base.cc revision 5529
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#include <iostream>
33#include <string>
34#include <sstream>
35
36#include "base/cprintf.hh"
37#include "base/loader/symtab.hh"
38#include "base/misc.hh"
39#include "base/output.hh"
40#include "base/trace.hh"
41#include "cpu/base.hh"
42#include "cpu/cpuevent.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/profile.hh"
45#include "params/BaseCPU.hh"
46#include "sim/sim_exit.hh"
47#include "sim/process.hh"
48#include "sim/sim_events.hh"
49#include "sim/system.hh"
50
51// Hack
52#include "sim/stat_control.hh"
53
54using namespace std;
55
56vector<BaseCPU *> BaseCPU::cpuList;
57
58// This variable reflects the max number of threads in any CPU.  Be
59// careful to only use it once all the CPUs that you care about have
60// been initialized
61int maxThreadsPerCPU = 1;
62
63CPUProgressEvent::CPUProgressEvent(EventQueue *q, Tick ival,
64                                   BaseCPU *_cpu)
65    : Event(q, Event::Progress_Event_Pri), interval(ival),
66      lastNumInst(0), cpu(_cpu)
67{
68    if (interval)
69        schedule(curTick + interval);
70}
71
72void
73CPUProgressEvent::process()
74{
75    Counter temp = cpu->totalInstructions();
76#ifndef NDEBUG
77    double ipc = double(temp - lastNumInst) / (interval / cpu->ticks(1));
78
79    DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
80             cpu->name(), temp - lastNumInst, ipc);
81    ipc = 0.0;
82#else
83    cprintf("%lli: %s progress event, instructions committed: %lli\n",
84            curTick, cpu->name(), temp - lastNumInst);
85#endif
86    lastNumInst = temp;
87    schedule(curTick + interval);
88}
89
90const char *
91CPUProgressEvent::description() const
92{
93    return "CPU Progress";
94}
95
96#if FULL_SYSTEM
97BaseCPU::BaseCPU(Params *p)
98    : MemObject(p), clock(p->clock), instCnt(0),
99      number_of_threads(p->numThreads), system(p->system),
100      phase(p->phase)
101#else
102BaseCPU::BaseCPU(Params *p)
103    : MemObject(p), clock(p->clock),
104      number_of_threads(p->numThreads), system(p->system),
105      phase(p->phase)
106#endif
107{
108//    currentTick = curTick;
109
110    // add self to global list of CPUs
111    cpuList.push_back(this);
112
113    if (number_of_threads > maxThreadsPerCPU)
114        maxThreadsPerCPU = number_of_threads;
115
116    // allocate per-thread instruction-based event queues
117    comInstEventQueue = new EventQueue *[number_of_threads];
118    for (int i = 0; i < number_of_threads; ++i)
119        comInstEventQueue[i] = new EventQueue("instruction-based event queue");
120
121    //
122    // set up instruction-count-based termination events, if any
123    //
124    if (p->max_insts_any_thread != 0)
125        for (int i = 0; i < number_of_threads; ++i)
126            schedExitSimLoop("a thread reached the max instruction count",
127                             p->max_insts_any_thread, 0,
128                             comInstEventQueue[i]);
129
130    if (p->max_insts_all_threads != 0) {
131        // allocate & initialize shared downcounter: each event will
132        // decrement this when triggered; simulation will terminate
133        // when counter reaches 0
134        int *counter = new int;
135        *counter = number_of_threads;
136        for (int i = 0; i < number_of_threads; ++i)
137            new CountedExitEvent(comInstEventQueue[i],
138                "all threads reached the max instruction count",
139                p->max_insts_all_threads, *counter);
140    }
141
142    // allocate per-thread load-based event queues
143    comLoadEventQueue = new EventQueue *[number_of_threads];
144    for (int i = 0; i < number_of_threads; ++i)
145        comLoadEventQueue[i] = new EventQueue("load-based event queue");
146
147    //
148    // set up instruction-count-based termination events, if any
149    //
150    if (p->max_loads_any_thread != 0)
