cpu.hh revision 11877:5ea85692a53e
1/*
2 * Copyright (c) 2011 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_CHECKER_CPU_HH__
45#define __CPU_CHECKER_CPU_HH__
46
47#include <list>
48#include <map>
49#include <queue>
50
51#include "arch/types.hh"
52#include "base/statistics.hh"
53#include "cpu/base.hh"
54#include "cpu/base_dyn_inst.hh"
55#include "cpu/exec_context.hh"
56#include "cpu/pc_event.hh"
57#include "cpu/simple_thread.hh"
58#include "cpu/static_inst.hh"
59#include "debug/Checker.hh"
60#include "mem/request.hh"
61#include "params/CheckerCPU.hh"
62#include "sim/eventq.hh"
63
64// forward declarations
65namespace TheISA
66{
67    class TLB;
68}
69
70template <class>
71class BaseDynInst;
72class ThreadContext;
73class Request;
74
75/**
76 * CheckerCPU class.  Dynamically verifies instructions as they are
77 * completed by making sure that the instruction and its results match
78 * the independent execution of the benchmark inside the checker.  The
79 * checker verifies instructions in order, regardless of the order in
80 * which instructions complete.  There are certain results that can
81 * not be verified, specifically the result of a store conditional or
82 * the values of uncached accesses.  In these cases, and with
83 * instructions marked as "IsUnverifiable", the checker assumes that
84 * the value from the main CPU's execution is correct and simply
85 * copies that value.  It provides a CheckerThreadContext (see
86 * checker/thread_context.hh) that provides hooks for updating the
87 * Checker's state through any ThreadContext accesses.  This allows the
88 * checker to be able to correctly verify instructions, even with
89 * external accesses to the ThreadContext that change state.
90 */
91class CheckerCPU : public BaseCPU, public ExecContext
92{
93  protected:
94    typedef TheISA::MachInst MachInst;
95    typedef TheISA::FloatReg FloatReg;
96    typedef TheISA::FloatRegBits FloatRegBits;
97    typedef TheISA::MiscReg MiscReg;
98
99    /** id attached to all issued requests */
100    MasterID masterId;
101  public:
102    void init() override;
103
104    typedef CheckerCPUParams Params;
105    CheckerCPU(Params *p);
106    virtual ~CheckerCPU();
107
108    void setSystem(System *system);
109
110    void setIcachePort(MasterPort *icache_port);
111
112    void setDcachePort(MasterPort *dcache_port);
113
114    MasterPort &getDataPort() override
115    {
116        // the checker does not have ports on its own so return the
117        // data port of the actual CPU core
118        assert(dcachePort);
119        return *dcachePort;
120    }
121
122    MasterPort &getInstPort() override
123    {
124        // the checker does not have ports on its own so return the
125        // data port of the actual CPU core
126        assert(icachePort);
127        return *icachePort;
128    }
129
130  protected:
131
132    std::vector<Process*> workload;
133
134    System *systemPtr;
135
136    MasterPort *icachePort;
137    MasterPort *dcachePort;
138
139    ThreadContext *tc;
140
141    TheISA::TLB *itb;
142    TheISA::TLB *dtb;
143
144    Addr dbg_vtophys(Addr addr);
145
146    union Result {
147        uint64_t integer;
148        double dbl;
149        void set(uint64_t i) { integer = i; }
150        void set(double d) { dbl = d; }
151        void get(uint64_t& i) { i = integer; }
152        void get(double& d) { d = dbl; }
153    };
154
155    // ISAs like ARM can have multiple destination registers to check,
156    // keep them all in a std::queue
157    std::queue<Result> result;
158
159    // Pointer to the one memory request.
160    RequestPtr memReq;
161
162    StaticInstPtr curStaticInst;
163    StaticInstPtr curMacroStaticInst;
164
165    // number of simulated instructions
166    Counter numInst;
167    Counter startNumInst;
168
169    std::queue<int> miscRegIdxs;
170
171  public:
172
173    // Primary thread being run.
174    SimpleThread *thread;
175
176    TheISA::TLB* getITBPtr() { return itb; }
177    TheISA::TLB* getDTBPtr() { return dtb; }
178
179    virtual Counter totalInsts() const override
180    {
181        return 0;
182    }
183
184    virtual Counter totalOps() const override
185    {
186        return 0;
187    }
188
189    // number of simulated loads
190    Counter numLoad;
191    Counter startNumLoad;
192
193    void serialize(CheckpointOut &cp) const override;
194    void unserialize(CheckpointIn &cp) override;
195
196    // These functions are only used in CPU models that split
197    // effective address computation from the actual memory access.
