base.cc revision 5647:b06b49498c79
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#include <iostream>
33#include <string>
34#include <sstream>
35
36#include "base/cprintf.hh"
37#include "base/loader/symtab.hh"
38#include "base/misc.hh"
39#include "base/output.hh"
40#include "base/trace.hh"
41#include "cpu/base.hh"
42#include "cpu/cpuevent.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/profile.hh"
45#include "params/BaseCPU.hh"
46#include "sim/sim_exit.hh"
47#include "sim/process.hh"
48#include "sim/sim_events.hh"
49#include "sim/system.hh"
50
51// Hack
52#include "sim/stat_control.hh"
53
54using namespace std;
55
56vector<BaseCPU *> BaseCPU::cpuList;
57
58// This variable reflects the max number of threads in any CPU.  Be
59// careful to only use it once all the CPUs that you care about have
60// been initialized
61int maxThreadsPerCPU = 1;
62
63CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
64    : Event(Event::Progress_Event_Pri), interval(ival), lastNumInst(0),
65      cpu(_cpu)
66{
67    if (interval)
68        cpu->schedule(this, curTick + interval);
69}
70
71void
72CPUProgressEvent::process()
73{
74    Counter temp = cpu->totalInstructions();
75#ifndef NDEBUG
76    double ipc = double(temp - lastNumInst) / (interval / cpu->ticks(1));
77
78    DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
79             cpu->name(), temp - lastNumInst, ipc);
80    ipc = 0.0;
81#else
82    cprintf("%lli: %s progress event, instructions committed: %lli\n",
83            curTick, cpu->name(), temp - lastNumInst);
84#endif
85    lastNumInst = temp;
86    cpu->schedule(this, curTick + interval);
87}
88
89const char *
90CPUProgressEvent::description() const
91{
92    return "CPU Progress";
93}
94
95#if FULL_SYSTEM
96BaseCPU::BaseCPU(Params *p)
97    : MemObject(p), clock(p->clock), instCnt(0), interrupts(p->interrupts),
98      number_of_threads(p->numThreads), system(p->system),
99      phase(p->phase)
100#else
101BaseCPU::BaseCPU(Params *p)
102    : MemObject(p), clock(p->clock),
103      number_of_threads(p->numThreads), system(p->system),
104      phase(p->phase)
105#endif
106{
107//    currentTick = curTick;
108
109    // add self to global list of CPUs
110    cpuList.push_back(this);
111
112    if (number_of_threads > maxThreadsPerCPU)
113        maxThreadsPerCPU = number_of_threads;
114
115    // allocate per-thread instruction-based event queues
116    comInstEventQueue = new EventQueue *[number_of_threads];
117    for (int i = 0; i < number_of_threads; ++i)
118        comInstEventQueue[i] = new EventQueue("instruction-based event queue");
119
120    //
121    // set up instruction-count-based termination events, if any
122    //
123    if (p->max_insts_any_thread != 0) {
124        const char *cause = "a thread reached the max instruction count";
125        for (int i = 0; i < number_of_threads; ++i) {
126            Event *event = new SimLoopExitEvent(cause, 0);
127            comInstEventQueue[i]->schedule(event, p->max_insts_any_thread);
128        }
129    }
130
131    if (p->max_insts_all_threads != 0) {
132        const char *cause = "all threads reached the max instruction count";
133
134        // allocate & initialize shared downcounter: each event will
135        // decrement this when triggered; simulation will terminate
136        // when counter reaches 0
137        int *counter = new int;
138        *counter = number_of_threads;
139        for (int i = 0; i < number_of_threads; ++i) {
140            Event *event = new CountedExitEvent(cause, *counter);
141            comInstEventQueue[i]->schedule(event, p->max_insts_any_thread);
142        }
143    }
144
145    // allocate per-thread load-based event queues
146    comLoadEventQueue = new EventQueue *[number_of_threads];
147    for (int i = 0; i < number_of_threads; ++i)
148        comLoadEventQueue[i] = new EventQueue("load-based event queue");
149
150    //
151    // set up instruction-count-based termination events, if any
