                       \
145    do {                                                        \
146        APPLY_SEGMENT(cs, MISCREG_CS - MISCREG_SEG_SEL_BASE);   \
147        APPLY_SEGMENT(ds, MISCREG_DS - MISCREG_SEG_SEL_BASE);   \
148        APPLY_SEGMENT(es, MISCREG_ES - MISCREG_SEG_SEL_BASE);   \
149        APPLY_SEGMENT(fs, MISCREG_FS - MISCREG_SEG_SEL_BASE);   \
150        APPLY_SEGMENT(gs, MISCREG_GS - MISCREG_SEG_SEL_BASE);   \
151        APPLY_SEGMENT(ss, MISCREG_SS - MISCREG_SEG_SEL_BASE);   \
152        APPLY_SEGMENT(tr, MISCREG_TR - MISCREG_SEG_SEL_BASE);   \
153        APPLY_SEGMENT(ldt, MISCREG_TSL - MISCREG_SEG_SEL_BASE); \
154    } while (0)
155
156#define FOREACH_DTABLE()                                        \
157    do {                                                        \
158        APPLY_DTABLE(gdt, MISCREG_TSG - MISCREG_SEG_SEL_BASE);  \
159        APPLY_DTABLE(idt, MISCREG_IDTR - MISCREG_SEG_SEL_BASE); \
160    } while (0)
161
162template<typename STRUCT, typename ENTRY>
163static STRUCT *newVarStruct(size_t entries)
164{
165    return (STRUCT *)operator new(sizeof(STRUCT) + entries * sizeof(ENTRY));
166}
167
168static void
169dumpKvm(const struct kvm_regs &regs)
170{
171    inform("KVM register state:\n");
172
173#define APPLY_IREG(kreg, mreg)                  \
174    inform("\t" # kreg ": 0x%llx\n", regs.kreg)
175
176    FOREACH_IREG();
177
178#undef APPLY_IREG
179
180    inform("\trip: 0x%llx\n", regs.rip);
181    inform("\trflags: 0x%llx\n", regs.rflags);
182}
183
184static void
185dumpKvm(const char *reg_name, const struct kvm_segment &seg)
186{
187    inform("\t%s: @0x%llx+%x [sel: 0x%x, type: 0x%x]\n"
188           "\t\tpres.: %u, dpl: %u, db: %u, s: %u, l: %u, g: %u, avl: %u, unus.: %u\n",
189           reg_name,
190           seg.base, seg.limit, seg.selector, seg.type,
191           seg.present, seg.dpl, seg.db, seg.s, seg.l, seg.g, seg.avl, seg.unusable);
192}
193
194static void
195dumpKvm(const char *reg_name, const struct kvm_dtable &dtable)
196{
197    inform("\t%s: @0x%llx+%x\n",
198           reg_name, dtable.base, dtable.limit);
199}
200
201static void
202dumpKvm(const struct kvm_sregs &sregs)
203{
204#define APPLY_SREG(kreg, mreg)                          \
205    inform("\t" # kreg ": 0x%llx\n", sregs.kreg);
206#define APPLY_SEGMENT(kreg, idx)                \
207    dumpKvm(# kreg, sregs.kreg);
208#define APPLY_DTABLE(kreg, idx)                 \
209    dumpKvm(# kreg, sregs.kreg);
210
211    inform("Special registers:\n");
212    FOREACH_SEGMENT();
213    FOREACH_SREG();
214    FOREACH_DTABLE();
215
216    inform("Interrupt Bitmap:");
217    for (int i = 0; i < KVM_NR_INTERRUPTS; i += 64)
218        inform("  0x%.8x", sregs.interrupt_bitmap[i / 64]);
219
220#undef APPLY_SREG
221#undef APPLY_SEGMENT
222#undef APPLY_DTABLE
223}
224
225#ifdef KVM_GET_DEBUGREGS
226static void
227dumpKvm(const struct kvm_debugregs &regs)
228{
229    inform("KVM debug state:\n");
230
231#define APPLY_DREG(kreg, mreg)                  \
232    inform("\t" # kreg ": 0x%llx\n", regs.kreg)
233
234    FOREACH_DREG();
235
236#undef APPLY_DREG
237
238    inform("\tflags: 0x%llx\n", regs.flags);
239}
240#endif
241
242static void
243dumpFpuSpec(const struct FXSave &xs)
244{
245    inform("\tlast_ip: 0x%x\n", xs.ctrl64.fpu_ip);
246    inform("\tlast_dp: 0x%x\n", xs.ctrl64.fpu_dp);
247    inform("\tmxcsr_mask: 0x%x\n", xs.mxcsr_mask);
248}
249
250static void
251dumpFpuSpec(const struct kvm_fpu &fpu)
252{
253    inform("\tlast_ip: 0x%x\n", fpu.last_ip);
254    inform("\tlast_dp: 0x%x\n", fpu.last_dp);
255}
256
257template<typename T>
258static void
259dumpFpuCommon(const T &fpu)
260{
261    const unsigned top((fpu.fsw >> 11) & 0x7);
262    inform("\tfcw: 0x%x\n", fpu.fcw);
263
264    inform("\tfsw: 0x%x (top: %i, "
265           "conditions: %s%s%s%s, exceptions: %s%s%s%s%s%s %s%s%s)\n",
266           fpu.fsw, top,
267
268           (fpu.fsw & CC0Bit) ? "C0" : "",
269           (fpu.fsw & CC1Bit) ? "C1" : "",
270           (fpu.fsw & CC2Bit) ? "C2" : "",
271           (fpu.fsw & CC3Bit) ? "C3" : "",
272
273           (fpu.fsw & IEBit) ? "I" : "",
274           (fpu.fsw & DEBit) ? "D" : "",
275           (fpu.fsw & ZEBit) ? "Z" : "",
276           (fpu.fsw & OEBit) ? "O" : "",
277           (fpu.fsw & UEBit) ? "U" : "",
278           (fpu.fsw & PEBit) ? "P" : "",
279
280           (fpu.fsw & StackFaultBit) ? "SF " : "",
281           (fpu.fsw & ErrSummaryBit) ? "ES " : "",
282           (fpu.fsw & BusyBit) ? "BUSY " : ""
283        );
284    inform("\tftwx: 0x%x\n", fpu.ftwx);
285    inform("\tlast_opcode: 0x%x\n", fpu.last_opcode);
286    dumpFpuSpec(fpu);
287    inform("\tmxcsr: 0x%x\n", fpu.mxcsr);
288    inform("\tFP Stack:\n");
289    for (int i = 0; i < 8; ++i) {
290        const unsigned reg_idx((i + top) & 0x7);
291        const bool empty(!((fpu.ftwx >> reg_idx) & 0x1));
292        const double value(X86ISA::loadFloat80(fpu.fpr[i]));
293        char hex[33];
294        for (int j = 0; j < 10; ++j)
295            snprintf(&hex[j*2], 3, "%.2x", fpu.fpr[i][j]);
296        inform("\t\tST%i/%i: 0x%s (%f)%s\n", i, reg_idx,
297               hex, value, empty ? " (e)" : "");
298    }
299    inform("\tXMM registers:\n");
300    for (int i = 0; i < 16; ++i) {
301        char hex[33];
302        for (int j = 0; j < 16; ++j)
303            snprintf(&hex[j*2], 3, "%.2x", fpu.xmm[i][j]);
304        inform("\t\t%i: 0x%s\n", i, hex);
305    }
306}
307
308static void
309dumpKvm(const struct kvm_fpu &fpu)
310{
311    inform("FPU registers:\n");
312    dumpFpuCommon(fpu);
313}
314
315static void
316dumpKvm(const struct kvm_xsave &xsave)
317{
318    inform("FPU registers (XSave):\n");
319    dumpFpuCommon(*(FXSave *)xsave.region);
320}
321
322static void
323dumpKvm(const struct kvm_msrs &msrs)
324{
325    inform("MSRs:\n");
326
327    for (int i = 0; i < msrs.nmsrs; ++i) {
328        const struct kvm_msr_entry &e(msrs.entries[i]);
329
330        inform("\t0x%x: 0x%x\n", e.index, e.data);
331    }
332}
333
334static void
335dumpKvm(const struct kvm_xcrs &regs)
336{
337    inform("KVM XCR registers:\n");
338
339    inform("\tFlags: 0x%x\n", regs.flags);
340    for (int i = 0; i < regs.nr_xcrs; ++i) {
341        inform("\tXCR[0x%x]: 0x%x\n",
342               regs.xcrs[i].xcr,
343               regs.xcrs[i].value);
344    }
345}
346
347static void
348dumpKvm(const struct kvm_vcpu_events &events)
349{
350    inform("vCPU events:\n");
351
352    inform("\tException: [inj: %i, nr: %i, has_ec: %i, ec: %i]\n",
