cpu.hh revision 10934:5af8f40d8f2c
1/*
2 * Copyright (c) 2011 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_CHECKER_CPU_HH__
45#define __CPU_CHECKER_CPU_HH__
46
47#include <list>
48#include <map>
49#include <queue>
50
51#include "arch/types.hh"
52#include "base/statistics.hh"
53#include "cpu/base.hh"
54#include "cpu/base_dyn_inst.hh"
55#include "cpu/exec_context.hh"
56#include "cpu/pc_event.hh"
57#include "cpu/simple_thread.hh"
58#include "cpu/static_inst.hh"
59#include "debug/Checker.hh"
60#include "params/CheckerCPU.hh"
61#include "sim/eventq.hh"
62
63// forward declarations
64namespace TheISA
65{
66    class TLB;
67}
68
69template <class>
70class BaseDynInst;
71class ThreadContext;
72class Request;
73
74/**
75 * CheckerCPU class.  Dynamically verifies instructions as they are
76 * completed by making sure that the instruction and its results match
77 * the independent execution of the benchmark inside the checker.  The
78 * checker verifies instructions in order, regardless of the order in
79 * which instructions complete.  There are certain results that can
80 * not be verified, specifically the result of a store conditional or
81 * the values of uncached accesses.  In these cases, and with
82 * instructions marked as "IsUnverifiable", the checker assumes that
83 * the value from the main CPU's execution is correct and simply
84 * copies that value.  It provides a CheckerThreadContext (see
85 * checker/thread_context.hh) that provides hooks for updating the
86 * Checker's state through any ThreadContext accesses.  This allows the
87 * checker to be able to correctly verify instructions, even with
88 * external accesses to the ThreadContext that change state.
89 */
90class CheckerCPU : public BaseCPU, public ExecContext
91{
92  protected:
93    typedef TheISA::MachInst MachInst;
94    typedef TheISA::FloatReg FloatReg;
95    typedef TheISA::FloatRegBits FloatRegBits;
96    typedef TheISA::MiscReg MiscReg;
97    typedef TheISA::VectorReg VectorReg;
98
99    /** id attached to all issued requests */
100    MasterID masterId;
101  public:
102    virtual void init();
103
104    typedef CheckerCPUParams Params;
105    CheckerCPU(Params *p);
106    virtual ~CheckerCPU();
107
108    void setSystem(System *system);
109
110    void setIcachePort(MasterPort *icache_port);
111
112    void setDcachePort(MasterPort *dcache_port);
113
114    MasterPort &getDataPort()
115    {
116        // the checker does not have ports on its own so return the
117        // data port of the actual CPU core
118        assert(dcachePort);
119        return *dcachePort;
120    }
121
122    MasterPort &getInstPort()
123    {
124        // the checker does not have ports on its own so return the
125        // data port of the actual CPU core
126        assert(icachePort);
127        return *icachePort;
128    }
129
130  protected:
131
132    std::vector<Process*> workload;
133
134    System *systemPtr;
135
136    MasterPort *icachePort;
137    MasterPort *dcachePort;
138
139    ThreadContext *tc;
140
141    TheISA::TLB *itb;
142    TheISA::TLB *dtb;
143
144    Addr dbg_vtophys(Addr addr);
145
146    union Result {
147        uint64_t integer;
148        double dbl;
149
150        // I am assuming that vector register type is different from the two
151        // types used above.  Else it seems useless to have a separate typedef
152        // for vector registers.
153        VectorReg vector;
154
155        void set(uint64_t i) { integer = i; }
156        void set(double d) { dbl = d; }
157        void set(const VectorReg &v) { vector = v; }
158
159        void get(uint64_t& i) { i = integer; }
160        void get(double& d) { d = dbl; }
161        void get(VectorReg& v) { v = vector; }
162    };
163
164    // ISAs like ARM can have multiple destination registers to check,
165    // keep them all in a std::queue
166    std::queue<Result> result;
167
168    // Pointer to the one memory request.
169    RequestPtr memReq;
170
171    StaticInstPtr curStaticInst;
172    StaticInstPtr curMacroStaticInst;
173
174    // number of simulated instructions
175    Counter numInst;
176    Counter startNumInst;
177
178    std::queue<int> miscRegIdxs;
179
180  public:
181
182    // Primary thread being run.
183    SimpleThread *thread;
184
185    TheISA::TLB* getITBPtr() { return itb; }
186    TheISA::TLB* getDTBPtr() { return dtb; }
187
188    virtual Counter totalInsts() const
189    {
190        return 0;
191    }
192
193    virtual Counter totalOps() const
194    {
195        return 0;
196    }
197
198    // number of simulated loads
199    Counter numLoad;
200    Counter startNumLoad;
201
202    void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE;
203    void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
204
205    // These functions are only used in CPU models that split
206    // effective address computation from the actual memory access.