152    //
153    if (p->max_loads_any_thread != 0) {
154        const char *cause = "a thread reached the max load count";
155        for (int i = 0; i < number_of_threads; ++i) {
156            Event *event = new SimLoopExitEvent(cause, 0);
157            comLoadEventQueue[i]->schedule(event, p->max_loads_any_thread);
158        }
159    }
160
161    if (p->max_loads_all_threads != 0) {
162        const char *cause = "all threads reached the max load count";
163        // allocate & initialize shared downcounter: each event will
164        // decrement this when triggered; simulation will terminate
165        // when counter reaches 0
166        int *counter = new int;
167        *counter = number_of_threads;
168        for (int i = 0; i < number_of_threads; ++i) {
169            Event *event = new CountedExitEvent(cause, *counter);
170            comLoadEventQueue[i]->schedule(event, p->max_loads_all_threads);
171        }
172    }
173
174    functionTracingEnabled = false;
175    if (p->function_trace) {
176        functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
177        currentFunctionStart = currentFunctionEnd = 0;
178        functionEntryTick = p->function_trace_start;
179
180        if (p->function_trace_start == 0) {
181            functionTracingEnabled = true;
182        } else {
183            typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
184            Event *event = new wrap(this, true);
185            schedule(event, p->function_trace_start);
186        }
187    }
188#if FULL_SYSTEM
189    profileEvent = NULL;
190    if (params()->profile)
191        profileEvent = new ProfileEvent(this, params()->profile);
192#endif
193    tracer = params()->tracer;
194}
195
196void
197BaseCPU::enableFunctionTrace()
198{
199    functionTracingEnabled = true;
200}
201
202BaseCPU::~BaseCPU()
203{
204}
205
206void
207BaseCPU::init()
208{
209    if (!params()->defer_registration)
210        registerThreadContexts();
211}
212
213void
214BaseCPU::startup()
215{
216#if FULL_SYSTEM
217    if (!params()->defer_registration && profileEvent)
218        schedule(profileEvent, curTick);
219#endif
220
221    if (params()->progress_interval) {
222        Tick num_ticks = ticks(params()->progress_interval);
223        Event *event = new CPUProgressEvent(this, num_ticks);
224        schedule(event, curTick + num_ticks);
225    }
226}
227
228
229void
230BaseCPU::regStats()
231{
232    using namespace Stats;
233
234    numCycles
235        .name(name() + ".numCycles")
236        .desc("number of cpu cycles simulated")
237        ;
238
239    int size = threadContexts.size();
240    if (size > 1) {
241        for (int i = 0; i < size; ++i) {
242            stringstream namestr;
243            ccprintf(namestr, "%s.ctx%d", name(), i);
244            threadContexts[i]->regStats(namestr.str());
245        }
246    } else if (size == 1)
247        threadContexts[0]->regStats(name());
248
249#if FULL_SYSTEM
250#endif
251}
252
253Tick
254BaseCPU::nextCycle()
255{
256    Tick next_tick = curTick - phase + clock - 1;
257    next_tick -= (next_tick % clock);
258    next_tick += phase;
259    return next_tick;
260}
261
262Tick
263BaseCPU::nextCycle(Tick begin_tick)
264{
265    Tick next_tick = begin_tick;
266    if (next_tick % clock != 0)
267        next_tick = next_tick - (next_tick % clock) + clock;
268    next_tick += phase;
269
270    assert(next_tick >= curTick);
271    return next_tick;
272}
273
274void
275BaseCPU::registerThreadContexts()
276{
277    for (int i = 0; i < threadContexts.size(); ++i) {
278        ThreadContext *tc = threadContexts[i];
279
280#if FULL_SYSTEM
281        int id = params()->cpu_id;
282        if (id != -1)
283            id += i;
284
285        tc->setCpuId(system->registerThreadContext(tc, id));
286#else
287        tc->setCpuId(tc->getProcessPtr()->registerThreadContext(tc));
288#endif
289    }
290}
291
292
293int
294BaseCPU::findContext(ThreadContext *tc)
295{
