base.cc revision 4284:c8800319ed0c
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#include <iostream>
33#include <string>
34#include <sstream>
35
36#include "base/cprintf.hh"
37#include "base/loader/symtab.hh"
38#include "base/misc.hh"
39#include "base/output.hh"
40#include "cpu/base.hh"
41#include "cpu/cpuevent.hh"
42#include "cpu/thread_context.hh"
43#include "cpu/profile.hh"
44#include "sim/sim_exit.hh"
45#include "sim/param.hh"
46#include "sim/process.hh"
47#include "sim/sim_events.hh"
48#include "sim/system.hh"
49
50#include "base/trace.hh"
51
52// Hack
53#include "sim/stat_control.hh"
54
55using namespace std;
56
57vector<BaseCPU *> BaseCPU::cpuList;
58
59// This variable reflects the max number of threads in any CPU.  Be
60// careful to only use it once all the CPUs that you care about have
61// been initialized
62int maxThreadsPerCPU = 1;
63
64CPUProgressEvent::CPUProgressEvent(EventQueue *q, Tick ival,
65                                   BaseCPU *_cpu)
66    : Event(q, Event::Progress_Event_Pri), interval(ival),
67      lastNumInst(0), cpu(_cpu)
68{
69    if (interval)
70        schedule(curTick + interval);
71}
72
73void
74CPUProgressEvent::process()
75{
76    Counter temp = cpu->totalInstructions();
77#ifndef NDEBUG
78    double ipc = double(temp - lastNumInst) / (interval / cpu->cycles(1));
79
80    DPRINTFN("%s progress event, instructions committed: %lli, IPC: %0.8d\n",
81             cpu->name(), temp - lastNumInst, ipc);
82    ipc = 0.0;
83#else
84    cprintf("%lli: %s progress event, instructions committed: %lli\n",
85            curTick, cpu->name(), temp - lastNumInst);
86#endif
87    lastNumInst = temp;
88    schedule(curTick + interval);
89}
90
91const char *
92CPUProgressEvent::description()
93{
94    return "CPU Progress event";
95}
96
97#if FULL_SYSTEM
98BaseCPU::BaseCPU(Params *p)
99    : MemObject(p->name), clock(p->clock), instCnt(0),
100      params(p), number_of_threads(p->numberOfThreads), system(p->system),
101      phase(p->phase)
102#else
103BaseCPU::BaseCPU(Params *p)
104    : MemObject(p->name), clock(p->clock), params(p),
105      number_of_threads(p->numberOfThreads), system(p->system),
106      phase(p->phase)
107#endif
108{
109//    currentTick = curTick;
110    DPRINTF(FullCPU, "BaseCPU: Creating object, mem address %#x.\n", this);
111
112    // add self to global list of CPUs
113    cpuList.push_back(this);
114
115    DPRINTF(FullCPU, "BaseCPU: CPU added to cpuList, mem address %#x.\n",
116            this);
117
118    if (number_of_threads > maxThreadsPerCPU)
119        maxThreadsPerCPU = number_of_threads;
120
121    // allocate per-thread instruction-based event queues
122    comInstEventQueue = new EventQueue *[number_of_threads];
123    for (int i = 0; i < number_of_threads; ++i)
124        comInstEventQueue[i] = new EventQueue("instruction-based event queue");
125
126    //
127    // set up instruction-count-based termination events, if any
128    //
129    if (p->max_insts_any_thread != 0)
130        for (int i = 0; i < number_of_threads; ++i)
131            schedExitSimLoop("a thread reached the max instruction count",
132                             p->max_insts_any_thread, 0,
133                             comInstEventQueue[i]);
134
135    if (p->max_insts_all_threads != 0) {
136        // allocate & initialize shared downcounter: each event will
137        // decrement this when triggered; simulation will terminate
138        // when counter reaches 0
139        int *counter = new int;
140        *counter = number_of_threads;
141        for (int i = 0; i < number_of_threads; ++i)
142            new CountedExitEvent(comInstEventQueue[i],
143                "all threads reached the max instruction count",
144                p->max_insts_all_threads, *counter);
145    }
146
147    // allocate per-thread load-based event queues
148    comLoadEventQueue = new EventQueue *[number_of_threads];
149    for (int i = 0; i < number_of_threads; ++i)
150        comLoadEventQueue[i] = new EventQueue("load-based event queue");
151
152    //
153    // set up instruction-count-based termination events, if any