353           events.exception.injected, events.exception.nr,
354           events.exception.has_error_code, events.exception.error_code);
355
356    inform("\tInterrupt: [inj: %i, nr: %i, soft: %i]\n",
357           events.interrupt.injected, events.interrupt.nr,
358           events.interrupt.soft);
359
360    inform("\tNMI: [inj: %i, pending: %i, masked: %i]\n",
361           events.nmi.injected, events.nmi.pending,
362           events.nmi.masked);
363
364    inform("\tSIPI vector: 0x%x\n", events.sipi_vector);
365    inform("\tFlags: 0x%x\n", events.flags);
366}
367
368static bool
369isCanonicalAddress(uint64_t addr)
370{
371    // x86-64 doesn't currently use the full 64-bit virtual address
372    // space, instead it uses signed 48 bit addresses that are
373    // sign-extended to 64 bits.  Such addresses are known as
374    // "canonical".
375    uint64_t upper_half(addr & 0xffff800000000000ULL);
376    return upper_half == 0 || upper_half == 0xffff800000000000;
377}
378
379static void
380checkSeg(const char *name, const int idx, const struct kvm_segment &seg,
381         struct kvm_sregs sregs)
382{
383    // Check the register base
384    switch (idx) {
385      case MISCREG_TSL:
386      case MISCREG_TR:
387      case MISCREG_FS:
388      case MISCREG_GS:
389        if (!isCanonicalAddress(seg.base))
390            warn("Illegal %s base: 0x%x\n", name, seg.base);
391        break;
392
393      case MISCREG_SS:
394      case MISCREG_DS:
395      case MISCREG_ES:
396        if (seg.unusable)
397            break;
398      case MISCREG_CS:
399        if (seg.base & 0xffffffff00000000ULL)
400            warn("Illegal %s base: 0x%x\n", name, seg.base);
401        break;
402    }
403
404    // Check the type
405    switch (idx) {
406      case MISCREG_CS:
407        switch (seg.type) {
408          case 3:
409            if (seg.dpl != 0)
410                warn("CS type is 3 but dpl != 0.\n");
411            break;
412          case 9:
413          case 11:
414            if (seg.dpl != sregs.ss.dpl)
415                warn("CS type is %i but CS DPL != SS DPL\n", seg.type);
416            break;
417          case 13:
418          case 15:
419            if (seg.dpl > sregs.ss.dpl)
420                warn("CS type is %i but CS DPL > SS DPL\n", seg.type);
421            break;
422          default:
423            warn("Illegal CS type: %i\n", seg.type);
424            break;
425        }
426        break;
427
428      case MISCREG_SS:
429        if (seg.unusable)
430            break;
431        switch (seg.type) {
432          case 3:
433            if (sregs.cs.type == 3 && seg.dpl != 0)
434                warn("CS type is 3, but SS DPL is != 0.\n");
435            /* FALLTHROUGH */
436          case 7:
437            if (!(sregs.cr0 & 1) && seg.dpl != 0)
438                warn("SS DPL is %i, but CR0 PE is 0\n", seg.dpl);
439            break;
440          default:
441            warn("Illegal SS type: %i\n", seg.type);
442            break;
443        }
444        break;
445
446      case MISCREG_DS:
447      case MISCREG_ES:
448      case MISCREG_FS:
449      case MISCREG_GS:
450        if (seg.unusable)
451            break;
452        if (!(seg.type & 0x1) ||
453            ((seg.type & 0x8) && !(seg.type & 0x2)))
454            warn("%s has an illegal type field: %i\n", name, seg.type);
455        break;
456
457      case MISCREG_TR:
458        // TODO: We should check the CPU mode
459        if (seg.type != 3 && seg.type != 11)
460            warn("%s: Illegal segment type (%i)\n", name, seg.type);
461        break;
462
463      case MISCREG_TSL:
464        if (seg.unusable)
465            break;
466        if (seg.type != 2)
467            warn("%s: Illegal segment type (%i)\n", name, seg.type);
468        break;
469    }
470
471    switch (idx) {
472      case MISCREG_SS:
473      case MISCREG_DS:
474      case MISCREG_ES:
475      case MISCREG_FS:
476      case MISCREG_GS:
477        if (seg.unusable)
478            break;
479      case MISCREG_CS:
480        if (!seg.s)
481            warn("%s: S flag not set\n", name);
482        break;
483
484      case MISCREG_TSL:
485        if (seg.unusable)
486            break;
487      case MISCREG_TR:
488        if (seg.s)
489            warn("%s: S flag is set\n", name);
490        break;
491    }
492
493    switch (idx) {
494      case MISCREG_SS:
495      case MISCREG_DS:
496      case MISCREG_ES:
497      case MISCREG_FS:
498      case MISCREG_GS:
499      case MISCREG_TSL:
500        if (seg.unusable)
501            break;
502      case MISCREG_TR:
503      case MISCREG_CS:
504        if (!seg.present)
505            warn("%s: P flag not set\n", name);
506
507        if (((seg.limit & 0xFFF) == 0 && seg.g) ||
508            ((seg.limit & 0xFFF00000) != 0 && !seg.g)) {
509            warn("%s limit (0x%x) and g (%i) combination is illegal.\n",
510                 name, seg.limit, seg.g);
511        }
512        break;
513    }
514
515    // TODO: Check CS DB
516}
517
518X86KvmCPU::X86KvmCPU(X86KvmCPUParams *params)
519    : BaseKvmCPU(params),
520      useXSave(params->useXSave)
521{
522    Kvm &kvm(*vm.kvm);
523
524    if (!kvm.capSetTSSAddress())
525        panic("KVM: Missing capability (KVM_CAP_SET_TSS_ADDR)\n");
526    if (!kvm.capExtendedCPUID())
527        panic("KVM: Missing capability (KVM_CAP_EXT_CPUID)\n");
528    if (!kvm.capUserNMI())
529        warn("KVM: Missing capability (KVM_CAP_USER_NMI)\n");
530    if (!kvm.capVCPUEvents())
531        warn("KVM: Missing capability (KVM_CAP_VCPU_EVENTS)\n");
532
533    haveDebugRegs = kvm.capDebugRegs();
534    haveXSave = kvm.capXSave();
535    haveXCRs = kvm.capXCRs();
536
537    if (useXSave && !haveXSave) {
538        warn("KVM: XSAVE not supported by host. MXCSR synchronization might be "
539             "unreliable due to kernel bugs.\n");
540        useXSave = false;
541    } else if (!useXSave) {
542        warn("KVM: XSave FPU/SIMD synchronization disabled by user.\n");
543    }
544}
545
546X86KvmCPU::~X86KvmCPU()
547{
548}
549
550void
551X86KvmCPU::startup()
552{
553    BaseKvmCPU::startup();
554
555    updateCPUID();
556
557    // TODO: Do we need to create an identity mapped TSS area? We
558    // should call kvm.vm.setTSSAddress() here in that case. It should
559    // only be needed for old versions of the virtualization
560    // extensions. We should make sure that the identity range is
561    // reserved in the e820 memory map in that case.
