cpu.hh revision 8832:247fee427324
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_CHECKER_CPU_HH__
44#define __CPU_CHECKER_CPU_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/predecoder.hh"
51#include "arch/types.hh"
52#include "base/statistics.hh"
53#include "cpu/base.hh"
54#include "cpu/base_dyn_inst.hh"
55#include "cpu/pc_event.hh"
56#include "cpu/simple_thread.hh"
57#include "cpu/static_inst.hh"
58#include "debug/Checker.hh"
59#include "params/CheckerCPU.hh"
60#include "sim/eventq.hh"
61
62// forward declarations
63namespace TheISA
64{
65    class TLB;
66}
67
68template <class>
69class BaseDynInst;
70class ThreadContext;
71class Request;
72
73/**
74 * CheckerCPU class.  Dynamically verifies instructions as they are
75 * completed by making sure that the instruction and its results match
76 * the independent execution of the benchmark inside the checker.  The
77 * checker verifies instructions in order, regardless of the order in
78 * which instructions complete.  There are certain results that can
79 * not be verified, specifically the result of a store conditional or
80 * the values of uncached accesses.  In these cases, and with
81 * instructions marked as "IsUnverifiable", the checker assumes that
82 * the value from the main CPU's execution is correct and simply
83 * copies that value.  It provides a CheckerThreadContext (see
84 * checker/thread_context.hh) that provides hooks for updating the
85 * Checker's state through any ThreadContext accesses.  This allows the
86 * checker to be able to correctly verify instructions, even with
87 * external accesses to the ThreadContext that change state.
88 */
89class CheckerCPU : public BaseCPU
90{
91  protected:
92    typedef TheISA::MachInst MachInst;
93    typedef TheISA::FloatReg FloatReg;
94    typedef TheISA::FloatRegBits FloatRegBits;
95    typedef TheISA::MiscReg MiscReg;
96
97    /** id attached to all issued requests */
98    MasterID masterId;
99  public:
100    virtual void init();
101
102  public:
103    typedef CheckerCPUParams Params;
104    const Params *params() const
105    { return reinterpret_cast<const Params *>(_params); }
106    CheckerCPU(Params *p);
107    virtual ~CheckerCPU();
108
109    std::vector<Process*> workload;
110
111    void setSystem(System *system);
112
113    System *systemPtr;
114
115    void setIcachePort(Port *icache_port);
116
117    Port *icachePort;
118
119    void setDcachePort(Port *dcache_port);
120
121    Port *dcachePort;
122
123    virtual Port *getPort(const std::string &name, int idx)
124    {
125        panic("Not supported on checker!");
126        return NULL;
127    }
128
129  public:
130    // Primary thread being run.
131    SimpleThread *thread;
132
133    ThreadContext *tc;
134
135    TheISA::TLB *itb;
136    TheISA::TLB *dtb;
137
138    Addr dbg_vtophys(Addr addr);
139
140    union Result {
141        uint64_t integer;
142        double dbl;
143        void set(uint64_t i) { integer = i; }
144        void set(double d) { dbl = d; }
145        void get(uint64_t& i) { i = integer; }
146        void get(double& d) { d = dbl; }
147    };
148
149    // ISAs like ARM can have multiple destination registers to check,
150    // keep them all in a std::queue
151    std::queue<Result> result;
152
153    // current instruction
154    TheISA::MachInst machInst;
155
156    // Pointer to the one memory request.
157    RequestPtr memReq;
158
159    StaticInstPtr curStaticInst;
160    StaticInstPtr curMacroStaticInst;
161
162    // number of simulated instructions
163    Counter numInst;
164    Counter startNumInst;
165
166    std::queue<int> miscRegIdxs;
167
168    TheISA::TLB* getITBPtr() { return itb; }
169    TheISA::TLB* getDTBPtr() { return dtb; }
170
171    virtual Counter totalInstructions() const
172    {
173        return 0;
174    }
175
176    // number of simulated loads
177    Counter numLoad;
178    Counter startNumLoad;
179
180    virtual void serialize(std::ostream &os);
181    virtual void unserialize(Checkpoint *cp, const std::string &section);
182
183    // These functions are only used in CPU models that split
184    // effective address computation from the actual memory access.
185    void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
186    Addr getEA()        { panic("SimpleCPU::getEA() not implemented\n"); }
187
188    // The register accessor methods provide the index of the
189    // instruction's operand (e.g., 0 or 1), not the architectural
190    // register index, to simplify the implementation of register
191    // renaming.  We find the architectural register index by indexing
192    // into the instruction's own operand index table.  Note that a
193    // raw pointer to the StaticInst is provided instead of a
194    // ref-counted StaticInstPtr to redice overhead.  This is fine as
195    // long as these methods don't copy the pointer into any long-term
196    // storage (which is pretty hard to imagine they would have reason
197    // to do).