154    //
155    if (p->max_loads_any_thread != 0)
156        for (int i = 0; i < number_of_threads; ++i)
157            schedExitSimLoop("a thread reached the max load count",
158                             p->max_loads_any_thread, 0,
159                             comLoadEventQueue[i]);
160
161    if (p->max_loads_all_threads != 0) {
162        // allocate & initialize shared downcounter: each event will
163        // decrement this when triggered; simulation will terminate
164        // when counter reaches 0
165        int *counter = new int;
166        *counter = number_of_threads;
167        for (int i = 0; i < number_of_threads; ++i)
168            new CountedExitEvent(comLoadEventQueue[i],
169                "all threads reached the max load count",
170                p->max_loads_all_threads, *counter);
171    }
172
173    functionTracingEnabled = false;
174    if (p->functionTrace) {
175        functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
176        currentFunctionStart = currentFunctionEnd = 0;
177        functionEntryTick = p->functionTraceStart;
178
179        if (p->functionTraceStart == 0) {
180            functionTracingEnabled = true;
181        } else {
182            Event *e =
183                new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
184                                                                         true);
185            e->schedule(p->functionTraceStart);
186        }
187    }
188#if FULL_SYSTEM
189    profileEvent = NULL;
190    if (params->profile)
191        profileEvent = new ProfileEvent(this, params->profile);
192#endif
193}
194
195BaseCPU::Params::Params()
196{
197#if FULL_SYSTEM
198    profile = false;
199#endif
200    checker = NULL;
201}
202
203void
204BaseCPU::enableFunctionTrace()
205{
206    functionTracingEnabled = true;
207}
208
209BaseCPU::~BaseCPU()
210{
211}
212
213void
214BaseCPU::init()
215{
216    if (!params->deferRegistration)
217        registerThreadContexts();
218}
219
220void
221BaseCPU::startup()
222{
223#if FULL_SYSTEM
224    if (!params->deferRegistration && profileEvent)
225        profileEvent->schedule(curTick);
226#endif
227
228    if (params->progress_interval) {
229        new CPUProgressEvent(&mainEventQueue,
230                             cycles(params->progress_interval),
231                             this);
232    }
233}
234
235
236void
237BaseCPU::regStats()
238{
239    using namespace Stats;
240
241    numCycles
242        .name(name() + ".numCycles")
243        .desc("number of cpu cycles simulated")
244        ;
245
246    int size = threadContexts.size();
247    if (size > 1) {
248        for (int i = 0; i < size; ++i) {
249            stringstream namestr;
250            ccprintf(namestr, "%s.ctx%d", name(), i);
251            threadContexts[i]->regStats(namestr.str());
252        }
253    } else if (size == 1)
254        threadContexts[0]->regStats(name());
255
256#if FULL_SYSTEM
257#endif
258}
259
260Tick
261BaseCPU::nextCycle()
262{
263    Tick next_tick = curTick - phase + clock - 1;
264    next_tick -= (next_tick % clock);
265    next_tick += phase;
266    return next_tick;
267}
268
269Tick
270BaseCPU::nextCycle(Tick begin_tick)
271{
272    Tick next_tick = begin_tick;
273    next_tick -= (next_tick % clock);
274    next_tick += phase;
275
276    while (next_tick < curTick)
277        next_tick += clock;
278
279    assert(next_tick >= curTick);
280    return next_tick;
281}
282
283void
284BaseCPU::registerThreadContexts()
285{
286    for (int i = 0; i < threadContexts.size(); ++i) {
287        ThreadContext *tc = threadContexts[i];
288
289#if FULL_SYSTEM
290        int id = params->cpu_id;
291        if (id != -1)
292            id += i;
293
294        tc->setCpuId(system->registerThreadContext(tc, id));
295#else
296        tc->setCpuId(tc->getProcessPtr()->registerThreadContext(tc));
297#endif
298    }
299}
300
301
302int
303BaseCPU::findContext(ThreadContext *tc)
304{
305    for (int i = 0; i < threadContexts.size(); ++i) {
306        if (tc == threadContexts[i])
307            return i;
308    }
309    return 0;
310}
311
312void