562}
563
564void
565X86KvmCPU::dump() const
566{
567    dumpIntRegs();
568    if (useXSave)
569        dumpXSave();
570    else
571        dumpFpuRegs();
572    dumpSpecRegs();
573    dumpDebugRegs();
574    dumpXCRs();
575    dumpVCpuEvents();
576    dumpMSRs();
577}
578
579void
580X86KvmCPU::dumpFpuRegs() const
581{
582    struct kvm_fpu fpu;
583    getFPUState(fpu);
584    dumpKvm(fpu);
585}
586
587void
588X86KvmCPU::dumpIntRegs() const
589{
590    struct kvm_regs regs;
591    getRegisters(regs);
592    dumpKvm(regs);
593}
594
595void
596X86KvmCPU::dumpSpecRegs() const
597{
598    struct kvm_sregs sregs;
599    getSpecialRegisters(sregs);
600    dumpKvm(sregs);
601}
602
603void
604X86KvmCPU::dumpDebugRegs() const
605{
606    if (haveDebugRegs) {
607#ifdef KVM_GET_DEBUGREGS
608        struct kvm_debugregs dregs;
609        getDebugRegisters(dregs);
610        dumpKvm(dregs);
611#endif
612    } else {
613        inform("Debug registers not supported by kernel.\n");
614    }
615}
616
617void
618X86KvmCPU::dumpXCRs() const
619{
620    if (haveXCRs) {
621        struct kvm_xcrs xcrs;
622        getXCRs(xcrs);
623        dumpKvm(xcrs);
624    } else {
625        inform("XCRs not supported by kernel.\n");
626    }
627}
628
629void
630X86KvmCPU::dumpXSave() const
631{
632    if (haveXSave) {
633        struct kvm_xsave xsave;
634        getXSave(xsave);
635        dumpKvm(xsave);
636    } else {
637        inform("XSave not supported by kernel.\n");
638    }
639}
640
641void
642X86KvmCPU::dumpVCpuEvents() const
643{
644    struct kvm_vcpu_events events;
645    getVCpuEvents(events);
646    dumpKvm(events);
647}
648
649void
650X86KvmCPU::dumpMSRs() const
651{
652    const Kvm::MSRIndexVector &supported_msrs(vm.kvm->getSupportedMSRs());
653    std::unique_ptr<struct kvm_msrs> msrs(
654        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(
655            supported_msrs.size()));
656
657    msrs->nmsrs = supported_msrs.size();
658    for (int i = 0; i < supported_msrs.size(); ++i) {
659        struct kvm_msr_entry &e(msrs->entries[i]);
660        e.index = supported_msrs[i];
661        e.reserved = 0;
662        e.data = 0;
663    }
664    getMSRs(*msrs.get());
665
666    dumpKvm(*msrs.get());
667}
668
669void
670X86KvmCPU::updateKvmState()
671{
672    updateKvmStateRegs();
673    updateKvmStateSRegs();
674    updateKvmStateFPU();
675    updateKvmStateMSRs();
676
677    DPRINTF(KvmContext, "X86KvmCPU::updateKvmState():\n");
678    if (DTRACE(KvmContext))
679        dump();
680}
681
682void
683X86KvmCPU::updateKvmStateRegs()
684{
685    struct kvm_regs regs;
686
687#define APPLY_IREG(kreg, mreg) regs.kreg = tc->readIntReg(mreg)
688    FOREACH_IREG();
689#undef APPLY_IREG
690
691    regs.rip = tc->instAddr() - tc->readMiscReg(MISCREG_CS_BASE);
692
693    /* You might think that setting regs.rflags to the contents
694     * MISCREG_RFLAGS here would suffice. In that case you're
695     * mistaken. We need to reconstruct it from a bunch of ucode
696     * registers and wave a dead chicken over it (aka mask out and set
697     * reserved bits) to get it to work.
698     */
699    regs.rflags = X86ISA::getRFlags(tc);
700
701    setRegisters(regs);
702}
703
704static inline void
705setKvmSegmentReg(ThreadContext *tc, struct kvm_segment &kvm_seg,
706                 const int index)
707{
708    SegAttr attr(tc->readMiscRegNoEffect(MISCREG_SEG_ATTR(index)));
709
710    kvm_seg.base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(index));
711    kvm_seg.limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(index));
712    kvm_seg.selector = tc->readMiscRegNoEffect(MISCREG_SEG_SEL(index));
713    kvm_seg.type = attr.type;
714    kvm_seg.present = attr.present;
715    kvm_seg.dpl = attr.dpl;
716    kvm_seg.db = attr.defaultSize;
717    kvm_seg.s = attr.system;
718    kvm_seg.l = attr.longMode;
719    kvm_seg.g = attr.granularity;
720    kvm_seg.avl = attr.avl;
721
722    // A segment is normally unusable when the selector is zero. There
723    // is a attr.unusable flag in gem5, but it seems unused. qemu
724    // seems to set this to 0 all the time, so we just do the same and
725    // hope for the best.
726    kvm_seg.unusable = 0;
727}
728
729static inline void
730setKvmDTableReg(ThreadContext *tc, struct kvm_dtable &kvm_dtable,
731                const int index)
732{
733    kvm_dtable.base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(index));
734    kvm_dtable.limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(index));
735}
736
737static void
738forceSegAccessed(struct kvm_segment &seg)
739{
740    // Intel's VMX requires that (some) usable segments are flagged as
741    // 'accessed' (i.e., the lowest bit in the segment type is set)
742    // when entering VMX. This wouldn't necessary be the case even if
743    // gem5 did set the access bits correctly, so we force it to one
744    // in that case.