151        for (int i = 0; i < number_of_threads; ++i)
152            schedExitSimLoop("a thread reached the max load count",
153                             p->max_loads_any_thread, 0,
154                             comLoadEventQueue[i]);
155
156    if (p->max_loads_all_threads != 0) {
157        // allocate & initialize shared downcounter: each event will
158        // decrement this when triggered; simulation will terminate
159        // when counter reaches 0
160        int *counter = new int;
161        *counter = number_of_threads;
162        for (int i = 0; i < number_of_threads; ++i)
163            new CountedExitEvent(comLoadEventQueue[i],
164                "all threads reached the max load count",
165                p->max_loads_all_threads, *counter);
166    }
167
168    functionTracingEnabled = false;
169    if (p->function_trace) {
170        functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
171        currentFunctionStart = currentFunctionEnd = 0;
172        functionEntryTick = p->function_trace_start;
173
174        if (p->function_trace_start == 0) {
175            functionTracingEnabled = true;
176        } else {
177            new EventWrapper<BaseCPU,
178                &BaseCPU::enableFunctionTrace>(
179                this, p->function_trace_start, true);
180        }
181    }
182#if FULL_SYSTEM
183    profileEvent = NULL;
184    if (params()->profile)
185        profileEvent = new ProfileEvent(this, params()->profile);
186#endif
187    tracer = params()->tracer;
188}
189
190void
191BaseCPU::enableFunctionTrace()
192{
193    functionTracingEnabled = true;
194}
195
196BaseCPU::~BaseCPU()
197{
198}
199
200void
201BaseCPU::init()
202{
203    if (!params()->defer_registration)
204        registerThreadContexts();
205}
206
207void
208BaseCPU::startup()
209{
210#if FULL_SYSTEM
211    if (!params()->defer_registration && profileEvent)
212        profileEvent->schedule(curTick);
213#endif
214
215    if (params()->progress_interval) {
216        new CPUProgressEvent(&mainEventQueue,
217                             ticks(params()->progress_interval),
218                             this);
219    }
220}
221
222
223void
224BaseCPU::regStats()
225{
226    using namespace Stats;
227
228    numCycles
229        .name(name() + ".numCycles")
230        .desc("number of cpu cycles simulated")
231        ;
232
233    int size = threadContexts.size();
234    if (size > 1) {
235        for (int i = 0; i < size; ++i) {
236            stringstream namestr;
237            ccprintf(namestr, "%s.ctx%d", name(), i);
238            threadContexts[i]->regStats(namestr.str());
239        }
240    } else if (size == 1)
241        threadContexts[0]->regStats(name());
242
243#if FULL_SYSTEM
244#endif
245}
246
247Tick
248BaseCPU::nextCycle()
249{
250    Tick next_tick = curTick - phase + clock - 1;
251    next_tick -= (next_tick % clock);
252    next_tick += phase;
253    return next_tick;
254}
255
256Tick
257BaseCPU::nextCycle(Tick begin_tick)
258{
259    Tick next_tick = begin_tick;
260    if (next_tick % clock != 0)
261        next_tick = next_tick - (next_tick % clock) + clock;
262    next_tick += phase;
263
264    assert(next_tick >= curTick);
265    return next_tick;
266}
267
268void
269BaseCPU::registerThreadContexts()
270{
271    for (int i = 0; i < threadContexts.size(); ++i) {
272        ThreadContext *tc = threadContexts[i];
273
274#if FULL_SYSTEM
275        int id = params()->cpu_id;
276        if (id != -1)
277            id += i;
278
279        tc->setCpuId(system->registerThreadContext(tc, id));
280#else
281        tc->setCpuId(tc->getProcessPtr()->registerThreadContext(tc));
282#endif
283    }
284}
285
286
287int
288BaseCPU::findContext(ThreadContext *tc)
289{
290    for (int i = 0; i < threadContexts.size(); ++i) {
291        if (tc == threadContexts[i])
292            return i;
293    }
294    return 0;
295}
296
297void
298BaseCPU::switchOut()