296    for (int i = 0; i < threadContexts.size(); ++i) {
297        if (tc == threadContexts[i])
298            return i;
299    }
300    return 0;
301}
302
303void
304BaseCPU::switchOut()
305{
306//    panic("This CPU doesn't support sampling!");
307#if FULL_SYSTEM
308    if (profileEvent && profileEvent->scheduled())
309        deschedule(profileEvent);
310#endif
311}
312
313void
314BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc)
315{
316    assert(threadContexts.size() == oldCPU->threadContexts.size());
317
318    for (int i = 0; i < threadContexts.size(); ++i) {
319        ThreadContext *newTC = threadContexts[i];
320        ThreadContext *oldTC = oldCPU->threadContexts[i];
321
322        newTC->takeOverFrom(oldTC);
323
324        CpuEvent::replaceThreadContext(oldTC, newTC);
325
326        assert(newTC->readCpuId() == oldTC->readCpuId());
327#if FULL_SYSTEM
328        system->replaceThreadContext(newTC, newTC->readCpuId());
329#else
330        assert(newTC->getProcessPtr() == oldTC->getProcessPtr());
331        newTC->getProcessPtr()->replaceThreadContext(newTC, newTC->readCpuId());
332#endif
333
334        if (DTRACE(Context))
335            ThreadContext::compare(oldTC, newTC);
336    }
337
338#if FULL_SYSTEM
339    interrupts = oldCPU->interrupts;
340
341    for (int i = 0; i < threadContexts.size(); ++i)
342        threadContexts[i]->profileClear();
343
344    if (profileEvent)
345        schedule(profileEvent, curTick);
346#endif
347
348    // Connect new CPU to old CPU's memory only if new CPU isn't
349    // connected to anything.  Also connect old CPU's memory to new
350    // CPU.
351    if (!ic->isConnected()) {
352        Port *peer = oldCPU->getPort("icache_port")->getPeer();
353        ic->setPeer(peer);
354        peer->setPeer(ic);
355    }
356
357    if (!dc->isConnected()) {
358        Port *peer = oldCPU->getPort("dcache_port")->getPeer();
359        dc->setPeer(peer);
360        peer->setPeer(dc);
361    }
362}
363
364
365#if FULL_SYSTEM
366BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
367    : cpu(_cpu), interval(_interval)
368{ }
369
370void
371BaseCPU::ProfileEvent::process()
372{
373    for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
374        ThreadContext *tc = cpu->threadContexts[i];
375        tc->profileSample();
376    }
377
378    cpu->schedule(this, curTick + interval);
379}
380
381void
382BaseCPU::post_interrupt(int int_num, int index)
383{
384    interrupts->post(int_num, index);
385}
386
387void
388BaseCPU::clear_interrupt(int int_num, int index)
389{
390    interrupts->clear(int_num, index);
391}
392
393void
394BaseCPU::clear_interrupts()
395{
396    interrupts->clear_all();
397}
398
399void
400BaseCPU::serialize(std::ostream &os)
401{
402    SERIALIZE_SCALAR(instCnt);
403    interrupts->serialize(os);
404}
405
406void
407BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
408{
409    UNSERIALIZE_SCALAR(instCnt);
410    interrupts->unserialize(cp, section);
411}
412
413#endif // FULL_SYSTEM
414
415void
416BaseCPU::traceFunctionsInternal(Addr pc)
417{
418    if (!debugSymbolTable)
419        return;
420
421    // if pc enters different function, print new function symbol and
422    // update saved range.  Otherwise do nothing.
423    if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
424        string sym_str;
425        bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
426                                                         currentFunctionStart,
427                                                         currentFunctionEnd);
428
429        if (!found) {
430            // no symbol found: use addr as label
431            sym_str = csprintf("0x%x", pc);
432            currentFunctionStart = pc;
433            currentFunctionEnd = pc + 1;
434        }
435
436        ccprintf(*functionTraceStream, " (%d)\n%d: %s",
437                 curTick - functionEntryTick, curTick, sym_str);
438        functionEntryTick = curTick;
439    }
440}
441