745    if (!seg.unusable)
746        seg.type |= SEG_TYPE_BIT_ACCESSED;
747}
748
749void
750X86KvmCPU::updateKvmStateSRegs()
751{
752    struct kvm_sregs sregs;
753
754#define APPLY_SREG(kreg, mreg) sregs.kreg = tc->readMiscRegNoEffect(mreg)
755#define APPLY_SEGMENT(kreg, idx) setKvmSegmentReg(tc, sregs.kreg, idx)
756#define APPLY_DTABLE(kreg, idx) setKvmDTableReg(tc, sregs.kreg, idx)
757
758    FOREACH_SREG();
759    FOREACH_SEGMENT();
760    FOREACH_DTABLE();
761
762#undef APPLY_SREG
763#undef APPLY_SEGMENT
764#undef APPLY_DTABLE
765
766    // Clear the interrupt bitmap
767    memset(&sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
768
769    // VMX requires CS, SS, DS, ES, FS, and GS to have the accessed
770    // bit in the type field set.
771    forceSegAccessed(sregs.cs);
772    forceSegAccessed(sregs.ss);
773    forceSegAccessed(sregs.ds);
774    forceSegAccessed(sregs.es);
775    forceSegAccessed(sregs.fs);
776    forceSegAccessed(sregs.gs);
777
778    // There are currently some cases where the active task isn't
779    // marked as busy. This is illegal in VMX, so we force it to busy.
780    if (sregs.tr.type == SEG_SYS_TYPE_TSS_AVAILABLE) {
781        hack("tr.type (%i) is not busy. Forcing the busy bit.\n",
782             sregs.tr.type);
783        sregs.tr.type = SEG_SYS_TYPE_TSS_BUSY;
784    }
785
786    // VMX requires the DPL of SS and CS to be the same for
787    // non-conforming code segments. It seems like m5 doesn't set the
788    // DPL of SS correctly when taking interrupts, so we need to fix
789    // that here.
790    if ((sregs.cs.type == SEG_CS_TYPE_ACCESSED ||
791         sregs.cs.type == SEG_CS_TYPE_READ_ACCESSED) &&
792        sregs.cs.dpl != sregs.ss.dpl) {
793
794        hack("CS.DPL (%i) != SS.DPL (%i): Forcing SS.DPL to %i\n",
795             sregs.cs.dpl, sregs.ss.dpl, sregs.cs.dpl);
796        sregs.ss.dpl = sregs.cs.dpl;
797    }
798
799    // Do checks after fixing up the state to avoid getting excessive
800    // amounts of warnings.
801    RFLAGS rflags_nocc(tc->readMiscReg(MISCREG_RFLAGS));
802    if (!rflags_nocc.vm) {
803        // Do segment verification if the CPU isn't entering virtual
804        // 8086 mode.  We currently assume that unrestricted guest
805        // mode is available.
806
807#define APPLY_SEGMENT(kreg, idx) \
808        checkSeg(# kreg, idx + MISCREG_SEG_SEL_BASE, sregs.kreg, sregs)
809
810        FOREACH_SEGMENT();
811#undef APPLY_SEGMENT
812    }
813
814    setSpecialRegisters(sregs);
815}
816
817template <typename T>
818static void
819updateKvmStateFPUCommon(ThreadContext *tc, T &fpu)
820{
821    static_assert(sizeof(X86ISA::FloatRegBits) == 8,
822                  "Unexpected size of X86ISA::FloatRegBits");
823
824    fpu.mxcsr = tc->readMiscRegNoEffect(MISCREG_MXCSR);
825    fpu.fcw = tc->readMiscRegNoEffect(MISCREG_FCW);
826    // No need to rebuild from MISCREG_FSW and MISCREG_TOP if we read
827    // with effects.
828    fpu.fsw = tc->readMiscReg(MISCREG_FSW);
829
830    uint64_t ftw(tc->readMiscRegNoEffect(MISCREG_FTW));
831    fpu.ftwx = X86ISA::convX87TagsToXTags(ftw);
832
833    fpu.last_opcode = tc->readMiscRegNoEffect(MISCREG_FOP);
834
835    const unsigned top((fpu.fsw >> 11) & 0x7);
836    for (int i = 0; i < 8; ++i) {
837        const unsigned reg_idx((i + top) & 0x7);
838        const double value(tc->readFloatReg(FLOATREG_FPR(reg_idx)));
839        DPRINTF(KvmContext, "Setting KVM FP reg %i (st[%i]) := %f\n",
840                reg_idx, i, value);
841        X86ISA::storeFloat80(fpu.fpr[i], value);
842    }
843
844    // TODO: We should update the MMX state
845
846    for (int i = 0; i < 16; ++i) {
847        *(X86ISA::FloatRegBits *)&fpu.xmm[i][0] =
848            tc->readFloatRegBits(FLOATREG_XMM_LOW(i));
849        *(X86ISA::FloatRegBits *)&fpu.xmm[i][8] =
850            tc->readFloatRegBits(FLOATREG_XMM_HIGH(i));
851    }
852}
853
854void
855X86KvmCPU::updateKvmStateFPULegacy()
856{
857    struct kvm_fpu fpu;
858
859    // There is some padding in the FP registers, so we'd better zero
860    // the whole struct.
861    memset(&fpu, 0, sizeof(fpu));
862
863    updateKvmStateFPUCommon(tc, fpu);
864
865    if (tc->readMiscRegNoEffect(MISCREG_FISEG))
866        warn_once("MISCREG_FISEG is non-zero.\n");
867
868    fpu.last_ip = tc->readMiscRegNoEffect(MISCREG_FIOFF);
869
870    if (tc->readMiscRegNoEffect(MISCREG_FOSEG))
871        warn_once("MISCREG_FOSEG is non-zero.\n");
872
873    fpu.last_dp = tc->readMiscRegNoEffect(MISCREG_FOOFF);
874
875    setFPUState(fpu);
876}
877
878void
879X86KvmCPU::updateKvmStateFPUXSave()
880{
881    struct kvm_xsave kxsave;
882    FXSave &xsave(*(FXSave *)kxsave.region);
883
884    // There is some padding and reserved fields in the structure, so
885    // we'd better zero the whole thing.