207    void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
208    Addr getEA() const  { panic("SimpleCPU::getEA() not implemented\n"); }
209
210    // The register accessor methods provide the index of the
211    // instruction's operand (e.g., 0 or 1), not the architectural
212    // register index, to simplify the implementation of register
213    // renaming.  We find the architectural register index by indexing
214    // into the instruction's own operand index table.  Note that a
215    // raw pointer to the StaticInst is provided instead of a
216    // ref-counted StaticInstPtr to redice overhead.  This is fine as
217    // long as these methods don't copy the pointer into any long-term
218    // storage (which is pretty hard to imagine they would have reason
219    // to do).
220
221    IntReg readIntRegOperand(const StaticInst *si, int idx)
222    {
223        return thread->readIntReg(si->srcRegIdx(idx));
224    }
225
226    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
227    {
228        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
229        return thread->readFloatReg(reg_idx);
230    }
231
232    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
233    {
234        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
235        return thread->readFloatRegBits(reg_idx);
236    }
237
238    CCReg readCCRegOperand(const StaticInst *si, int idx)
239    {
240        int reg_idx = si->srcRegIdx(idx) - TheISA::CC_Reg_Base;
241        return thread->readCCReg(reg_idx);
242    }
243
244    const VectorReg &readVectorRegOperand(const StaticInst *si, int idx)
245    {
246        return thread->readVectorReg(si->srcRegIdx(idx));
247    }
248
249    template <class T>
250    void setResult(T t)
251    {
252        Result instRes;
253        instRes.set(t);
254        result.push(instRes);
255    }
256
257    void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
258    {
259        thread->setIntReg(si->destRegIdx(idx), val);
260        setResult<uint64_t>(val);
261    }
262
263    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
264    {
265        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
266        thread->setFloatReg(reg_idx, val);
267        setResult<double>(val);
268    }
269
270    void setFloatRegOperandBits(const StaticInst *si, int idx,
271                                FloatRegBits val)
272    {
273        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
274        thread->setFloatRegBits(reg_idx, val);
275        setResult<uint64_t>(val);
276    }
277
278    void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
279    {
280        int reg_idx = si->destRegIdx(idx) - TheISA::CC_Reg_Base;
281        thread->setCCReg(reg_idx, val);
282        setResult<uint64_t>(val);
283    }
284
285    void setVectorRegOperand(const StaticInst *si, int idx,
286                             const VectorReg &val)
287    {
288        thread->setVectorReg(si->destRegIdx(idx), val);
289        setResult<VectorReg>(val);
290    }
291
292    bool readPredicate() { return thread->readPredicate(); }
293    void setPredicate(bool val)
294    {
295        thread->setPredicate(val);
296    }
297
298    TheISA::PCState pcState() const { return thread->pcState(); }
299    void pcState(const TheISA::PCState &val)
300    {
301        DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
302                         val, thread->pcState());
303        thread->pcState(val);
304    }
305    Addr instAddr() { return thread->instAddr(); }
306    Addr nextInstAddr() { return thread->nextInstAddr(); }
307    MicroPC microPC() { return thread->microPC(); }
308    //////////////////////////////////////////
309
310    MiscReg readMiscRegNoEffect(int misc_reg) const
311    {
312        return thread->readMiscRegNoEffect(misc_reg);
313    }
314
315    MiscReg readMiscReg(int misc_reg)
316    {
317        return thread->readMiscReg(misc_reg);
318    }
319
320    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
321    {
322        DPRINTF(Checker, "Setting misc reg %d with no effect to check later\n", misc_reg);
323        miscRegIdxs.push(misc_reg);
324        return thread->setMiscRegNoEffect(misc_reg, val);
325    }
326
327    void setMiscReg(int misc_reg, const MiscReg &val)
328    {
329        DPRINTF(Checker, "Setting misc reg %d with effect to check later\n", misc_reg);
330        miscRegIdxs.push(misc_reg);
331        return thread->setMiscReg(misc_reg, val);
332    }
333
334    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
