cpu.hh revision 8733:64a7bf8fa56c
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_CHECKER_CPU_HH__
44#define __CPU_CHECKER_CPU_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/predecoder.hh"
51#include "arch/types.hh"
52#include "base/statistics.hh"
53#include "config/full_system.hh"
54#include "cpu/base.hh"
55#include "cpu/base_dyn_inst.hh"
56#include "cpu/pc_event.hh"
57#include "cpu/simple_thread.hh"
58#include "cpu/static_inst.hh"
59#include "debug/Checker.hh"
60#include "params/CheckerCPU.hh"
61#include "sim/eventq.hh"
62
63// forward declarations
64#if FULL_SYSTEM
65namespace TheISA
66{
67    class TLB;
68}
69class Processor;
70class PhysicalMemory;
71
72#else
73
74class Process;
75
76#endif // FULL_SYSTEM
77template <class>
78class BaseDynInst;
79class ThreadContext;
80class MemInterface;
81class Checkpoint;
82class Request;
83
84/**
85 * CheckerCPU class.  Dynamically verifies instructions as they are
86 * completed by making sure that the instruction and its results match
87 * the independent execution of the benchmark inside the checker.  The
88 * checker verifies instructions in order, regardless of the order in
89 * which instructions complete.  There are certain results that can
90 * not be verified, specifically the result of a store conditional or
91 * the values of uncached accesses.  In these cases, and with
92 * instructions marked as "IsUnverifiable", the checker assumes that
93 * the value from the main CPU's execution is correct and simply
94 * copies that value.  It provides a CheckerThreadContext (see
95 * checker/thread_context.hh) that provides hooks for updating the
96 * Checker's state through any ThreadContext accesses.  This allows the
97 * checker to be able to correctly verify instructions, even with
98 * external accesses to the ThreadContext that change state.
99 */
100class CheckerCPU : public BaseCPU
101{
102  protected:
103    typedef TheISA::MachInst MachInst;
104    typedef TheISA::FloatReg FloatReg;
105    typedef TheISA::FloatRegBits FloatRegBits;
106    typedef TheISA::MiscReg MiscReg;
107  public:
108    virtual void init();
109
110  public:
111    typedef CheckerCPUParams Params;
112    const Params *params() const
113    { return reinterpret_cast<const Params *>(_params); }
114    CheckerCPU(Params *p);
115    virtual ~CheckerCPU();
116
117    std::vector<Process*> workload;
118
119    void setSystem(System *system);
120
121    System *systemPtr;
122
123    void setIcachePort(Port *icache_port);
124
125    Port *icachePort;
126
127    void setDcachePort(Port *dcache_port);
128
129    Port *dcachePort;
130
131    virtual Port *getPort(const std::string &name, int idx)
132    {
133        panic("Not supported on checker!");
134        return NULL;
135    }
136
137  public:
138    // Primary thread being run.
139    SimpleThread *thread;
140
141    ThreadContext *tc;
142
143    TheISA::TLB *itb;
144    TheISA::TLB *dtb;
145
146#if FULL_SYSTEM
147    Addr dbg_vtophys(Addr addr);
148#endif
149
150    union Result {
151        uint64_t integer;
152        double dbl;
153        void set(uint64_t i) { integer = i; }
154        void set(double d) { dbl = d; }
155        void get(uint64_t& i) { i = integer; }
156        void get(double& d) { d = dbl; }
157    };
158
159    // ISAs like ARM can have multiple destination registers to check,
160    // keep them all in a std::queue
161    std::queue<Result> result;
162
163    // current instruction
164    TheISA::MachInst machInst;
165
166    // Pointer to the one memory request.
167    RequestPtr memReq;
168
169    StaticInstPtr curStaticInst;
170    StaticInstPtr curMacroStaticInst;
171
172    // number of simulated instructions
173    Counter numInst;
174    Counter startNumInst;
175
176    std::queue<int> miscRegIdxs;
177
178    TheISA::TLB* getITBPtr() { return itb; }
179    TheISA::TLB* getDTBPtr() { return dtb; }
180
181    virtual Counter totalInstructions() const
182    {
183        return 0;
184    }
185
186    // number of simulated loads
187    Counter numLoad;
188    Counter startNumLoad;
189
190    virtual void serialize(std::ostream &os);
191    virtual void unserialize(Checkpoint *cp, const std::string &section);
192
193    // These functions are only used in CPU models that split
194    // effective address computation from the actual memory access.
195    void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
196    Addr getEA()        { panic("SimpleCPU::getEA() not implemented\n"); }
197
198    // The register accessor methods provide the index of the
199    // instruction's operand (e.g., 0 or 1), not the architectural
200    // register index, to simplify the implementation of register
201    // renaming.  We find the architectural register index by indexing
202    // into the instruction's own operand index table.  Note that a
203    // raw pointer to the StaticInst is provided instead of a
204    // ref-counted StaticInstPtr to redice overhead.  This is fine as
205    // long as these methods don't copy the pointer into any long-term
206    // storage (which is pretty hard to imagine they would have reason
207    // to do).