886    memset(&kxsave, 0, sizeof(kxsave));
887
888    updateKvmStateFPUCommon(tc, xsave);
889
890    if (tc->readMiscRegNoEffect(MISCREG_FISEG))
891        warn_once("MISCREG_FISEG is non-zero.\n");
892
893    xsave.ctrl64.fpu_ip = tc->readMiscRegNoEffect(MISCREG_FIOFF);
894
895    if (tc->readMiscRegNoEffect(MISCREG_FOSEG))
896        warn_once("MISCREG_FOSEG is non-zero.\n");
897
898    xsave.ctrl64.fpu_dp = tc->readMiscRegNoEffect(MISCREG_FOOFF);
899
900    setXSave(kxsave);
901}
902
903void
904X86KvmCPU::updateKvmStateFPU()
905{
906    if (useXSave)
907        updateKvmStateFPUXSave();
908    else
909        updateKvmStateFPULegacy();
910}
911
912void
913X86KvmCPU::updateKvmStateMSRs()
914{
915    KvmMSRVector msrs;
916
917    const Kvm::MSRIndexVector &indices(getMsrIntersection());
918
919    for (auto it = indices.cbegin(); it != indices.cend(); ++it) {
920        struct kvm_msr_entry e;
921
922        e.index = *it;
923        e.reserved = 0;
924        e.data = tc->readMiscReg(msrMap.at(*it));
925        DPRINTF(KvmContext, "Adding MSR: idx: 0x%x, data: 0x%x\n",
926                e.index, e.data);
927
928        msrs.push_back(e);
929    }
930
931    setMSRs(msrs);
932}
933
934void
935X86KvmCPU::updateThreadContext()
936{
937    struct kvm_regs regs;
938    struct kvm_sregs sregs;
939
940    getRegisters(regs);
941    getSpecialRegisters(sregs);
942
943    DPRINTF(KvmContext, "X86KvmCPU::updateThreadContext():\n");
944    if (DTRACE(KvmContext))
945        dump();
946
947    updateThreadContextRegs(regs, sregs);
948    updateThreadContextSRegs(sregs);
949    if (useXSave) {
950        struct kvm_xsave xsave;
951        getXSave(xsave);
952
953       updateThreadContextXSave(xsave);
954    } else {
955        struct kvm_fpu fpu;
956        getFPUState(fpu);
957
958        updateThreadContextFPU(fpu);
959    }
960    updateThreadContextMSRs();
961
962    // The M5 misc reg caches some values from other
963    // registers. Writing to it with side effects causes it to be
964    // updated from its source registers.
965    tc->setMiscReg(MISCREG_M5_REG, 0);
966}
967
968void
969X86KvmCPU::updateThreadContextRegs(const struct kvm_regs &regs,
970                                   const struct kvm_sregs &sregs)
971{
972#define APPLY_IREG(kreg, mreg) tc->setIntReg(mreg, regs.kreg)
973
974    FOREACH_IREG();
975
976#undef APPLY_IREG
977
978    tc->pcState(PCState(regs.rip + sregs.cs.base));
979
980    // Flags are spread out across multiple semi-magic registers so we
981    // need some special care when updating them.
982    X86ISA::setRFlags(tc, regs.rflags);
983}
984
985
986inline void
987setContextSegment(ThreadContext *tc, const struct kvm_segment &kvm_seg,
988                  const int index)
989{
990    SegAttr attr(0);
991
992    attr.type = kvm_seg.type;
993    attr.present = kvm_seg.present;
994    attr.dpl = kvm_seg.dpl;
995    attr.defaultSize = kvm_seg.db;
996    attr.system = kvm_seg.s;
997    attr.longMode = kvm_seg.l;
998    attr.granularity = kvm_seg.g;
999    attr.avl = kvm_seg.avl;
1000    attr.unusable = kvm_seg.unusable;
1001
1002    // We need some setMiscReg magic here to keep the effective base
1003    // addresses in sync. We need an up-to-date version of EFER, so
1004    // make sure this is called after the sregs have been synced.
1005    tc->setMiscReg(MISCREG_SEG_BASE(index), kvm_seg.base);
1006    tc->setMiscReg(MISCREG_SEG_LIMIT(index), kvm_seg.limit);
1007    tc->setMiscReg(MISCREG_SEG_SEL(index), kvm_seg.selector);
1008    tc->setMiscReg(MISCREG_SEG_ATTR(index), attr);
1009}
1010
1011inline void
1012setContextSegment(ThreadContext *tc, const struct kvm_dtable &kvm_dtable,
1013                  const int index)
1014{
1015    // We need some setMiscReg magic here to keep the effective base
1016    // addresses in sync. We need an up-to-date version of EFER, so
1017    // make sure this is called after the sregs have been synced.
1018    tc->setMiscReg(MISCREG_SEG_BASE(index), kvm_dtable.base);
1019    tc->setMiscReg(MISCREG_SEG_LIMIT(index), kvm_dtable.limit);
1020}
1021
1022void
1023X86KvmCPU::updateThreadContextSRegs(const struct kvm_sregs &sregs)
1024{
1025    assert(getKvmRunState()->apic_base == sregs.apic_base);
1026    assert(getKvmRunState()->cr8 == sregs.cr8);
1027
1028#define APPLY_SREG(kreg, mreg) tc->setMiscRegNoEffect(mreg, sregs.kreg)
1029#define APPLY_SEGMENT(kreg, idx) setContextSegment(tc, sregs.kreg, idx)
1030#define APPLY_DTABLE(kreg, idx) setContextSegment(tc, sregs.kreg, idx)
1031    FOREACH_SREG();
1032    FOREACH_SEGMENT();
1033    FOREACH_DTABLE();
1034#undef APPLY_SREG
1035#undef APPLY_SEGMENT
1036#undef APPLY_DTABLE
1037}
1038
1039template<typename T>
1040static void
1041updateThreadContextFPUCommon(ThreadContext *tc, const T &fpu)
1042{
1043    const unsigned top((fpu.fsw >> 11) & 0x7);
1044
1045    static_assert(sizeof(X86ISA::FloatRegBits) == 8,
1046                  "Unexpected size of X86ISA::FloatRegBits");
1047
1048    for (int i = 0; i < 8; ++i) {
1049        const unsigned reg_idx((i + top) & 0x7);
1050        const double value(X86ISA::loadFloat80(fpu.fpr[i]));
1051        DPRINTF(KvmContext, "Setting gem5 FP reg %i (st[%i]) := %f\n",
1052                reg_idx, i, value);
1053        tc->setFloatReg(FLOATREG_FPR(reg_idx), value);
1054    }
1055
1056    // TODO: We should update the MMX state
1057
1058    tc->setMiscRegNoEffect(MISCREG_X87_TOP, top);
1059    tc->setMiscRegNoEffect(MISCREG_MXCSR, fpu.mxcsr);
1060    tc->setMiscRegNoEffect(MISCREG_FCW, fpu.fcw);
1061    tc->setMiscRegNoEffect(MISCREG_FSW, fpu.fsw);
1062
1063    uint64_t ftw(convX87XTagsToTags(fpu.ftwx));
1064    // TODO: Are these registers really the same?