198    void setEA(Addr EA) override
199    { panic("CheckerCPU::setEA() not implemented\n"); }
200    Addr getEA() const  override
201    { panic("CheckerCPU::getEA() not implemented\n"); }
202
203    // The register accessor methods provide the index of the
204    // instruction's operand (e.g., 0 or 1), not the architectural
205    // register index, to simplify the implementation of register
206    // renaming.  We find the architectural register index by indexing
207    // into the instruction's own operand index table.  Note that a
208    // raw pointer to the StaticInst is provided instead of a
209    // ref-counted StaticInstPtr to redice overhead.  This is fine as
210    // long as these methods don't copy the pointer into any long-term
211    // storage (which is pretty hard to imagine they would have reason
212    // to do).
213
214    IntReg readIntRegOperand(const StaticInst *si, int idx) override
215    {
216        return thread->readIntReg(si->srcRegIdx(idx));
217    }
218
219    FloatReg readFloatRegOperand(const StaticInst *si, int idx) override
220    {
221        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
222        return thread->readFloatReg(reg_idx);
223    }
224
225    FloatRegBits readFloatRegOperandBits(const StaticInst *si,
226                                         int idx) override
227    {
228        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
229        return thread->readFloatRegBits(reg_idx);
230    }
231
232    CCReg readCCRegOperand(const StaticInst *si, int idx) override
233    {
234        int reg_idx = si->srcRegIdx(idx) - TheISA::CC_Reg_Base;
235        return thread->readCCReg(reg_idx);
236    }
237
238    template <class T>
239    void setResult(T t)
240    {
241        Result instRes;
242        instRes.set(t);
243        result.push(instRes);
244    }
245
246    void setIntRegOperand(const StaticInst *si, int idx,
247                          IntReg val) override
248    {
249        thread->setIntReg(si->destRegIdx(idx), val);
250        setResult<uint64_t>(val);
251    }
252
253    void setFloatRegOperand(const StaticInst *si, int idx,
254                            FloatReg val) override
255    {
256        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
257        thread->setFloatReg(reg_idx, val);
258        setResult<double>(val);
259    }
260
261    void setFloatRegOperandBits(const StaticInst *si, int idx,
262                                FloatRegBits val) override
263    {
264        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
265        thread->setFloatRegBits(reg_idx, val);
266        setResult<uint64_t>(val);
267    }
268
269    void setCCRegOperand(const StaticInst *si, int idx, CCReg val) override
270    {
271        int reg_idx = si->destRegIdx(idx) - TheISA::CC_Reg_Base;
272        thread->setCCReg(reg_idx, val);
273        setResult<uint64_t>(val);
274    }
275
276    bool readPredicate() override { return thread->readPredicate(); }
277    void setPredicate(bool val) override
278    {
279        thread->setPredicate(val);
280    }
281
282    TheISA::PCState pcState() const override { return thread->pcState(); }
283    void pcState(const TheISA::PCState &val) override
284    {
285        DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
286                         val, thread->pcState());
287        thread->pcState(val);
288    }
289    Addr instAddr() { return thread->instAddr(); }
290    Addr nextInstAddr() { return thread->nextInstAddr(); }
291    MicroPC microPC() { return thread->microPC(); }
292    //////////////////////////////////////////
293
294    MiscReg readMiscRegNoEffect(int misc_reg) const
295    {
296        return thread->readMiscRegNoEffect(misc_reg);
297    }
298
299    MiscReg readMiscReg(int misc_reg) override
300    {
301        return thread->readMiscReg(misc_reg);
302    }
303
304    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
305    {
306        DPRINTF(Checker, "Setting misc reg %d with no effect to check later\n", misc_reg);
307        miscRegIdxs.push(misc_reg);
308        return thread->setMiscRegNoEffect(misc_reg, val);
309    }
310
311    void setMiscReg(int misc_reg, const MiscReg &val) override
312    {
313        DPRINTF(Checker, "Setting misc reg %d with effect to check later\n", misc_reg);
314        miscRegIdxs.push(misc_reg);
315        return thread->setMiscReg(misc_reg, val);
316    }
317
318    MiscReg readMiscRegOperand(const StaticInst *si, int idx) override
319    {
320        int reg_idx = si->srcRegIdx(idx) - TheISA::Misc_Reg_Base;
321        return thread->readMiscReg(reg_idx);
322    }
323