313BaseCPU::switchOut()
314{
315//    panic("This CPU doesn't support sampling!");
316#if FULL_SYSTEM
317    if (profileEvent && profileEvent->scheduled())
318        profileEvent->deschedule();
319#endif
320}
321
322void
323BaseCPU::takeOverFrom(BaseCPU *oldCPU, Port *ic, Port *dc)
324{
325    assert(threadContexts.size() == oldCPU->threadContexts.size());
326
327    for (int i = 0; i < threadContexts.size(); ++i) {
328        ThreadContext *newTC = threadContexts[i];
329        ThreadContext *oldTC = oldCPU->threadContexts[i];
330
331        newTC->takeOverFrom(oldTC);
332
333        CpuEvent::replaceThreadContext(oldTC, newTC);
334
335        assert(newTC->readCpuId() == oldTC->readCpuId());
336#if FULL_SYSTEM
337        system->replaceThreadContext(newTC, newTC->readCpuId());
338#else
339        assert(newTC->getProcessPtr() == oldTC->getProcessPtr());
340        newTC->getProcessPtr()->replaceThreadContext(newTC, newTC->readCpuId());
341#endif
342
343//    TheISA::compareXCs(oldXC, newXC);
344    }
345
346#if FULL_SYSTEM
347    interrupts = oldCPU->interrupts;
348
349    for (int i = 0; i < threadContexts.size(); ++i)
350        threadContexts[i]->profileClear();
351
352    // The Sampler must take care of this!
353//    if (profileEvent)
354//        profileEvent->schedule(curTick);
355#endif
356
357    // Connect new CPU to old CPU's memory only if new CPU isn't
358    // connected to anything.  Also connect old CPU's memory to new
359    // CPU.
360    Port *peer;
361    if (ic->getPeer() == NULL) {
362        peer = oldCPU->getPort("icache_port")->getPeer();
363        ic->setPeer(peer);
364    } else {
365        peer = ic->getPeer();
366    }
367    peer->setPeer(ic);
368
369    if (dc->getPeer() == NULL) {
370        peer = oldCPU->getPort("dcache_port")->getPeer();
371        dc->setPeer(peer);
372    } else {
373        peer = dc->getPeer();
374    }
375    peer->setPeer(dc);
376}
377
378
379#if FULL_SYSTEM
380BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
381    : Event(&mainEventQueue), cpu(_cpu), interval(_interval)
382{ }
383
384void
385BaseCPU::ProfileEvent::process()
386{
387    for (int i = 0, size = cpu->threadContexts.size(); i < size; ++i) {
388        ThreadContext *tc = cpu->threadContexts[i];
389        tc->profileSample();
390    }
391
392    schedule(curTick + interval);
393}
394
395void
396BaseCPU::post_interrupt(int int_num, int index)
397{
398    interrupts.post(int_num, index);
399}
400
401void
402BaseCPU::clear_interrupt(int int_num, int index)
403{
404    interrupts.clear(int_num, index);
405}
406
407void
408BaseCPU::clear_interrupts()
409{
410    interrupts.clear_all();
411}
412
413uint64_t
414BaseCPU::get_interrupts(int int_num)
415{
416    return interrupts.get_vec(int_num);
417}
418
419void
420BaseCPU::serialize(std::ostream &os)
421{
422    SERIALIZE_SCALAR(instCnt);
423    interrupts.serialize(os);
424}
425
426void
427BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
428{
429    UNSERIALIZE_SCALAR(instCnt);
430    interrupts.unserialize(cp, section);
431}
432
433#endif // FULL_SYSTEM
434
435void
436BaseCPU::traceFunctionsInternal(Addr pc)
437{
438    if (!debugSymbolTable)
439        return;
440
441    // if pc enters different function, print new function symbol and
442    // update saved range.  Otherwise do nothing.
443    if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
444        string sym_str;
445        bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
446                                                         currentFunctionStart,
447                                                         currentFunctionEnd);
448
449        if (!found) {
450            // no symbol found: use addr as label
451            sym_str = csprintf("0x%x", pc);
452            currentFunctionStart = pc;
453            currentFunctionEnd = pc + 1;
454        }
455
456        ccprintf(*functionTraceStream, " (%d)\n%d: %s",
457                 curTick - functionEntryTick, curTick, sym_str);
458        functionEntryTick = curTick;
459    }
460}
461
462
463DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)
464