1065    tc->setMiscRegNoEffect(MISCREG_FTW, ftw);
1066    tc->setMiscRegNoEffect(MISCREG_FTAG, ftw);
1067
1068    tc->setMiscRegNoEffect(MISCREG_FOP, fpu.last_opcode);
1069
1070    for (int i = 0; i < 16; ++i) {
1071        tc->setFloatRegBits(FLOATREG_XMM_LOW(i),
1072                            *(X86ISA::FloatRegBits *)&fpu.xmm[i][0]);
1073        tc->setFloatRegBits(FLOATREG_XMM_HIGH(i),
1074                            *(X86ISA::FloatRegBits *)&fpu.xmm[i][8]);
1075    }
1076}
1077
1078void
1079X86KvmCPU::updateThreadContextFPU(const struct kvm_fpu &fpu)
1080{
1081    updateThreadContextFPUCommon(tc, fpu);
1082
1083    tc->setMiscRegNoEffect(MISCREG_FISEG, 0);
1084    tc->setMiscRegNoEffect(MISCREG_FIOFF, fpu.last_ip);
1085    tc->setMiscRegNoEffect(MISCREG_FOSEG, 0);
1086    tc->setMiscRegNoEffect(MISCREG_FOOFF, fpu.last_dp);
1087}
1088
1089void
1090X86KvmCPU::updateThreadContextXSave(const struct kvm_xsave &kxsave)
1091{
1092    const FXSave &xsave(*(const FXSave *)kxsave.region);
1093
1094    updateThreadContextFPUCommon(tc, xsave);
1095
1096    tc->setMiscRegNoEffect(MISCREG_FISEG, 0);
1097    tc->setMiscRegNoEffect(MISCREG_FIOFF, xsave.ctrl64.fpu_ip);
1098    tc->setMiscRegNoEffect(MISCREG_FOSEG, 0);
1099    tc->setMiscRegNoEffect(MISCREG_FOOFF, xsave.ctrl64.fpu_dp);
1100}
1101
1102void
1103X86KvmCPU::updateThreadContextMSRs()
1104{
1105    const Kvm::MSRIndexVector &msrs(getMsrIntersection());
1106
1107    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1108        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(msrs.size()));
1109    struct kvm_msr_entry *entry;
1110
1111    // Create a list of MSRs to read
1112    kvm_msrs->nmsrs = msrs.size();
1113    entry = &kvm_msrs->entries[0];
1114    for (auto it = msrs.cbegin(); it != msrs.cend(); ++it, ++entry) {
1115        entry->index = *it;
1116        entry->reserved = 0;
1117        entry->data = 0;
1118    }
1119
1120    getMSRs(*kvm_msrs.get());
1121
1122    // Update M5's state
1123    entry = &kvm_msrs->entries[0];
1124    for (int i = 0; i < kvm_msrs->nmsrs; ++i, ++entry) {
1125        DPRINTF(KvmContext, "Setting M5 MSR: idx: 0x%x, data: 0x%x\n",
1126                entry->index, entry->data);
1127
1128        tc->setMiscReg(X86ISA::msrMap.at(entry->index), entry->data);
1129    }
1130}
1131
1132void
1133X86KvmCPU::deliverInterrupts()
1134{
1135    Fault fault;
1136
1137    syncThreadContext();
1138
1139    {
1140        // Migrate to the interrupt controller's thread to get the
1141        // interrupt. Even though the individual methods are safe to
1142        // call across threads, we might still lose interrupts unless
1143        // they are getInterrupt() and updateIntrInfo() are called
1144        // atomically.
1145        EventQueue::ScopedMigration migrate(interrupts[0]->eventQueue());
1146        fault = interrupts[0]->getInterrupt(tc);
1147        interrupts[0]->updateIntrInfo(tc);
1148    }
1149
1150    X86Interrupt *x86int(dynamic_cast<X86Interrupt *>(fault.get()));
1151    if (dynamic_cast<NonMaskableInterrupt *>(fault.get())) {
1152        DPRINTF(KvmInt, "Delivering NMI\n");
1153        kvmNonMaskableInterrupt();
1154    } else if (dynamic_cast<InitInterrupt *>(fault.get())) {
1155        DPRINTF(KvmInt, "INIT interrupt\n");
1156        fault.get()->invoke(tc);
1157        // Delay the kvm state update since we won't enter KVM on this
1158        // tick.
1159        threadContextDirty = true;
1160        // HACK: gem5 doesn't actually have any BIOS code, which means
1161        // that we need to halt the thread and wait for a startup
1162        // interrupt before restarting the thread. The simulated CPUs
1163        // use the same kind of hack using a microcode routine.
1164        thread->suspend();
1165    } else if (dynamic_cast<StartupInterrupt *>(fault.get())) {
1166        DPRINTF(KvmInt, "STARTUP interrupt\n");
1167        fault.get()->invoke(tc);
1168        // The kvm state is assumed to have been updated when entering
1169        // kvmRun(), so we need to update manually it here.
1170        updateKvmState();
1171    } else if (x86int) {
1172        struct kvm_interrupt kvm_int;
1173        kvm_int.irq = x86int->getVector();
1174
1175        DPRINTF(KvmInt, "Delivering interrupt: %s (%u)\n",
1176                fault->name(), kvm_int.irq);
1177
1178        kvmInterrupt(kvm_int);
1179    } else {
1180        panic("KVM: Unknown interrupt type\n");
1181    }
1182
1183}
1184
1185Tick
1186X86KvmCPU::kvmRun(Tick ticks)
1187{
1188    struct kvm_run &kvm_run(*getKvmRunState());
1189
1190    if (interrupts[0]->checkInterruptsRaw()) {
1191        if (interrupts[0]->hasPendingUnmaskable()) {
1192            DPRINTF(KvmInt,
1193                    "Delivering unmaskable interrupt.\n");
1194            syncThreadContext();
1195            deliverInterrupts();
1196        } else if (kvm_run.ready_for_interrupt_injection) {
1197            // KVM claims that it is ready for an interrupt. It might
1198            // be lying if we just updated rflags and disabled
1199            // interrupts (e.g., by doing a CPU handover). Let's sync
1200            // the thread context and check if there are /really/
1201            // interrupts that should be delivered now.
1202            syncThreadContext();
1203            if (interrupts[0]->checkInterrupts(tc)) {
1204                DPRINTF(KvmInt,
1205                        "M5 has pending interrupts, delivering interrupt.\n");
1206
1207                deliverInterrupts();
1208            } else {
1209                DPRINTF(KvmInt,
1210                        "Interrupt delivery delayed due to KVM confusion.\n");
1211                kvm_run.request_interrupt_window = 1;
1212            }
1213        } else if (!kvm_run.request_interrupt_window) {
1214            DPRINTF(KvmInt,
1215                    "M5 has pending interrupts, requesting interrupt "
1216                    "window.\n");
1217            kvm_run.request_interrupt_window = 1;
1218        }
1219    } else {
1220        kvm_run.request_interrupt_window = 0;
1221    }
1222
1223    // The CPU might have been suspended as a result of the INIT
1224    // interrupt delivery hack. In that case, don't enter into KVM.
1225    if (_status == Idle)
1226        return 0;
1227    else
1228        return kvmRunWrapper(ticks);
1229}
1230
1231Tick
1232X86KvmCPU::kvmRunDrain()
1233{
1234    struct kvm_run &kvm_run(*getKvmRunState());
1235
1236    if (!archIsDrained()) {
1237        DPRINTF(Drain, "kvmRunDrain: Architecture code isn't drained\n");
1238
1239        // Tell KVM to find a suitable place to deliver interrupts. This
1240        // should ensure that pending interrupts have been delivered and
1241        // things are reasonably consistent (i.e., no interrupts pending
1242        // in the guest).
1243        kvm_run.request_interrupt_window = 1;
1244
1245        // Limit the run to 1 millisecond. That is hopefully enough to
1246        // reach an interrupt window. Otherwise, we'll just try again
1247        // later.
1248        return kvmRunWrapper(1 * SimClock::Float::ms);
1249    } else {
1250        DPRINTF(Drain, "kvmRunDrain: Delivering pending IO\n");
1251
1252        return kvmRunWrapper(0);
1253    }
1254}
1255
1256Tick
1257X86KvmCPU::kvmRunWrapper(Tick ticks)
1258{
1259    struct kvm_run &kvm_run(*getKvmRunState());
1260
1261    // Synchronize the APIC base and CR8 here since they are present
1262    // in the kvm_run struct, which makes the synchronization really
1263    // cheap.