324    void setMiscRegOperand(const StaticInst *si, int idx,
325                           const MiscReg &val) override
326    {
327        int reg_idx = si->destRegIdx(idx) - TheISA::Misc_Reg_Base;
328        return this->setMiscReg(reg_idx, val);
329    }
330
331#if THE_ISA == MIPS_ISA
332    MiscReg readRegOtherThread(int misc_reg, ThreadID tid) override
333    {
334        panic("MIPS MT not defined for CheckerCPU.\n");
335        return 0;
336    }
337
338    void setRegOtherThread(int misc_reg, MiscReg val, ThreadID tid) override
339    {
340        panic("MIPS MT not defined for CheckerCPU.\n");
341    }
342#endif
343
344    /////////////////////////////////////////
345
346    void recordPCChange(const TheISA::PCState &val)
347    {
348       changedPC = true;
349       newPCState = val;
350    }
351
352    void demapPage(Addr vaddr, uint64_t asn) override
353    {
354        this->itb->demapPage(vaddr, asn);
355        this->dtb->demapPage(vaddr, asn);
356    }
357
358    // monitor/mwait funtions
359    void armMonitor(Addr address) override
360    { BaseCPU::armMonitor(0, address); }
361    bool mwait(PacketPtr pkt) override { return BaseCPU::mwait(0, pkt); }
362    void mwaitAtomic(ThreadContext *tc) override
363    { return BaseCPU::mwaitAtomic(0, tc, thread->dtb); }
364    AddressMonitor *getAddrMonitor() override
365    { return BaseCPU::getCpuAddrMonitor(0); }
366
367    void demapInstPage(Addr vaddr, uint64_t asn)
368    {
369        this->itb->demapPage(vaddr, asn);
370    }
371
372    void demapDataPage(Addr vaddr, uint64_t asn)
373    {
374        this->dtb->demapPage(vaddr, asn);
375    }
376
377    Fault readMem(Addr addr, uint8_t *data, unsigned size,
378                  Request::Flags flags) override;
379    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
380                   Request::Flags flags, uint64_t *res) override;
381
382    unsigned int readStCondFailures() const override {
383        return thread->readStCondFailures();
384    }
385
386    void setStCondFailures(unsigned int sc_failures) override
387    {}
388    /////////////////////////////////////////////////////
389
390    Fault hwrei() override { return thread->hwrei(); }
391    bool simPalCheck(int palFunc) override
392    { return thread->simPalCheck(palFunc); }
393    void wakeup(ThreadID tid) override { }
394    // Assume that the normal CPU's call to syscall was successful.
395    // The checker's state would have already been updated by the syscall.
396    void syscall(int64_t callnum, Fault *fault) override { }
397
398    void handleError()
399    {
400        if (exitOnError)
401            dumpAndExit();
402    }
403
404    bool checkFlags(Request *unverified_req, Addr vAddr,
405                    Addr pAddr, int flags);
406
407    void dumpAndExit();
408
409    ThreadContext *tcBase() override { return tc; }
410    SimpleThread *threadBase() { return thread; }
411
412    Result unverifiedResult;
413    Request *unverifiedReq;
414    uint8_t *unverifiedMemData;
415
416    bool changedPC;
417    bool willChangePC;
418    TheISA::PCState newPCState;
419    bool exitOnError;
420    bool updateOnError;
421    bool warnOnlyOnLoadError;
422
423    InstSeqNum youngestSN;
424};
425
426/**
427 * Templated Checker class.  This Checker class is templated on the
428 * DynInstPtr of the instruction type that will be verified.  Proper
429 * template instantiations of the Checker must be placed at the bottom
430 * of checker/cpu.cc.
431 */
432template <class Impl>
433class Checker : public CheckerCPU
434{
435  private:
436    typedef typename Impl::DynInstPtr DynInstPtr;
437
438  public:
439    Checker(Params *p)
440        : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL)
441    { }
442
443    void switchOut();
444    void takeOverFrom(BaseCPU *oldCPU);
445
446    void advancePC(const Fault &fault);
447
448    void verify(DynInstPtr &inst);
449
450    void validateInst(DynInstPtr &inst);
451    void validateExecution(DynInstPtr &inst);
452    void validateState();
453
454    void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx);
455    void handlePendingInt();
456
457  private:
458    void handleError(DynInstPtr &inst)
459    {
460        if (exitOnError) {
461            dumpAndExit(inst);
462        } else if (updateOnError) {
463            updateThisCycle = true;
464        }
465    }
466
467    void dumpAndExit(DynInstPtr &inst);
468
469    bool updateThisCycle;
470
471    DynInstPtr unverifiedInst;
472
473    std::list<DynInstPtr> instList;
474    typedef typename std::list<DynInstPtr>::iterator InstListIt;
475    void dumpInsts();
476};
477
478#endif // __CPU_CHECKER_CPU_HH__
479