335    {
336        int reg_idx = si->srcRegIdx(idx) - TheISA::Misc_Reg_Base;
337        return thread->readMiscReg(reg_idx);
338    }
339
340    void setMiscRegOperand(
341            const StaticInst *si, int idx, const MiscReg &val)
342    {
343        int reg_idx = si->destRegIdx(idx) - TheISA::Misc_Reg_Base;
344        return this->setMiscReg(reg_idx, val);
345    }
346
347#if THE_ISA == MIPS_ISA
348    MiscReg readRegOtherThread(int misc_reg, ThreadID tid)
349    {
350        panic("MIPS MT not defined for CheckerCPU.\n");
351        return 0;
352    }
353
354    void setRegOtherThread(int misc_reg, MiscReg val, ThreadID tid)
355    {
356        panic("MIPS MT not defined for CheckerCPU.\n");
357    }
358#endif
359
360    /////////////////////////////////////////
361
362    void recordPCChange(const TheISA::PCState &val)
363    {
364       changedPC = true;
365       newPCState = val;
366    }
367
368    void demapPage(Addr vaddr, uint64_t asn)
369    {
370        this->itb->demapPage(vaddr, asn);
371        this->dtb->demapPage(vaddr, asn);
372    }
373
374    // monitor/mwait funtions
375    virtual void armMonitor(Addr address) { BaseCPU::armMonitor(address); }
376    bool mwait(PacketPtr pkt) { return BaseCPU::mwait(pkt); }
377    void mwaitAtomic(ThreadContext *tc)
378    { return BaseCPU::mwaitAtomic(tc, thread->dtb); }
379    AddressMonitor *getAddrMonitor() { return BaseCPU::getCpuAddrMonitor(); }
380
381    void demapInstPage(Addr vaddr, uint64_t asn)
382    {
383        this->itb->demapPage(vaddr, asn);
384    }
385
386    void demapDataPage(Addr vaddr, uint64_t asn)
387    {
388        this->dtb->demapPage(vaddr, asn);
389    }
390
391    Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
392    Fault writeMem(uint8_t *data, unsigned size,
393                   Addr addr, unsigned flags, uint64_t *res);
394
395    unsigned int readStCondFailures() const {
396        return thread->readStCondFailures();
397    }
398
399    void setStCondFailures(unsigned int sc_failures)
400    {}
401    /////////////////////////////////////////////////////
402
403    Fault hwrei() { return thread->hwrei(); }
404    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
405    void wakeup() { }
406    // Assume that the normal CPU's call to syscall was successful.
407    // The checker's state would have already been updated by the syscall.
408    void syscall(int64_t callnum) { }
409
410    void handleError()
411    {
412        if (exitOnError)
413            dumpAndExit();
414    }
415
416    bool checkFlags(Request *unverified_req, Addr vAddr,
417                    Addr pAddr, int flags);
418
419    void dumpAndExit();
420
421    ThreadContext *tcBase() { return tc; }
422    SimpleThread *threadBase() { return thread; }
423
424    Result unverifiedResult;
425    Request *unverifiedReq;
426    uint8_t *unverifiedMemData;
427
428    bool changedPC;
429    bool willChangePC;
430    TheISA::PCState newPCState;
431    bool exitOnError;
432    bool updateOnError;
433    bool warnOnlyOnLoadError;
434
435    InstSeqNum youngestSN;
436};
437
438/**
439 * Templated Checker class.  This Checker class is templated on the
440 * DynInstPtr of the instruction type that will be verified.  Proper
441 * template instantiations of the Checker must be placed at the bottom
442 * of checker/cpu.cc.
443 */
444template <class Impl>
445class Checker : public CheckerCPU
446{
447  private:
448    typedef typename Impl::DynInstPtr DynInstPtr;
449
450  public:
451    Checker(Params *p)
452        : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL)
453    { }
454
455    void switchOut();
456    void takeOverFrom(BaseCPU *oldCPU);
457
458    void advancePC(const Fault &fault);
459
460    void verify(DynInstPtr &inst);
461
462    void validateInst(DynInstPtr &inst);
463    void validateExecution(DynInstPtr &inst);
464    void validateState();
465
466    void copyResult(DynInstPtr &inst, Result mismatch_val, int start_idx);
467    void handlePendingInt();
468
469  private:
470    void handleError(DynInstPtr &inst)
471    {
472        if (exitOnError) {
473            dumpAndExit(inst);
474        } else if (updateOnError) {
475            updateThisCycle = true;
476        }
477    }
478
479    void dumpAndExit(DynInstPtr &inst);
480
481    bool updateThisCycle;
482
483    DynInstPtr unverifiedInst;
484
485    std::list<DynInstPtr> instList;
486    typedef typename std::list<DynInstPtr>::iterator InstListIt;
487    void dumpInsts();
488};
489
490#endif // __CPU_CHECKER_CPU_HH__
491