1264    kvm_run.apic_base = tc->readMiscReg(MISCREG_APIC_BASE);
1265    kvm_run.cr8 = tc->readMiscReg(MISCREG_CR8);
1266
1267    const Tick run_ticks(BaseKvmCPU::kvmRun(ticks));
1268
1269    tc->setMiscReg(MISCREG_APIC_BASE, kvm_run.apic_base);
1270    kvm_run.cr8 = tc->readMiscReg(MISCREG_CR8);
1271
1272    return run_ticks;
1273}
1274
1275uint64_t
1276X86KvmCPU::getHostCycles() const
1277{
1278    return getMSR(MSR_TSC);
1279}
1280
1281void
1282X86KvmCPU::handleIOMiscReg32(int miscreg)
1283{
1284    struct kvm_run &kvm_run(*getKvmRunState());
1285    const uint16_t port(kvm_run.io.port);
1286
1287    assert(kvm_run.exit_reason == KVM_EXIT_IO);
1288
1289    if (kvm_run.io.size != 4) {
1290        panic("Unexpected IO size (%u) for address 0x%x.\n",
1291              kvm_run.io.size, port);
1292    }
1293
1294    if (kvm_run.io.count != 1) {
1295        panic("Unexpected IO count (%u) for address 0x%x.\n",
1296              kvm_run.io.count, port);
1297    }
1298
1299    uint32_t *data((uint32_t *)getGuestData(kvm_run.io.data_offset));
1300    if (kvm_run.io.direction == KVM_EXIT_IO_OUT)
1301        tc->setMiscReg(miscreg, *data);
1302    else
1303        *data = tc->readMiscRegNoEffect(miscreg);
1304}
1305
1306Tick
1307X86KvmCPU::handleKvmExitIO()
1308{
1309    struct kvm_run &kvm_run(*getKvmRunState());
1310    bool isWrite(kvm_run.io.direction == KVM_EXIT_IO_OUT);
1311    unsigned char *guestData(getGuestData(kvm_run.io.data_offset));
1312    Tick delay(0);
1313    uint16_t port(kvm_run.io.port);
1314    Addr pAddr;
1315    const int count(kvm_run.io.count);
1316
1317    assert(kvm_run.io.direction == KVM_EXIT_IO_IN ||
1318           kvm_run.io.direction == KVM_EXIT_IO_OUT);
1319
1320    DPRINTF(KvmIO, "KVM-x86: Handling IO instruction (%s) (port: 0x%x)\n",
1321            (isWrite ? "out" : "in"), kvm_run.io.port);
1322
1323    /* Vanilla gem5 handles PCI discovery in the TLB(!). Since we
1324     * don't use the TLB component, we need to intercept and handle
1325     * the PCI configuration space IO ports here.
1326     *
1327     * The IO port PCI discovery mechanism uses one address register
1328     * and one data register. We map the address register to a misc
1329     * reg and use that to re-route data register accesses to the
1330     * right location in the PCI configuration space.
1331     */
1332    if (port == IO_PCI_CONF_ADDR) {
1333        handleIOMiscReg32(MISCREG_PCI_CONFIG_ADDRESS);
1334        return 0;
1335    } else if ((port & ~0x3) == IO_PCI_CONF_DATA_BASE) {
1336        Addr pciConfigAddr(tc->readMiscRegNoEffect(MISCREG_PCI_CONFIG_ADDRESS));
1337        if (pciConfigAddr & 0x80000000) {
1338            pAddr = X86ISA::x86PciConfigAddress((pciConfigAddr & 0x7ffffffc) |
1339                                                (port & 0x3));
1340        } else {
1341            pAddr = X86ISA::x86IOAddress(port);
1342        }
1343    } else {
1344        pAddr = X86ISA::x86IOAddress(port);
1345    }
1346
1347    const MemCmd cmd(isWrite ? MemCmd::WriteReq : MemCmd::ReadReq);
1348    // Temporarily lock and migrate to the event queue of the
1349    // VM. This queue is assumed to "own" all devices we need to
1350    // access if running in multi-core mode.
1351    EventQueue::ScopedMigration migrate(vm.eventQueue());
1352    for (int i = 0; i < count; ++i) {
1353        RequestPtr io_req = new Request(pAddr, kvm_run.io.size,
1354                                        Request::UNCACHEABLE, dataMasterId());
1355        io_req->setContext(tc->contextId());
1356
1357        PacketPtr pkt = new Packet(io_req, cmd);
1358
1359        pkt->dataStatic(guestData);
1360        delay += dataPort.submitIO(pkt);
1361
1362        guestData += kvm_run.io.size;
1363    }
1364
1365    return delay;
1366}
1367
1368Tick
1369X86KvmCPU::handleKvmExitIRQWindowOpen()
1370{
1371    // We don't need to do anything here since this is caught the next
1372    // time we execute kvmRun(). We still overload the exit event to
1373    // silence the warning about an unhandled exit event.
1374    return 0;
1375}
1376
1377bool
1378X86KvmCPU::archIsDrained() const
1379{
1380    struct kvm_vcpu_events events;
1381
1382    getVCpuEvents(events);
1383
1384    // We could probably handle this in a by re-inserting interrupts
1385    // that are pending into gem5 on a drain. However, that would
1386    // probably be tricky to do reliably, so we'll just prevent a
1387    // drain if there is anything pending in the
1388    // guest. X86KvmCPU::kvmRunDrain() minimizes the amount of code
1389    // executed in the guest by requesting an interrupt window if
1390    // there are pending interrupts.
1391    const bool pending_events(events.exception.injected ||
1392                              events.interrupt.injected ||
1393                              events.nmi.injected || events.nmi.pending);
1394
1395    if (pending_events) {
1396        DPRINTF(Drain, "archIsDrained: Pending events: %s %s %s %s\n",
1397                events.exception.injected ? "exception" : "",
1398                events.interrupt.injected ? "interrupt" : "",
1399                events.nmi.injected ? "nmi[i]" : "",
1400                events.nmi.pending ? "nmi[p]" : "");
1401    }
1402
1403    return !pending_events;
1404}
1405
1406static struct kvm_cpuid_entry2
1407makeKvmCpuid(uint32_t function, uint32_t index,
1408             CpuidResult &result)
1409{
1410    struct kvm_cpuid_entry2 e;
1411    e.function = function;
1412    e.index = index;
1413    e.flags = 0;
1414    e.eax = (uint32_t)result.rax;
1415    e.ebx = (uint32_t)result.rbx;
1416    e.ecx = (uint32_t)result.rcx;
1417    e.edx = (uint32_t)result.rdx;
1418
1419    return e;
1420}
1421
1422void
1423X86KvmCPU::updateCPUID()
1424{
1425    Kvm::CPUIDVector m5_supported;
1426
1427    /* TODO: We currently don't support any of the functions that
1428     * iterate through data structures in the CPU using an index. It's
1429     * currently not a problem since M5 doesn't expose any of them at
1430     * the moment.