208
209    uint64_t readIntRegOperand(const StaticInst *si, int idx)
210    {
211        return thread->readIntReg(si->srcRegIdx(idx));
212    }
213
214    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
215    {
216        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
217        return thread->readFloatReg(reg_idx);
218    }
219
220    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
221    {
222        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
223        return thread->readFloatRegBits(reg_idx);
224    }
225
226    template <class T>
227    void setResult(T t)
228    {
229        Result instRes;
230        instRes.set(t);
231        result.push(instRes);
232    }
233
234    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
235    {
236        thread->setIntReg(si->destRegIdx(idx), val);
237        setResult<uint64_t>(val);
238    }
239
240    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
241    {
242        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
243        thread->setFloatReg(reg_idx, val);
244        setResult<double>(val);
245    }
246
247    void setFloatRegOperandBits(const StaticInst *si, int idx,
248                                FloatRegBits val)
249    {
250        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
251        thread->setFloatRegBits(reg_idx, val);
252        setResult<uint64_t>(val);
253    }
254
255    bool readPredicate() { return thread->readPredicate(); }
256    void setPredicate(bool val)
257    {
258        thread->setPredicate(val);
259    }
260
261    TheISA::PCState pcState() { return thread->pcState(); }
262    void pcState(const TheISA::PCState &val)
263    {
264        DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
265                         val, thread->pcState());
266        thread->pcState(val);
267    }
268    Addr instAddr() { return thread->instAddr(); }
269    Addr nextInstAddr() { return thread->nextInstAddr(); }
270    MicroPC microPC() { return thread->microPC(); }
271    //////////////////////////////////////////
272
273    MiscReg readMiscRegNoEffect(int misc_reg)
274    {
275        return thread->readMiscRegNoEffect(misc_reg);
276    }
277
278    MiscReg readMiscReg(int misc_reg)
279    {
280        return thread->readMiscReg(misc_reg);
281    }
282
283    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
284    {
285        miscRegIdxs.push(misc_reg);
286        return thread->setMiscRegNoEffect(misc_reg, val);
287    }
288
289    void setMiscReg(int misc_reg, const MiscReg &val)
290    {
291        miscRegIdxs.push(misc_reg);
292        return thread->setMiscReg(misc_reg, val);
293    }
294
295    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
296    {
297        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
298        return thread->readMiscReg(reg_idx);
299    }
300
301    void setMiscRegOperand(
302            const StaticInst *si, int idx, const MiscReg &val)
303    {
304        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
305        return thread->setMiscReg(reg_idx, val);
306    }
307    /////////////////////////////////////////
308
309    void recordPCChange(const TheISA::PCState &val)
310    {
311       changedPC = true;
312       newPCState = val;
313    }
314
315    void demapPage(Addr vaddr, uint64_t asn)
316    {
317        this->itb->demapPage(vaddr, asn);
318        this->dtb->demapPage(vaddr, asn);
319    }
320
321    void demapInstPage(Addr vaddr, uint64_t asn)
322    {
323        this->itb->demapPage(vaddr, asn);
324    }
325
326    void demapDataPage(Addr vaddr, uint64_t asn)
327    {
328        this->dtb->demapPage(vaddr, asn);
329    }
330
331    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
332    Fault writeMem(uint8_t *data, unsigned size,
333                   Addr addr, unsigned flags, uint64_t *res);
334
335    void setStCondFailures(unsigned sc_failures)
336    {}
337    /////////////////////////////////////////////////////
338
339#if FULL_SYSTEM
340    Fault hwrei() { return thread->hwrei(); }
341    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
342    void wakeup() { }
343#else
344    // Assume that the normal CPU's call to syscall was successful.
345    // The checker's state would have already been updated by the syscall.
346    void syscall(uint64_t callnum) { }
347#endif
348
349    void handleError()
350    {
351        if (exitOnError)
352            dumpAndExit();
353    }
354
355    bool checkFlags(Request *unverified_req, Addr vAddr,
356                    Addr pAddr, int flags);
357
358    void dumpAndExit();
359
360    ThreadContext *tcBase() { return tc; }
361    SimpleThread *threadBase() { return thread; }
362
363    Result unverifiedResult;
364    Request *unverifiedReq;
365    uint8_t *unverifiedMemData;
366
367    bool changedPC;
368    bool willChangePC;
369    TheISA::PCState newPCState;
370    bool changedNextPC;
371    bool exitOnError;
372    bool updateOnError;
373    bool warnOnlyOnLoadError;
374
375    InstSeqNum youngestSN;
376};
377
378/**
379 * Templated Checker class.  This Checker class is templated on the
380 * DynInstPtr of the instruction type that will be verified.  Proper
381 * template instantiations of the Checker must be placed at the bottom
382 * of checker/cpu.cc.
383 */
384template <class Impl>
385class Checker : public CheckerCPU
386{
387  private:
388    typedef typename Impl::DynInstPtr DynInstPtr;
389
390  public:
391    Checker(Params *p)
392        : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL),
393          predecoder(NULL)
394    { }
395
396    void switchOut();
397    void takeOverFrom(BaseCPU *oldCPU);
398
399    void advancePC(Fault fault);
400
401    void verify(DynInstPtr &inst);
402
403    void validateInst(DynInstPtr &inst);
404    void validateExecution(DynInstPtr &inst);
405    void validateState();
406
407    void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx);
408    void handlePendingInt();
409
410  private:
411    void handleError(DynInstPtr &inst)
412    {
413        if (exitOnError) {
414            dumpAndExit(inst);
415        } else if (updateOnError) {
416            updateThisCycle = true;
417        }
418    }
419
420    void dumpAndExit(DynInstPtr &inst);
421
422    bool updateThisCycle;
423
424    DynInstPtr unverifiedInst;
425    TheISA::Predecoder predecoder;
426
427    std::list<DynInstPtr> instList;
428    typedef typename std::list<DynInstPtr>::iterator InstListIt;
429    void dumpInsts();
430};
431
432#endif // __CPU_CHECKER_CPU_HH__
433