299{
300//    panic("This CPU doesn't support sampling!");
301#if FULL_SYSTEM
302    if (profileEvent && profileEvent->scheduled())
303        profileEvent->deschedule();
304#endif
305}
306
307void
308BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc)
309{
310    assert(threadContexts.size() == oldCPU->threadContexts.size());
311
312    for (int i = 0; i < threadContexts.size(); ++i) {
313        ThreadContext *newTC = threadContexts[i];
314        ThreadContext *oldTC = oldCPU->threadContexts[i];
315
316        newTC->takeOverFrom(oldTC);
317
318        CpuEvent::replaceThreadContext(oldTC, newTC);
319
320        assert(newTC->readCpuId() == oldTC->readCpuId());
321#if FULL_SYSTEM
322        system->replaceThreadContext(newTC, newTC->readCpuId());
323#else
324        assert(newTC->getProcessPtr() == oldTC->getProcessPtr());
325        newTC->getProcessPtr()->replaceThreadContext(newTC, newTC->readCpuId());
326#endif
327
328        if (DTRACE(Context))
329            ThreadContext::compare(oldTC, newTC);
330    }
331
332#if FULL_SYSTEM
333    interrupts = oldCPU->interrupts;
334
335    for (int i = 0; i < threadContexts.size(); ++i)
336        threadContexts[i]->profileClear();
337
338    if (profileEvent)
339        profileEvent->schedule(curTick);
340#endif
341
342    // Connect new CPU to old CPU's memory only if new CPU isn't
343    // connected to anything.  Also connect old CPU's memory to new
344    // CPU.
345    if (!ic->isConnected()) {
346        Port *peer = oldCPU->getPort("icache_port")->getPeer();
347        ic->setPeer(peer);
348        peer->setPeer(ic);
349    }
350
351    if (!dc->isConnected()) {
352        Port *peer = oldCPU->getPort("dcache_port")->getPeer();
353        dc->setPeer(peer);
354        peer->setPeer(dc);
355    }
356}
357
358
359#if FULL_SYSTEM
360BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
361    : Event(&mainEventQueue), cpu(_cpu), interval(_interval)
362{ }
363
364void
365BaseCPU::ProfileEvent::process()
366{
367    for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
368        ThreadContext *tc = cpu->threadContexts[i];
369        tc->profileSample();
370    }
371
372    schedule(curTick + interval);
373}
374
375void
376BaseCPU::post_interrupt(int int_num, int index)
377{
378    interrupts.post(int_num, index);
379}
380
381void
382BaseCPU::clear_interrupt(int int_num, int index)
383{
384    interrupts.clear(int_num, index);
385}
386
387void
388BaseCPU::clear_interrupts()
389{
390    interrupts.clear_all();
391}
392
393uint64_t
394BaseCPU::get_interrupts(int int_num)
395{
396    return interrupts.get_vec(int_num);
397}
398
399void
400BaseCPU::serialize(std::ostream &os)
401{
402    SERIALIZE_SCALAR(instCnt);
403    interrupts.serialize(os);
404}
405
406void
407BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
408{
409    UNSERIALIZE_SCALAR(instCnt);
410    interrupts.unserialize(cp, section);
411}
412
413#endif // FULL_SYSTEM
414
415void
416BaseCPU::traceFunctionsInternal(Addr pc)
417{
418    if (!debugSymbolTable)
419        return;
420
421    // if pc enters different function, print new function symbol and
422    // update saved range.  Otherwise do nothing.
423    if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
424        string sym_str;
425        bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
426                                                         currentFunctionStart,
427                                                         currentFunctionEnd);
428
429        if (!found) {
430            // no symbol found: use addr as label
431            sym_str = csprintf("0x%x", pc);
432            currentFunctionStart = pc;
433            currentFunctionEnd = pc + 1;
434        }
435
436        ccprintf(*functionTraceStream, " (%d)\n%d: %s",
437                 curTick - functionEntryTick, curTick, sym_str);
438        functionEntryTick = curTick;
439    }
440}
441