1431     */
1432
1433    /* Basic features */
1434    CpuidResult func0;
1435    X86ISA::doCpuid(tc, 0x0, 0, func0);
1436    for (uint32_t function = 0; function <= func0.rax; ++function) {
1437        CpuidResult cpuid;
1438        uint32_t idx(0);
1439
1440        X86ISA::doCpuid(tc, function, idx, cpuid);
1441        m5_supported.push_back(makeKvmCpuid(function, idx, cpuid));
1442    }
1443
1444    /* Extended features */
1445    CpuidResult efunc0;
1446    X86ISA::doCpuid(tc, 0x80000000, 0, efunc0);
1447    for (uint32_t function = 0x80000000; function <= efunc0.rax; ++function) {
1448        CpuidResult cpuid;
1449        uint32_t idx(0);
1450
1451        X86ISA::doCpuid(tc, function, idx, cpuid);
1452        m5_supported.push_back(makeKvmCpuid(function, idx, cpuid));
1453    }
1454
1455    setCPUID(m5_supported);
1456}
1457
1458void
1459X86KvmCPU::setCPUID(const struct kvm_cpuid2 &cpuid)
1460{
1461    if (ioctl(KVM_SET_CPUID2, (void *)&cpuid) == -1)
1462        panic("KVM: Failed to set guest CPUID2 (errno: %i)\n",
1463              errno);
1464}
1465
1466void
1467X86KvmCPU::setCPUID(const Kvm::CPUIDVector &cpuid)
1468{
1469    std::unique_ptr<struct kvm_cpuid2> kvm_cpuid(
1470        newVarStruct<struct kvm_cpuid2, struct kvm_cpuid_entry2>(cpuid.size()));
1471
1472    kvm_cpuid->nent = cpuid.size();
1473    std::copy(cpuid.begin(), cpuid.end(), kvm_cpuid->entries);
1474
1475    setCPUID(*kvm_cpuid);
1476}
1477
1478void
1479X86KvmCPU::setMSRs(const struct kvm_msrs &msrs)
1480{
1481    if (ioctl(KVM_SET_MSRS, (void *)&msrs) == -1)
1482        panic("KVM: Failed to set guest MSRs (errno: %i)\n",
1483              errno);
1484}
1485
1486void
1487X86KvmCPU::setMSRs(const KvmMSRVector &msrs)
1488{
1489    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1490        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(msrs.size()));
1491
1492    kvm_msrs->nmsrs = msrs.size();
1493    std::copy(msrs.begin(), msrs.end(), kvm_msrs->entries);
1494
1495    setMSRs(*kvm_msrs);
1496}
1497
1498void
1499X86KvmCPU::getMSRs(struct kvm_msrs &msrs) const
1500{
1501    if (ioctl(KVM_GET_MSRS, (void *)&msrs) == -1)
1502        panic("KVM: Failed to get guest MSRs (errno: %i)\n",
1503              errno);
1504}
1505
1506
1507void
1508X86KvmCPU::setMSR(uint32_t index, uint64_t value)
1509{
1510    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1511        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(1));
1512    struct kvm_msr_entry &entry(kvm_msrs->entries[0]);
1513
1514    kvm_msrs->nmsrs = 1;
1515    entry.index = index;
1516    entry.reserved = 0;
1517    entry.data = value;
1518
1519    setMSRs(*kvm_msrs.get());
1520}
1521
1522uint64_t
1523X86KvmCPU::getMSR(uint32_t index) const
1524{
1525    std::unique_ptr<struct kvm_msrs> kvm_msrs(
1526        newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(1));
1527    struct kvm_msr_entry &entry(kvm_msrs->entries[0]);
1528
1529    kvm_msrs->nmsrs = 1;
1530    entry.index = index;
1531    entry.reserved = 0;
1532    entry.data = 0;
1533
1534    getMSRs(*kvm_msrs.get());
1535    return entry.data;
1536}
1537
1538const Kvm::MSRIndexVector &
1539X86KvmCPU::getMsrIntersection() const
1540{
1541    if (cachedMsrIntersection.empty()) {
1542        const Kvm::MSRIndexVector &kvm_msrs(vm.kvm->getSupportedMSRs());
1543
1544        DPRINTF(Kvm, "kvm-x86: Updating MSR intersection\n");
1545        for (auto it = kvm_msrs.cbegin(); it != kvm_msrs.cend(); ++it) {
1546            if (X86ISA::msrMap.find(*it) != X86ISA::msrMap.end()) {
1547                cachedMsrIntersection.push_back(*it);
1548                DPRINTF(Kvm, "kvm-x86: Adding MSR 0x%x\n", *it);
1549            } else {
1550                warn("kvm-x86: MSR (0x%x) unsupported by gem5. Skipping.\n",
1551                     *it);
1552            }
1553        }
1554    }
1555
1556    return cachedMsrIntersection;
1557}
1558
1559void
1560X86KvmCPU::getDebugRegisters(struct kvm_debugregs &regs) const
1561{
1562#ifdef KVM_GET_DEBUGREGS
1563    if (ioctl(KVM_GET_DEBUGREGS, &regs) == -1)
1564        panic("KVM: Failed to get guest debug registers\n");
1565#else
1566    panic("KVM: Unsupported getDebugRegisters call.\n");
1567#endif
1568}
1569
1570void
1571X86KvmCPU::setDebugRegisters(const struct kvm_debugregs &regs)
1572{
1573#ifdef KVM_SET_DEBUGREGS
1574    if (ioctl(KVM_SET_DEBUGREGS, (void *)&regs) == -1)
1575        panic("KVM: Failed to set guest debug registers\n");
1576#else
1577    panic("KVM: Unsupported setDebugRegisters call.\n");
1578#endif
1579}
1580
1581void
1582X86KvmCPU::getXCRs(struct kvm_xcrs &regs) const
1583{
1584    if (ioctl(KVM_GET_XCRS, &regs) == -1)
1585        panic("KVM: Failed to get guest debug registers\n");
1586}
1587
1588void
1589X86KvmCPU::setXCRs(const struct kvm_xcrs &regs)
1590{
1591    if (ioctl(KVM_SET_XCRS, (void *)&regs) == -1)
1592        panic("KVM: Failed to set guest debug registers\n");
1593}
1594
1595void
1596X86KvmCPU::getXSave(struct kvm_xsave &xsave) const
1597{
1598    if (ioctl(KVM_GET_XSAVE, &xsave) == -1)
1599        panic("KVM: Failed to get guest debug registers\n");
1600}
1601
1602void
1603X86KvmCPU::setXSave(const struct kvm_xsave &xsave)
1604{
1605    if (ioctl(KVM_SET_XSAVE, (void *)&xsave) == -1)
1606        panic("KVM: Failed to set guest debug registers\n");
1607}
1608
1609
1610void
1611X86KvmCPU::getVCpuEvents(struct kvm_vcpu_events &events) const
1612{
1613    if (ioctl(KVM_GET_VCPU_EVENTS, &events) == -1)
1614        panic("KVM: Failed to get guest debug registers\n");
1615}
1616
1617void
1618X86KvmCPU::setVCpuEvents(const struct kvm_vcpu_events &events)
1619{
1620    if (ioctl(KVM_SET_VCPU_EVENTS, (void *)&events) == -1)
1621        panic("KVM: Failed to set guest debug registers\n");
1622}
1623
1624X86KvmCPU *
1625X86KvmCPUParams::create()
1626{
1627    return new X86KvmCPU(this);
1628}
1629