198
199    uint64_t readIntRegOperand(const StaticInst *si, int idx)
200    {
201        return thread->readIntReg(si->srcRegIdx(idx));
202    }
203
204    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
205    {
206        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
207        return thread->readFloatReg(reg_idx);
208    }
209
210    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
211    {
212        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
213        return thread->readFloatRegBits(reg_idx);
214    }
215
216    template <class T>
217    void setResult(T t)
218    {
219        Result instRes;
220        instRes.set(t);
221        result.push(instRes);
222    }
223
224    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
225    {
226        thread->setIntReg(si->destRegIdx(idx), val);
227        setResult<uint64_t>(val);
228    }
229
230    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
231    {
232        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
233        thread->setFloatReg(reg_idx, val);
234        setResult<double>(val);
235    }
236
237    void setFloatRegOperandBits(const StaticInst *si, int idx,
238                                FloatRegBits val)
239    {
240        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
241        thread->setFloatRegBits(reg_idx, val);
242        setResult<uint64_t>(val);
243    }
244
245    bool readPredicate() { return thread->readPredicate(); }
246    void setPredicate(bool val)
247    {
248        thread->setPredicate(val);
249    }
250
251    TheISA::PCState pcState() { return thread->pcState(); }
252    void pcState(const TheISA::PCState &val)
253    {
254        DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
255                         val, thread->pcState());
256        thread->pcState(val);
257    }
258    Addr instAddr() { return thread->instAddr(); }
259    Addr nextInstAddr() { return thread->nextInstAddr(); }
260    MicroPC microPC() { return thread->microPC(); }
261    //////////////////////////////////////////
262
263    MiscReg readMiscRegNoEffect(int misc_reg)
264    {
265        return thread->readMiscRegNoEffect(misc_reg);
266    }
267
268    MiscReg readMiscReg(int misc_reg)
269    {
270        return thread->readMiscReg(misc_reg);
271    }
272
273    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
274    {
275        miscRegIdxs.push(misc_reg);
276        return thread->setMiscRegNoEffect(misc_reg, val);
277    }
278
279    void setMiscReg(int misc_reg, const MiscReg &val)
280    {
281        miscRegIdxs.push(misc_reg);
282        return thread->setMiscReg(misc_reg, val);
283    }
284
285    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
286    {
287        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
288        return thread->readMiscReg(reg_idx);
289    }
290
291    void setMiscRegOperand(
292            const StaticInst *si, int idx, const MiscReg &val)
293    {
294        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
295        return thread->setMiscReg(reg_idx, val);
296    }
297    /////////////////////////////////////////
298
299    void recordPCChange(const TheISA::PCState &val)
300    {
301       changedPC = true;
302       newPCState = val;
303    }
304
305    void demapPage(Addr vaddr, uint64_t asn)
306    {
307        this->itb->demapPage(vaddr, asn);
308        this->dtb->demapPage(vaddr, asn);
309    }
310
311    void demapInstPage(Addr vaddr, uint64_t asn)
312    {
313        this->itb->demapPage(vaddr, asn);
314    }
315
316    void demapDataPage(Addr vaddr, uint64_t asn)
317    {
318        this->dtb->demapPage(vaddr, asn);
319    }
320
321    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
322    Fault writeMem(uint8_t *data, unsigned size,
323                   Addr addr, unsigned flags, uint64_t *res);
324
325    void setStCondFailures(unsigned sc_failures)
326    {}
327    /////////////////////////////////////////////////////
328
329    Fault hwrei() { return thread->hwrei(); }
330    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
331    void wakeup() { }
332    // Assume that the normal CPU's call to syscall was successful.
333    // The checker's state would have already been updated by the syscall.
334    void syscall(uint64_t callnum) { }
335
336    void handleError()
337    {
338        if (exitOnError)
339            dumpAndExit();
340    }
341
342    bool checkFlags(Request *unverified_req, Addr vAddr,
343                    Addr pAddr, int flags);
344
345    void dumpAndExit();
346
347    ThreadContext *tcBase() { return tc; }
348    SimpleThread *threadBase() { return thread; }
349
350    Result unverifiedResult;
351    Request *unverifiedReq;
352    uint8_t *unverifiedMemData;
353
354    bool changedPC;
355    bool willChangePC;
356    TheISA::PCState newPCState;
357    bool changedNextPC;
358    bool exitOnError;
359    bool updateOnError;
360    bool warnOnlyOnLoadError;
361
362    InstSeqNum youngestSN;
363};
364
365/**
366 * Templated Checker class.  This Checker class is templated on the
367 * DynInstPtr of the instruction type that will be verified.  Proper
368 * template instantiations of the Checker must be placed at the bottom
369 * of checker/cpu.cc.
370 */
371template <class Impl>
372class Checker : public CheckerCPU
373{
374  private:
375    typedef typename Impl::DynInstPtr DynInstPtr;
376
377  public:
378    Checker(Params *p)
379        : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL),
380          predecoder(NULL)
381    { }
382
383    void switchOut();
384    void takeOverFrom(BaseCPU *oldCPU);
385
386    void advancePC(Fault fault);
387
388    void verify(DynInstPtr &inst);
389
390    void validateInst(DynInstPtr &inst);
391    void validateExecution(DynInstPtr &inst);
392    void validateState();
393
394    void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx);
395    void handlePendingInt();
396
397  private:
398    void handleError(DynInstPtr &inst)
399    {
400        if (exitOnError) {
401            dumpAndExit(inst);
402        } else if (updateOnError) {
403            updateThisCycle = true;
404        }
405    }
406
407    void dumpAndExit(DynInstPtr &inst);
408
409    bool updateThisCycle;
410
411    DynInstPtr unverifiedInst;
412    TheISA::Predecoder predecoder;
413
414    std::list<DynInstPtr> instList;
415    typedef typename std::list<DynInstPtr>::iterator InstListIt;
416    void dumpInsts();
417};
418
419#endif // __CPU_CHECKER_CPU_HH__
420